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a b s t r a c t 

A shear-lag and deformation-theory based model for a metal matrix composite reinforced by continuous 

unidirectional fibres is proposed. The model accounts for fibre and matrix cracking, matrix plasticity, and 

fibre-matrix interfacial sliding through seven characteristic non-dimensional parameters, which combine 

geometric, phase and interface properties. It allows arbitrary tensile loading and unloading history along 

the fibre direction, and predicts the history-dependent elastoplastic displacement, strain, and stress fields 

in all the fibre and matrix elements. Broken elements may be present initially, or form during the im- 

posed loading history. Non-linear one-dimensional governing differential and algebraic equations are for- 

mulated on the basis of the model. A computationally fast solution methodology based on pseudospectral 

collocation is implemented. The present model is employed to predict the elastic strain profiles in a Ti/SiC 

composite tape near pre-existing breaks. These predictions agree well with experimental measurements 

reported in the literature. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In the low and intermediate pressure stages of aerospace gas

turbines, considerable weight and cost associated with a com-

pressor stage can be saved by replacing conventional superalloy

discs with titanium (Ti) alloy matrix composite bladed compressor

rings ( Winstone et al., 2001; Martin and Carrére, 2012 ). Typically,

continuous silicon carbide (SiC) fibres reinforce the Ti alloy matrix,

as SiC fibres have excellent high temperature properties and long-

term chemical compatibility with the Ti matrix material ( Martin

and Carrére, 2012 ). Failure of SiC/Ti alloy metal matrix composites

occurs by the localised failure of nearby fibres, and is not preceded

by much global damage ( González and Llorca, 2001; Martin and

Carrére, 2012 ), provided the fibre-matrix interface is sufficiently

strong ( Du and McMeeking, 1994 ). An accurate description of the

stress distribution near damaged regions is essential to understand

crack propagation in these materials. This description is best

obtained by constructing a sufficiently detailed model of load

transfer in partially damaged metal matrix composites, and by

experimentally validating its predictions. 

Microscopic damage in unidirectionally reinforced metal ma-

trix composites takes the form of fibre breakages, matrix cracks,
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atrix yielding, and fibre-matrix interfacial debonding/sliding

 Clyne and Withers, 1995 ). Models capable of representing some

r all of these mechanisms have been developed in the literature,

nd allow classification into two broad groups. Models in the first

roup are based on the finite element method. These models re-

olve the detailed microstructure ( Du and McMeeking, 1994; Lan-

is and McMeeking, 1999; Xia et al., 2001; Xia and Curtin, 2001;

onzález and Llorca, 2001 ), and incorporate complex constitutive

aws for the various microstructural phases, and interfaces. They

re able to predict spatially resolved mechanical fields in arbitrar-

ly damaged metal matrix composites. However, the complexity of

hese models limits them to small volumes: Du and McMeeking

1994) and Landis and McMeeking (1999) assumed axisymmetric

istribution of fibres around a broken fibre, and modelled three

bres only. González and Llorca (2001) modelled only three neigh-

ours of a broken fibre in their finite element study of a single

ly. The finite element models of Xia et al. (2001) , treated nine

nd eleven fibre models arranged in a hexagonal array. A finite el-

ment model of a composite comprised of 400 fibres was utilised

y Behzadi et al. (2009) to simulate composite failure. This model,

owever, treated the matrix as a multilinear elastic material, and

id not account for plastic unloading. 

The second group is comprised of shear-lag models. This class

f models was pioneered by Cox (1952) for the stress state around

 broken fibre surrounded by an axisymmetric matrix ring. The fi-

re, and matrix ring are bounded by a homogeneous effective com-

osite medium. This simple model was considerably extended by

http://dx.doi.org/10.1016/j.ijsolstr.2017.05.032
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Nomenclature 

a Fibre dimension, Fig. 1 

A Dimensionless parameter, Eq. (29) 

A f Cross-sectional area of a fibre 

b Centre-to-centre distance between fibres, 

Fig. 1 

B, C Dimensionless parameters, Eq. (29) 

d Composite ply thickness, Fig. 1 

E Dimensionless parameter, Eq. (29) 

E f Fiber elastic modulus, Eq. (4) 

E 1 Matrix elastic modulus in tension, Eq. (5) 

E 2 Matrix hardening modulus in tension, Eq. (5) 

f i Fiber element i , Fig. 2 

f sm k 
Fibre element adjacent to the shear-matrix 

sm k , Fig. 2 

f + tm j 
Fibre element to the right of tensile-matrix 

tm j , Fig. 2 

f −tm j 
Fibre element to the left of tensile-matrix tm j , 

Fig. 2 

F Dimensionless parameter, Eq. (29) 

G 1 Matrix elastic modulus in shear, Eq. (13) 

G 2 Matrix hardening modulus in shear, Eq. (13) 

h Surface-to-surface distance between adjacent 

fibres, Fig. 1 

H Dimensionless parameter, Eq. (29) 

i, j, k Elements indices 

I, K Dimensionless parameters, Eq. (29) 

L Composite length, Fig. 1 

� Dimensionless fibrewise half-length of the 

composite, Eq. (37) 

n Exponent in the interfacial sliding law, Eq. (18) 

n C Number of Chebyshev grid points Eq. (43) 

n f Number of fibre elements 

P Total load imposed, Eq. (24) 
ˆ P Dimensionless imposed load, Eq. (38) 

s Deformation step counter 

s + 
f i 

Slider element to the right of fibre f i , Fig. 2 

s −
f i 

Slider element to the left of fibre f i , Fig. 2 

s k Slider element k , Fig. 2 

s sm k 
Slider element adjacent to the shear-matrix 

sm k , Fig. 2 

s + tm j 
Slider element to the right of tensile-matrix 

tm j , Fig. 2 

s −tm j 
Slider element to the left of tensile-matrix tm j , 

Fig. 2 

sm 

+ 
f i 

Shear-matrix element to the right of fibre f i , 

Fig. 2 

sm 

−
f i 

Shear-matrix element to the left of fibre f i , 

Fig. 2 

sm k Shear-matrix element k , Fig. 2 

sm 

+ 
tm j 

Shear-matrix element to the right of tensile- 

matrix tm j , Fig. 2 

sm 

−
tm j 

Shear-matrix element to the left of tensile- 

matrix tm j , Fig. 2 

tm 

+ 
f i 

Tensile-matrix element to the right of fibre f i , 

Fig. 2 

tm 

−
f i 

Tensile-matrix element to the left of fibre f i , 

Fig. 2 

tm j Tensile-matrix element j , Fig. 2 

tm sm k 
Tensile-matrix element adjacent to the shear- 

matrix sm k , Fig. 2 
B  
w f i 
Displacement of the i th fiber element, Eq. (1) 

ˆ w f i 
Dimensionless displacement of the i th fiber el- 

ement, Eq. (28) 

w tm j 
Displacement of the j th tensile-matrix ele- 

ment, Eq. (2) 

ˆ w tm j 
Dimensionless displacement of the j th tensile- 

matrix element, Eq. (28) 

w s k 
Displacement of the k th slider element, Eq. (3) 

ˆ w s k 
Dimensionless displacement of the k th slider 

element, Eq. (28) 

W Dimensionless parameters, Eq. (29) 

x Co-ordinate normal to the fibre direction, 

Fig. 1 

z Co-ordinate parallel to the fibre direction, 

Fig. 1 

γ round , γ shift Numerical smoothing parameters, Eq. (16) 

γsm k 
Shear strain in shear-matrix element k , Eq. (3) 

γ pl 
sm k 

Plastic shear strain in the shear-matrix ele- 

ment k . Eq. (15) 

ˆ γ pl 
sm k 

Dimensionless plastic shear strain in the 

shear-matrix element k , Eq. (31) 

γ peak 
sm k 

Peak shear strain in shear-matrix element k , 

Eq. (16) 

εround Numerical smoothing parameter, Eq. (11) 

εengg Imposed engineering strain, Eq. (23) 

εf i 
Axial strain in fibre element i , Eq. (1) 

ε tm j 
Axial strain in tensile-matrix element j , Eq. (2) 

ε el 
tm j 

Elastic strain in the tensile-matrix element j , 

Fig. 3 

ε pl 
tm j 

Plastic strain in the tensile-matrix element j , 

Fig. 3 

ˆ ε pl 
tm j 

Dimensionless plastic axial strain in the 

tensile-matrix element j , Eq. (33) 

ε peak 
tm j 

Peak axial strain in the tensile-matrix element 

j , Fig. 3 

σf i 
Axial stress in the fiber element i , Eq. (4) 

σtm j 
Axial stress in the tensile-matrix element j , 

Eq. (5) 

σ peak 
tm j 

Peak axial stress in the tensile-matrix element 

j , Fig. 3 

σ y Matrix yield stress in tension, Eq. (5) 

τsm k 
Shear stress in the shear-matrix element k , 

Eq. (13) 

τ y Matrix yield stress in shear, Eq. (13) 

τ ∗ Interface threshold stress, Eq. (17) 

ζ Dimensionless co-ordinate parallel to the fibre 

direction, Eq. (25) 

edgepeth (1961) , and Hedgepeth and Van Dyke (1967) . The lat-

er models account for an infinite regular array of elastic fibres

arrying tensile load, perfectly bonded to intervening shear carry-

ng elastic matrix. The analytical treatment of shear-lag models be-

omes difficult if non-linear material responses or deviations from

eometric regularity are incorporated. 

Much recent effort has been aimed at extending shear-lag mod-

ls to account for the non-linearities in material response. Al-

hough many of these pertain to polymer matrix composites, they

ontain elements of direct relevance to the metal-matrix com-

osites of present interest. The shear lag model of Beyerlein and

hoenix (1996) extended the classical shear lag model to account

or perfectly plastic or sliding matrix material. Using this model,

eyerlein and Phoenix (1996) predicted the stresses around sin-
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gle and multiple breaks. Landis and McMeeking (1999) , extended

the model of Cox (1952) by assuming a matrix obeying the J 2 flow

theory. They showed that the interfacial shear stress around an

isolated fibre break approaches the matrix and interface constitu-

tive response assumed by Beyerlein and Phoenix (1996) with in-

creasing far-field strain. A three-dimensional shear lag based model

for the case of fibres arranged in a hexagonal array is due to

Okabe et al. (2001) . This model accounts for interface debond-

ing and matrix yielding. Okabe and Takeda (2002) introduced lin-

ear hardening into the matrix constitutive response. Most recently,

Zhang and Wang (2009) have proposed a model that also accounts

for matrix yielding, and interfacial debonding. Their model treats

these phenomena as special types of breaks and models their in-

teraction through influence superposition. While the models of

Beyerlein and Phoenix (1996) ; Okabe et al. (2001) , and Okabe and

Takeda (2002) assume a compliant matrix incapable of carrying

tensile loads, the models of Beyerlein and Landis (1999) and Zhang

and Wang (2009) allow for non-negligible matrix stiffness as well.

Pimenta and Robinson (2014) recently proposed a shear-lag model

involving a matrix obeying a non-linear traction-separation law. 

The effect of deviation from regular packing on stress concen-

trations, and ineffective length was studied by Swolfs et al. (2012) .

In polymer matrix composites, Swolfs et al. (2015) found that

matrix cracks have an insignificant effect on composite strength.

Mishnaevsky and Brøndsted (2009) studied the stress state pro-

duced in a partially damaged realistic microstructure using the fi-

nite element method. They also studied the effects of matrix crack-

ing, and interfacial debonding on composite strength. 

While most of the aforementioned models – both finite ele-

ment based, and shear-lag based – are computationally tractable

for small clusters of breaks, they are either unable to treat arbi-

trary damage and non-linear material response, or treat it approx-

imately using linear superposition of break influences. The latter

approximation is not justified in general, as the stress and dis-

placement fields in a non-linear material are not superposable. It

has, however, been shown to be satisfactory under certain condi-

tions. For instance, errors of only a few percent in the stress con-

centration were reported from linear superposition by Xia et al.

(2001) when the applied load is sufficiently high to produce gross

yielding in the matrix. Amongst the shear-lag models, the model of

Beyerlein and Phoenix (1996) replaces yielded matrix, or interfa-

cial sliding by a system of shear forces on the neighbouring fibres.

This approach is feasible only when the region of matrix yielding

or interfacial sliding is known, or can be guessed using symme-

try considerations, a priori. A similar restriction also applies to the

shear-lag model of Zhang and Wang (2009) , wherein, the extent of

matrix yielding, and interfacial sliding near a fibre break are as-

sumed a priori. 

Spatially resolved elastic strains in a partially damaged Ti-SiC

composite have been reported in the literature by Hanan et al.

(2003) . Their measurements were made using synchrotron X-ray

microdiffraction. The microdiffraction technique measures elastic

strains only, even in elastoplastically deforming phases, such as the

present Ti matrix. This is because the experimental technique is

based upon changes in the diffraction pattern with changing lat-

tice spacing, which is, in turn, proportional to the elastic strain.

The plastic strain is not resolved, as plastic deformation leaves the

lattice spacing nearly unchanged. 

A model of the composite specimen of Hanan et al. (2003) , ac-

counting for the full length of all their fibres, is presently anal-

ysed. The analysis is based on a formulation wherein non-linear

governing differential equations accounting for non-linear defor-

mation plasticity of the matrix, tensile stiffness of the matrix and

fibre-matrix interfacial slip are incorporated. The formulation in-

corporates deformation plasticity and shear-lag theory. Loading to

850 MPa, and unloading therefrom are computer simulated, exactly
s in the experiment. Barring the fibre-matrix interfacial strength,

ll material parameters of the constituent phases are taken from

he literature. The present model predicts elastic strain profiles

ear the breaks in excellent agreement with the measurements of

anan et al. (2003) . 

The present model and computational methodology are de-

cribed in Sections 2 −7 . Model predictions are compared with ex-

erimental observations of Hanan et al. (2003) in Section 8 . The

redicted fields are also discussed. These comparisons suggest the

iability of the present model to realistically capture the load dis-

ribution due to arbitrarily complex damage in unidirectional metal

atrix composites. 

. Model 

.1. Geometry 

Fig. 1 shows the elements making up the model composite.

ollowing the classical shear-lag approximation ( Cox, 1952 ), fibres

re assumed to be inflexible in all but their axial direction, z .

he matrix domain, which physically experiences both axial and

hear deformations, is modelled as two distinct types of elements,

ermed the tensile matrix and shear matrix regions. These are

hown separately in Fig. 1 . The tensile matrix admits only axial

eformation in the z direction, while the shear matrix undergoes

nly xz shears. This modelling treatment follows Budiansky et al.

1986) and Mahesh et al. (2004) . Fibres in the present compos-

te are indexed as f i , where i ∈ { 0 , 1 , 2 , . . . , n f − 1 } . Periodicity is as-

umed. Thus, f n f is equivalent to f 0 , as shown. 

Each fibre in Fig. 1 is abutted by a pair of shear matrix ele-

ents, which in turn are surrounded by a pair of tensile matrix

lements. A slider element lies at the interface between the fibre

nd the shear matrix. The deformation of each element depends

n those of its neighbours. In order to identify various elements

f the model, and their neighbours, a formal notation is presently

ntroduced. As shown in Fig. 2 , the shear matrix elements to the

ight and left of fibre f i are denoted sm 

+ 
f i 

and sm 

−
f i 
, respectively.

imilarly, the right and left tensile matrix neighbours of fibre i are

enoted tm 

+ 
f i 

and tm 

−
f i 
, respectively, and the right and left slider el-

ments as s + 
f i 

and s −
f i 
, respectively. These neighbouring elements of

bre f i are labelled on the left in Fig. 2 . In an entirely similar man-

er, the neighbouring elements of tensile matrix tm j are as shown

abelled on the right side of Fig. 2 . 

Unlike fibre and tensile matrix elements, shear matrix element

m k is abutted by unique fibre, tensile matrix, and slider elements,

enoted by f sm k 
, tm sm k 

, and s sm k 
, respectively. These elements are

abelled below in Fig. 2 . The same is also true of slider elements:

he fibre, tensile matrix, and shear matrix neighbours of slider el-

ment s k are f s k , tm s k 
, and sm s k 

, respectively. These elements are

ot marked in Fig. 2 . 

.2. Displacements and strains 

Displacement and strain fields evolve over the deformation his-

ory. Let the deformation history be discretised into steps, s ∈
 0 , 1 , 2 , . . . } , and let step s = 0 correspond to the initial unloaded

tate. Let w 

(s ) 
f i 

(z) and w 

(s ) 
tm j 

(z) denote the axial ( z -direction) dis-

lacements at step s in fibre f i and tensile matrix tm j , respectively.

ssuming small deformations, the corresponding axial strains are:

(s ) 
f i 

(z) = 

dw 

(s ) 
f i 

dz 
(z) , (1)

nd 

(s ) 
tm j 

(z) = 

dw 

(s ) 
tm j 

dz 
(z) . (2)
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Fig. 1. The model metal matrix composite showing all the model elements. Fibres are shown shaded dark. The matrix domain is divided into two parts: The ‘shear matrix’ is 

assumed to deform in simple shear, and the ‘tensile matrix’ in pure tension. Sliding displacement at the fibre-matrix interface is permitted. A fibre break and matrix shears 

around it are schematically shown. 

Fig. 2. Model elements neighbouring a typical fibre f i (labelled on the left side), neighbouring a typical tensile matrix, tm j (labelled on the right side), and a typical shear 

matrix sm k (labelled below). 
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(s ) 
s k 

(z) denote the displacement in slider s k . Then, the shear

train in shear matrix sm k is given by 

(s ) 
sm k 

(z) = 

(
w 

(s ) 
tm sm k 

(z) − w 

(s ) 
f sm k 

(z) − w 

(s ) 
s sm k 

(z) 
)
/h . (3) 

he denominator, h = (b − a ) / 2 , is the x -thickness of the shear ma-

rix, which is equal to the distance from the tensile matrix to

he surface of a neighbouring fibre. Eqs. (1) , and (2) are simply

he normal strain-displacement relations corresponding to small

trains. The form of the shear strain, given by Eq. (3) follows that

f Mahesh et al. (2004) . 

. Constitutive assumptions 

.1. Fibre 

As in Mahesh et al. (2004) , fibres are assumed to remain linear

lastic. Let σf i 
(z) denote the stress at coordinate z in fibre element

 . Then, neglecting thermal residual strains, 

(s ) (s ) 

f i 

(z) = E f εf i 
(z) . (4) T
.2. Tensile matrix 

The elastoplastic matrix is treated in the deformation the-

ry framework ( Jones, 2009 ). Following Hill (1998) , and Mahesh

t al. (2004) , the stress-strain relationship under monotonic load-

ng from step 0 to step s is taken to follow: 

(s ) 
tm j 

(z) = σY tanh 

( 

(E 1 − E 2 ) ε 
(s ) 
tm j 

(z) 

σY 

) 

+ E 2 ε 
(s ) 
tm j 

(z) . (5)

n Eq. (5) , E 1 , E 2 , and σ Y denote the tensile Young’s modulus, the

ardening modulus of plastic deformation and yield strength of the

ensile matrix material, respectively. Eq. (5) is plotted as the mono-

onically increasing curve in Fig. 3 . 

The deformation theory stress-strain relationship given in

q. (5) is adequate for monotonic loading of material points in the

atrix. However, even in a tensile specimen that is loaded mono-

onically at the grips, tensile matrix breakage will cause unloading

f the tensile matrix material points in the vicinity of the break. A

ovel methodology is developed presently to track such unloading.

he final result of this development is Eq. (12) below. 
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Fig. 3. Stress-strain response of a tensile matrix element during loading and un- 

loading. A plastic set ε pl 
tm (z) is associated with unloading from the peak stress 

σ peak 
tm (z) . 
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Consider the composite at the end of step S (the ‘current state’).

An important state variable is the maximum or peak strain experi-

enced by the material point up until the current state: 

εpeak 
tm j 

(z) = max 
s =0 , ... ,S 

max 

(
ε(s ) 

tm j 
(z) , 0 

)
. (6)

Here, non-negativity is enforced upon the peak strain in tensile

matrix elements. The material point is defined to be ‘loading’ dur-

ing step (S + 1) if 

ε(S+1) 
tm j 

(z) ≥ εpeak 
tm j 

(z) . (7)

Otherwise, the material point is said be unloading. As shown in

Fig. 3 , if unloading occurs from the maximum stress σ peak 
tm 

(z) , the

tensile matrix element will deform elastically, following: 

σ (s ) 
tm j 

(z) = E 1 

(
ε (s ) 

tm j 
(z) − ε pl 

tm j 
(z) 

)
. (8)

Here, ε pl 
tm j 

(z) , the plastic set in the element, is given by 

ε pl 
tm j 

(z) = ε peak 
tm j 

(z) − σ peak 
tm j 

(z) / E 1 . (9)

σ peak 
tm j 

is the stress that results by substituting ε tm j 
(z) = ε peak 

tm j 
(z) in

Eq. (5) . 

The loading/unloading history of a tensile matrix element is

captured by the internal variables ε peak 
tm j 

(z) , and ε pl 
tm j 

(z) . The con-

stitutive law for the tensile matrix can be expressed by combining

Eqs. (5) and (8) as: 

σ ( s ) 
tm j 

( z ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

σY tanh 

( 

( E 1 − E 2 ) ε 
( s ) 
tm j 

( z ) 

σY 

) 

+ E 2 ε 
( s ) 
tm j 

( z ) , ε ( s ) tm j 
( z ) ≥ ε peak 

tm j 
( z ) 

E 1 
(
ε ( s ) tm j 

( z ) − ε pl 
tm j 

( z ) 
)
, ε ( s ) tm j 

( z ) < ε peak 
tm j 

( z ) . 

(10

Eq. (10) ensures continuity of σ (s ) 
tm j 

(z) with ε(s ) 
tm j 

(z) , over an ar-

bitrary loading history, involving arbitrary switches between load-

ing and unloading states. There is, however, a discontinuity in the

slope, (dσ (s ) 
tm j 

(z) /dε(s ) 
tm j 

(z)) at ε (s ) 
tm j 

(z) = ε peak 
tm j 

(z) . The slope discon-

tinuity is inconducive to application of efficient gradient-based nu-

merical methods. Therefore, a differentiable function that smoothly

transitions between loading and unloading states is introduced as

follows: 

I (s ) 
tm j 

(z) = 

1 

2 

( 

1 + tanh 

( 

ε (s ) 
tm j 

(z) − ε peak 
tm j 

(z) 

ε round 

) ) 

. (11)
ere, εround > 0 is a smoothing parameter. For ε (s ) 
tm j 

(z) � ε peak 
tm j 

(z)

loading), I (s ) 
tm j 

(z) ↑ 1 . Similarly, for ε (s ) 
tm j 

(z) � ε peak 
tm j 

(z) (unloading),

 

(s ) 
tm j 

(z) ↓ 0 . The rates of approach increase with decreasing εround .

n terms of I (s ) 
tm j 

(z) , a differentiable approximation of Eq. (10) is: 

(s ) 
tm j 

(z) = I (s ) 
tm j 

(z) 

( 

σY tanh 

( 

(E 1 − E 2 ) ε 
(s ) 
tm j 

(z) 

σY 

) 

+ E 2 ε 
(s ) 
tm j 

(z) 

) 

+ (1 − I (s ) 
tm j 

(z)) 
(

E 1 (ε 
(s ) 
tm j 

(z) − ε pl 
tm j 

(z)) 
)
. (12)

.3. Shear matrix 

The shear stress-shear strain relationship in the elastoplastic

hear matrix can be written, in analogy with Eq. (5) , as ( Mahesh

t al., 2004 ): 

(s ) 
sm k 

(z) = τY tanh 

(
(E 1 − E 2 ) γ

(s ) 
sm k 

(z) 

τY 

)
+ E 2 γ

(s ) 
sm k 

(z) . (13)

ielding at a matrix material point strictly depends on both the

ensile and shear stress at that point. For simplicity, however,

ielding in the tensile matrix and in the shear matrix are assumed

o be independent of each other. That is, σ Y and τ Y are assumed

ndependent parameters, as in Zhou et al. (2002) . 

As with Eq. (5) , Eq. (13) is adequate only for monotonic loading.

n a composite material with progressive fibre and matrix break-

ge, the assumption of monotonicity will not be valid. Additionally,

he peak and plastic shear strains could be of either sign, in con-

rast with the peak and plastic tensile strains in the tensile matrix,

hich can be safely assumed positive ( Eq. (6) ). To capture the sign,

 factor ψ sm k 
, is introduced according to the following rules: 

(i) If the abutting fibre f sm k 
and tensile matrix tm sm k 

are both

intact, it is assumed that γ peak 
sm k 

(z) = γ pl 
sm k 

(z) = 0 for all z , and

ψ sm k 
= 0 . That is, the shear matrix bay between a pair of

intact tensile elements is assumed not to yield. In Fig. 4 , this

condition applies to sm 1 , sm 2 , sm 3 , sm 7 , sm 10 , sm 13 , sm 14 ,

sm 15 , and sm 16 . 

(ii) If the fibre abutting a shear matrix bay, sm k is broken, and

tensile matrix abutting sm k is intact, it is assumed that

γ peak 
sm k 

(z) ≤ 0 , and γ pl 
sm k 

(z) ≤ 0 for all z , and ψ sm k 
= −1 . In

Fig. 4 , sm 4 , sm 8 and sm 9 are examples of this case. 

(iii) If the abutting tensile matrix is broken, but the fibre is in-

tact, γ peak 
sm k 

(z) ≥ 0 , and γ pl 
sm k 

(z) ≥ 0 for all z , and ψ sm k 
= +1 .

Shear matrix bays sm 6 , sm 11 , and sm 12 are of this type in

Fig. 4 . 

(iv) Finally, if both the abutting fibre and tensile matrix are bro-

ken, as in bay sm 5 in Fig. 4 , it is assumed that the shear

matrix bay will be in a state of unloading. This does not

mean that the peak and plastic strains in the shear matrix

elements are zero. However, no further evolution of the peak

and plastic strains in the shear matrix bay is allowed to oc-

cur after the failure of both abutting tensile elements. 

In terms of ψ sm k 
, the peak shear strain in a shear matrix ele-

ent is defined, paralleling Eq. (6) , as 

peak 
sm k 

(z) = ψ sm k 
max 

s =0 , ... ,S 
max (ψ sm k 

γ (s ) 
sm k 

(z) , 0) . (14)

 development paralleling that leading up to Eq. (12) yields 

(s ) 
sm k 

(z) = I (s ) 
sm k 

(z) 

{
τY tanh 

(
(G 1 − G 2 ) γ

(s ) 
sm k 

(z) 

τY 

)
+ G 2 γ

(s ) 
sm k 

(z) 

}

+ (1 − I (s ) 
sm k 

(z)) 
{ 

G 1 (γ
(s ) 

sm k 
(z) − γ pl 

sm k 
(z)) 

} 

, (15)
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Fig. 4. Schematic representation of the deformed configuration of a partially damaged composite,whose undamaged and undeformed state is shown in Fig. 2 . The sign of 

the maximum and plastic shear strains in shear matrix element k ( ψ sm k ) is assumed to depend only on the broken or unbroken state of its abutting fibre and tensile matrix 

elements, as described in the text. 
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here, 

 

(s ) 
sm k 

(z) = 

1 

2 

(
1 + ψ sm k 

tanh 

(
γ (s ) 

sm k 
(z) − γ peak 

sm k 
(z) + ψ sm k 

γshift 

γround 

))
. 

(16) 

he term ψ sm k 
γshift , which appears in Eq. (16) has no analogue

n Eq. (11) . It is introduced here to ensure that I (s ) 
sm k 

(z) is strictly

onotonic for any ψ sm k 
∈ {−1 , 0 , 1 } . 

.4. Slider elements 

A simple threshold slip model is assumed at the fibre-matrix

nterface, akin to that in Mahesh et al. (2004) . The displacement

 

(s ) 
s k 

(z) in step s of slider element s k is taken to follow 

 

(s ) 
s k 

(z) 

⎧ ⎨ 

⎩ 

≤ 0 , if τ (s ) 
sm s k 

(z) < −τ ∗, 

= 0 , if − τ ∗ ≤ τ (s ) 
sm s k 

( z) ≤ τ ∗, 

≥ 0 , if τ (s ) 
sm s k 

( z) > τ ∗. 

(17) 

n the above equation, τ ∗ is a material constant that describes the

nterfacial interactions between the fibre and the matrix. The value

f w s k 
(z) in the first and third cases is left unspecified. A smooth

egularisation of Eq. (17) is given by 

 

(s ) 
s k 

(z) = w s0 

( 

τ (s ) 
sm s k 

(z) 

τ ∗

) 2 n +1 

. (18)

ere, w s0 is a reference value for the interfacial sliding displace-

ent. n is to be a sufficiently large positive integer, so that 2 n + 1

s odd. This regularisation is a simpler version of that used by

ahesh et al. (2004) . 

It is emphasised that according to Eq. (18) , the sliding displace-

ents are history-independent. The sliding displacement at a given

tep depends only on the shear stresses in that step. 

. Governing equations and boundary conditions 

Following the classical shear-lag framework ( Hedgepeth, 1961;

udiansky et al., 1986; Mahesh et al., 2004 ), the z -equilibrium of
bre element f i , at step s is expressed as: 

d 
dσ (s ) 

f i 

dz 
(z) + d 

(
τ (s ) 

sm 

+ 
f i 

(z) + τ (s ) 
sm 

−
f i 

(z) 
)

= 0 . (19)

s shown in Fig. 1 , A f = ad is the fibre cross-sectional area, and d

s the ply thickness. Similarly, the z -equilibrium of an infinitesimal

ensile matrix element in tm j can be expressed as 

 (b − a ) 
d σ (s ) 

tm j 

d z 
(z) − d 

(
τ (s ) 

sm 

+ 
tm j 

(z) + τ (s ) 
sm 

−
tm j 

(z) 

)
= 0 . (20)

he sliding displacement w s k 
(z) at the fibre-matrix interface is

overned by Eq. (18) . 

The normal and shear stresses appearing in Eqs. (18) –(20) can

e expressed in terms of fibre, tensile matrix and slider displace-

ents, w 

(s ) 
f i 

(z) , w 

(s ) 
tm j 

(z) , and w 

(s ) 
s k 

(z) , respectively, using the consti-

utive laws of Section 3 . These displacement fields constitute the

nknown variables of the present model. 

Breaks in the fibres and tensile matrix elements are assumed

o occur in a single plane, taken without loss of generality as the

lane z = 0 , transverse to the fibre direction. The boundary condi-

ions imposed in this plane are 

dw 

(s ) 
f i 

dz 
(z = 0) = 0 , if f i is broken, and 

w 

(s ) 
f i 

(z = 0) = 0 , if f i is intact. (21) 

n tensile matrix tm j , 

 

dw 

(s ) 
tm j 

dz 
− ε pl 

tm j 

) 

(z = 0) = 0 , if tm j is broken, and 

w 

(s ) 
tm j 

(z = 0) = 0 , if tm j is intact. (22) 

Because of symmetry, it is sufficient to treat only half the com-

osite domain, 0 ≤ z ≤ ( L /2), shown in Fig. 1 . Displacement con-

rolled loading is imposed: 

 

(s ) 
f i 

(z = L/ 2) = w 

(s ) 
tm j 

(z = L/ 2) = Lε engg / 2 . (23)
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Here, εengg is the engineering strain imposed over the gauge

length. 

The tensile load, P , applied to the composite for a given εengg 

can be obtained by summing over the tensile loads of the fibres

and tensile matrix elements. This sum must be equal at any sec-

tion, z . 

P = ad 

n f −1 ∑ 

i =0 

E f 
dw 

(s ) 
f i 

dz 
(z) + 2 ah 

n tm −1 ∑ 

j=0 

×
[ (

I (s ) 
tm j 

(z) 
){ 

σY tanh 

( 

E 1 − E 2 
σY 

dw 

(s ) 
tm j 

dz 
(z) 

) 

+ E 2 
dw 

(s ) 
tm j 

dz 
(z) 

} 

+ 

(
1 − I (s ) 

tm j 
(z) 

){ 

E 1 

( 

dw 

(s ) 
tm j 

dz 
(z) − ε pl 

tm j 
(z) 

) } ] 

. (24)

Although the equilibrium equations, and boundary conditions,

given above are classical, the complex non-linear constitutive laws

of the matrix phase, and interface, render these equations not

amenable to analytical solution. 

5. Non-dimensional equations 

Direct numerical solution of the system of equations derived

in Section 4 produces significant round-off errors, as the various

terms in the governing equations are not of the same order of

magnitude. It is therefore desirable to non-dimensionalise these

equations with the aim of getting order of unity terms in the latter

form. The following novel non-dimensionalisation scheme is devel-

oped for this purpose. 

First, the axial coordinate z is non-dimensionalised as 

ζ = 

√ 

K z, (25)

where, 

K = 

G 1 √ 

2 h 

3 dE f E 1 
. (26)

The inverse square root of K defines the characteristic length of

load recovery the model composite, provided all constituents are

elastic. Let the axial displacements of the various model elements

be normalised by 

 = 

G 1 − G 2 

hτY 

, (27)

so that 

ˆ w 

(s ) 
f i 

= W w 

(s ) 
f i 

, ˆ w 

(s ) 
tm j 

= W w 

(s ) 
tm j 

, and 

ˆ w 

(s ) 
s k 

= W w 

(s ) 
s k 

. (28)

Furthermore, let 

C = 

G 2 

G 1 − G 2 

A = (1 + C) 

√ 

d 

2 h 

E f 
E 1 

, 

B = 2(1 + C) h 

2 K 

E 1 
G 1 

, 

E = 

τY 

σY 

(E 1 − E 2 ) 

(G 1 − G 2 ) 

h √ 

K 

, 

F = 

1 

(1 + C) 

G 1 

E 1 

σY 

τY 

1 

h 

√ 

K 

, 

H = 

E 2 
E 1 

, and 

I = 

τ ∗

τY 

. (29)
he parameters listed in Eq. (29) are dimensionless and of the or-

er of unity. In terms of these variables, the normalised governing

quations take the following simpler forms. Eq. (19) , describing fi-

re equilibrium, expressed in terms of the normalised fibre, tensile

atrix, and slider displacements becomes 

 

d 2 ˆ w 

(s ) 
f i 

dζ 2 
(ζ ) + 

{ 

I (s ) 
sm 

+ 
f i 

(ζ ) tanh 

(
ˆ w 

(s ) 
tm 

+ 
f i 

(ζ ) − ˆ w 

(s ) 
f i 

(ζ ) − ˆ w 

(s ) 
s + 

f i 

(ζ ) 
)

+ I (s ) 
sm 

−
f i 

(ζ ) tanh 

(
ˆ w 

(s ) 
tm 

−
f i 

(ζ ) − ˆ w 

(s ) 
f i 

(ζ ) − ˆ w 

(s ) 
s −

f i 

(ζ ) 
)} 

+ C 

{ 

I (s ) 
sm 

+ 
f i 

(ζ ) 
(

ˆ w 

(s ) 
tm 

+ 
f i 

(ζ ) − ˆ w 

(s ) 
f i 

(ζ ) − ˆ w 

(s ) 
s + 

f i 

(ζ ) 
)

+ I (s ) 
sm 

−
f i 

(ζ ) 
(

ˆ w 

(s ) 
tm 

−
f i 

(ζ ) − ˆ w 

(s ) 
f i 

(ζ ) − ˆ w 

(s ) 
s −

f i 

(ζ ) 
)} 

+ (1 + C) 

×
{ (

1 − I (s ) 
sm 

+ 
f i 

(ζ ) 
)(

ˆ w 

(s ) 
tm 

+ 
f i 

(ζ ) − ˆ w 

(s ) 
f i 

(ζ ) − ˆ w 

(s ) 
s + 

f i 

(ζ ) − ˆ γ pl 

sm 

+ 
f i 

(ζ ) 
)

+ 

(
1 −I (s ) 

sm 

−
f i 

(ζ ) 
)(

ˆ w 

(s ) 
tm 

−
f i 

(ζ ) − ˆ w 

(s ) 
f i 

(ζ ) − ˆ w 

(s ) 
s −

f i 

(ζ ) − ˆ γ pl 

sm 

−
f i 

(ζ ) 
)} 

=0 . 

(30)

n this expression, the normalised shear matrix plastic strain is de-

ned as 

ˆ pl 
sm k 

= 

(
ˆ w 

(s ) 
tm sm k 

− ˆ w 

(s ) 
f sm k 

− ˆ w 

(s ) 
s sm k 

)
− tanh 

(
ˆ w 

(s ) 
tm sm k 

− ˆ w 

(s ) 
f sm k 

− ˆ w 

(s ) 
s sm k 

)
1 + C 

. 

(31)

imilarly, Eq. (20) transforms to 

 

(s ) 
tm j 

(ζ ) B 

d 2 ˆ w 

(s ) 
tm j 

dζ 2 
(ζ ) 

{ 

H + (1 − H) sech 

2 

( 

E 
d ̂  w 

(s ) 
tm j 

(ζ ) 

dζ

) } 

−
{

I (s ) 
sm 

+ 
tm j 

(ζ ) tanh 

(
ˆ w 

(s ) 
tm j 

(ζ ) − ˆ w 

(s ) 
f + tm j 

(ζ ) − ˆ w 

(s ) 
s + tm j 

(ζ ) 

)

+ I (s ) 
sm 

−
tm j 

(ζ ) tanh 

(
ˆ w 

(s ) 
tm j 

(ζ ) − ˆ w 

(s ) 
f −tm j 

(ζ ) − ˆ w 

(s ) 
s −tm j 

(ζ ) 

)}

−C 

{
I (s ) 
sm 

+ 
tm j 

(ζ ) 

(
ˆ w 

(s ) 
tm j 

(ζ ) − ˆ w 

(s ) 
f + tm j 

(ζ ) − ˆ w 

(s ) 
s + tm j 

(ζ ) 

)

+ . I (s ) 
sm 

−
tm j 

(ζ ) 

(
ˆ w 

(s ) 
tm j 

(ζ ) − ˆ w 

(s ) 
f −tm j 

(ζ ) − ˆ w 

(s ) 
s −tm j 

(ζ ) 

)}

+ B 

(
1 − I (s ) 

tm j 
(ζ ) 

)( 

d 2 ˆ w 

(s ) 
tm j 

(ζ ) 

dζ 2 
−

d ̂  ε pl 
tm j 

(ζ ) 

dζ

) 

− (1 + C) 

×
{(

1 −I (s ) 
sm 

+ 
tm j 

(ζ ) 

)(
ˆ w 

(s ) 
tm j 

(ζ ) − ˆ w 

(s ) 
f + tm j 

(ζ ) − ˆ w 

(s ) 
s + tm j 

(ζ )− ˆ γ pl 

sm 

+ 
tm j 

(ζ ) 

)

+ 

(
1 − I (s ) 

sm 

−
tm j 

(ζ ) 

)

×
(

ˆ w 

(s ) 
tm j 

(ζ ) − ˆ w 

(s ) 
f −tm j 

(ζ ) − ˆ w 

(s ) 
s −tm j 

(ζ ) − ˆ γ pl 

sm 

−
tm j 

(ζ ) 

)}
= 0 . (32)

n this expression, 

ˆ  pl 
tm j 

= (1 − H) 
d ̂  w 

(s ) 
tm j 

dζ
− F tanh 

( 

E 
d ̂  w 

(s ) 
tm j 

dζ

) 

. (33)

inally, the slider constitutive law, Eq. (18) , becomes 

ˆ 
 

(s ) 
s s k 

(ζ ) −
{ 

1 

I 

{ 

I (s ) 
sm s k 

(ζ ) 
(

tanh 

(
ˆ w 

(s ) 
tm s k 

(ζ ) − ˆ w 

(s ) 
f s k 

(ζ ) − ˆ w 

(s ) 
s s k 

(ζ ) 
)

+ C 

(
ˆ w 

(s ) 
tm s k 

(ζ ) − ˆ w 

(s ) 
f s k 

(ζ ) − ˆ w 

(s ) 
tm s k 

(ζ ) 
))
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r  
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r  
+ (1 − I (s ) 
sm s k 

(ζ ))(1 + C) 

×
(

ˆ w 

(s ) 
tm s k 

(ζ ) − ˆ w 

(s ) 
f s k 

(ζ ) − ˆ w 

(s ) 
s s k 

(ζ ) − ˆ γ pl 
s k 

(ζ ) 
)} } 2 n +1 

= 0 . (34) 

he normalised form of boundary conditions Eqs. (21) , and

22) become, 

d ̂  w 

(s ) 
f i 

dζ
(ζ = 0) = 0 , if f i is broken, and 

ˆ w 

(s ) 
f i 

(ζ = 0) = 0 , if f i is intact. (35) 

imilarly, in tensile matrix tm j , 

 

d ̂  w 

(s ) 
tm j 

dζ
− ˆ ε pl 

tm j 

) 

(ζ = 0) = 0 , if tm j is broken, and 

ˆ w 

(s ) 
tm j 

(ζ = 0) = 0 , if tm j is intact. (36) 

inally, the imposed displacement can be normalised as 

ˆ 
 

(s ) 
f i 

(ζ = � ) = 

ˆ w 

(s ) 
tm j 

(ζ = � ) = W (Lε engg / 2) , (37)

here � = 

√ 

K L/ 2 . Thus, the system of equations, Eqs. (30) , (32) ,

nd (34) and boundary conditions Eqs. (35) –(37) describe the

resent composite material, in terms of seven independent non-

imensional constants listed in Eq. (29) . 

The total load imposed upon the composite is given by Eq. (24) .

he non-dimensional total load is defined as 

ˆ 
 = P 

/(
E f 

G 1 − G 2 

h 

√ 

K a 2 τY 

)
, (38) 

here, 

ˆ 
 (ζ ) = 

n f −1 ∑ 

i =0 

d ̂  w 

(s ) 
f i 

dζ
(ζ ) + 

(
1 + C 

A 

)2 n tm −1 ∑ 

j=0 

×
[ 

I (s ) 
tm j 

(ζ ) 

{ 

1 − H 

E 
tanh 

( 

E 
d ̂  w 

(s ) 
tm j 

dζ
( ζ ) 

) 

+ H 

d ̂  w 

(s ) 
tm j 

dz 
( ζ ) 

} 

+ 

(
1 − I (s ) 

tm j 
(ζ ) 

){ 

E 1 

( 

d ̂  w 

(s ) 
tm j 

dζ
(ζ ) − ˆ ε pl 

tm j 
(ζ ) 

) } ] 

. (39) 

or equilibrium, the total load should be conserved across cross-

ections. Therefore, the above expression should yield the same P̂ 

or all ζ ∈ [0, � ]. 

. Reduced linear model 

The mechanical fields predicted by the present model, which

ccounts for matrix plasticity, and interfacial sliding vary non-

inearly with applied composite stress σ c . It will prove insightful

o compare the predictions with those of a reduced linear model,

hich accounts for fibre and matrix stiffness, but not for matrix

lasticity, nor for interfacial sliding. The reduced linear problem is

overned by the equations 

A 

d 2 ˆ w 

( s ) 
f i 

( ζ ) 

dζ 2 
+ ( 1 + C ) 

×
{ (

ˆ w 

( s ) 
tm 

+ 
f i 

( ζ ) − ˆ w 

( s ) 
f i 

( ζ ) 

)
+ 

(
ˆ w 

( s ) 
tm 

−
f i 

( ζ ) − ˆ w 

( s ) 
f i 

( ζ ) 

)} 

= 0 

(40)

or the fibre, and 

B 

d 2 ˆ w 

( s ) 
tm j 

( ζ ) 

dζ 2 
− ( 1 + C ) 

×
{ (

ˆ w 

( s ) 
tm j 

( ζ ) − ˆ w 

( s ) 
f + tm j 

( ζ ) 

)
+ 

(
ˆ w 

( s ) 
tm j 

( ζ ) − ˆ w 

( s ) 
f −tm j 

( ζ ) 

)} 

= 0 

(41
or the matrix. The fibre boundary conditions remain those given

y Eq. (35) , while the matrix boundary conditions become 

d ̂  w 

(s ) 
tm j 

dζ
(ζ = 0) = 0 , if tm j is broken, and 

ˆ w 

(s ) 
tm j 

(ζ = 0) = 0 , if tm j is intact. (42) 

he loading boundary conditions remain the same as Eq. (37) . 

. Numerical solution 

Numerical solution of the present system of equations using

he finite difference method applied over a uniform grid along

he ζ -direction was found infeasible. This is partly because of the

ell known Runge phenomenon associated with the uniform grid

 Trefethen, 2013 ), and partly also because the exponential load re-

overy profiles near fibre breaks require a very high order approxi-

ation of derivatives to resolve sufficiently accurately. These issues

re avoided presently through the use of the pseudospectral collo-

ation method ( Fornberg, 1998a ) over a Chebyshev grid: 

ι = � 

(
1 − cos 

(
πι

n C − 1 

))
, ι = 0 , 1 , 2 , . . . , n C − 1 . (43)

ere, n C is the number of Chebyshev points. The ζ ι grid is quadrat-

cally clustered near the ends of the domain in order to suppress

he Runge phenomenon. All axial elements – fibres, tensile matri-

es, and sliders – are discretised by placing regular nodes at the

rid points. Eqs. (30) – (34) are enforced in discretised form at the

egular nodes. In doing so, the differential operators are discre-

ised using differentiation matrices ( Fornberg, 1998a; Weideman

nd Reddy, 20 0 0 ). Let { ̂  w f i 
} denote the vector of normalised dis-

lacements at positions ζ ι in fibre f i . Then, p -th order dense differ-

ntiation matrices [ D 

( p ) ] are constructed, following the procedure

iven by Fornberg (1998b) , which accurately approximate the axial

erivatives: 

d (p) { ̂  w f i 
} 

dζ (p) 
= [ D 

(p) ] { ̂  w f i 
} . (44)

imilarly, if { ̂  w tm j 
} denotes the vector of normalised displacements

n the tensile matrix element tm i , 

d (p) { ̂  w tm j 
} 

dζ (p) 
= [ D 

(p) ] { ̂  w tm j 
} . (45)

he governing equation for the slider elements is purely algebraic,

nd hence does not need any treatment of derivatives. 

Fictitious nodes corresponding to ι = −1 and ι = n C are intro-

uced in the fibre and tensile matrix axial elements. The former

ode can be located at any arbitrary ζ such that ζ < 0, and the lat-

er node at any ζ such that ζ > � , as shown by Fornberg (1998b) .

hese fictitious nodes are used to enforce the boundary conditions.

The discretised equations are non-linear. Their iterative solu-

ion is accomplished using a standard solver, MINPACK ( Moré et al.,

980 ). The determination of the Jacobian matrix for the system of

quations proves to be tedious, but straightforward. 

In addition to the desirable numerical characteristics noted

bove, pseudospectal collocation has exponential convergence

ates, much faster than the power-law convergence rates of the fi-

ite element or finite difference methods ( Weideman and Reddy,

0 0 0 ). The additional speed comes at the cost of dense interaction

atrices, and hence greater demand for computer memory. 

Composite loading/unloading history can be simulated over a

umber of steps. A number of iterations are performed within

ach step. Following the standard procedure of plasticity simula-

ions ( Simo and Hughes, 2006 ), each iteration involves progress-

ng toward global equilibrium, i.e., a reduction of the residuals cor-

esponding to Eqs. (30) and (32) . This step is performed keeping
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Fig. 5. Broken and intact fibres in the metal matrix composite of Hanan et al. (2003) showing the nomenclature of model elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) Actual ( Hanan et al., 2003 ), and (b) idealised xy cross-sections of the one 

ply composite. Fibre cross-sectional area, A f , and the fibre centre-to-centre spacing 

are preserved in the course of the idealisation. 

Table 1 

Geometric and material parameters of the present model. 

Parameter Value Reference 

Fiber dimension, a 124 μm Hanan et al. (2003) 

Fibre spacing, b 240 μm Hanan et al. (2003) 

Ply thickness, d 124 μm Hanan et al. (2003) 

Composite half-length, l 13 mm Hanan et al. (2003) 

Fiber elastic modulus, E f 400 GPa Wessel (2004) 

Matrix elastic tensile modulus, E 1 110 GPa Welsch et al. (1993) 

Matrix plastic tensile hardening, E 2 1.25 GPa Ziaja (2009) 

Matrix elastic shear modulus, G 1 42 GPa Welsch et al. (1993) 

Matrix plastic shear modulus, G 2 0.5 GPa assuming G 2 /G 1 = E 2 /E 1 
Matrix tensile yield stress σ Y 820 MPa Welsch et al. (1993) 

Matrix shear yield stress τ Y 550 MPa Welsch et al. (1993) 

Interfacial strength, τ ∗ 270 MPa present work 

n 4 computational parameter 

εround 0.5 computational parameter 

γ round 1.0 computational parameter 

γ shift 1.3 computational parameter 

m  

m  

A  

b  

T  

s

 

f

all the internal variables of the model fixed. Sliding displacements

ˆ w s k 
are updated after each iteration so that Eq. (34) is satisfied af-

ter each equilibrium iteration. Iterations are terminated when all

the governing equations and boundary conditions in Section 5 are

satisfied to a tight tolerance. At this point, the peak and plastic

strains in the matrix elements are updated, and the next step is

commenced. 

8. Results 

8.1. Comparison with experimental results 

Using synchrotron X-ray micro-diffraction, Hanan et al.

(2003) measured the stress redistribution in a damaged com-

mercial Ti matrix composite laminate (SiC fibres in a Ti-6Al-4V

matrix). It is recalled from Section 1 that X-ray micro-diffraction

resolves only the elastic part of strain, even in an elasoplatically

deforming material. Hanan et al. (2003) introduced a fibre break

by drilling a circular hole with electric discharge machining. The

hole fully cut one fibre, and one of its adjoining matrix bays. It was

also suspected to have partially broken the next fibre. This partial

damage led to the breakage of the neighbouring fibre during

loading. At the moment of measuring elastic strains, Hanan et al.

(2003) report that two adjacent fibres and the intervening matrix

were broken. These breaks were approximately all located in a

plane transverse to the fibre direction. Fig. 5 shows a schematic

diagram of the system of breaks and the naming scheme for the

various axial model elements that are either broken, or in the

vicinity of the broken elements. In this scheme, the two sym-

metrically broken fibres are denoted f 1 , the broken tensile matrix

element is denoted tm 1 , etc. It is assumed that the process of

hole-drilling would relax all residual stresses in the composite, at

least in the vicinity of the hole. For this reason, and for simplicity,

the present study assumes zero axial thermal residual stresses

throughout the model domain. 

Exploiting symmetry, only half the specimen of Hanan et al.

(2003) , 0 mm ≤ z ≤ 13 mm, is modelled. The model domain, how-

ever, includes all the 29 fibres in the experimental specimen, and

has an axial extent in the fibre direction of l = 13 mm, which is

the actual half-length of the experimental specimen. Even so, the

present computation, which in involves loading up to 850 MPa in

one step, and unloading to 0 MPa in one step, requires only about

23 s econds of wall-clock computer time. 

The important cross-sectional dimensions in the composite of

Hanan et al. (2003) are shown in Fig. 6 a. In the present model,

fibres are idealised to have square cross-sections, with side di-
ension a , as shown in Fig. 6 b, and ply thickness d = a . The di-

ension, a , is determined such that the fibre cross-sectional area

 f = a 2 = π(140 μm ) 2 / 4 . Also, the centre-to-centre spacing of fi-

res, b = 240 μm is preserved in the course of the idealisation.

hese choices make the volume fraction of fibres in the actual ply

omewhat smaller than that in the idealised ply. 

The material properties of the fibre, and matrix are obtained

rom the literature, as listed in Table 1 . n , ε , γ , and γ
round round shift 
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Fig. 7. Strain concentration predicted in the fibres by the model after loading to 

850 MPa (solid lines), compared with the experimental data (points) reported by 

Hanan et al. (2003) . Fibres f 1 and f 2 are identified with respect to the broken ele- 

ments in Fig. 5 . 
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Fig. 8. Change in the fibre elastic strains between the loaded and unloaded states. 

Predictions from the present model are compared with experimental data points 

taken from Figs. 8 and 9 of Hanan et al. (2003) . 

Fig. 9. Change in the tensile matrix elastic strains between the loaded and un- 

loaded states. Predictions from the present model are compared with experimental 

data points taken from Figs. 10 and 11 of Hanan et al. (2003) . 
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epresent numerical smoothing parameter, and not material con-

tants to be fit. Model predictions are not sensitive to their val-

es, so long as they are sufficiently large. The hardening rate of the

ielded matrix in shear, G 2 is assigned a value assuming G 2 /G 1 =
 2 /E 1 . However, the interfacial shear strength, τ ∗, is treated as

 present fitting parameter. Its value is fit to τ ∗ = 270 MPa, so

hat the presently predicted load recovery near a cluster of breaks

atches that experimentally measured by Hanan et al. (2003) . This

alue is considerably larger than the typical values of 90–200 MPa

btained from push-out tests, conventional full fragmentation test-

ng, or synchrotron strain measurements ( Preuss et al., 2002 ). 

The loaded strain measurements were made by Hanan et al.

2003) at a far-field stress of 850 MPa. This corresponds to P =
50 MPa × 7 mm × 0 . 2 mm ≈ 1190 N in Eq. (24) . By successive bi-

ection, the model displacement at z = L/ 2 is determined such that

he model load matches the experimental load. This condition is

ealised at w f i 
(z = L/ 2) = w tm j 

(z = L/ 2) ≈ 0 . 07 mm, for all i, j or

engg ≈ 0.005. 

Elastic strains are predicted by the present model in the bro-

en fibres, and in an intact fibre neighbouring either of the bro-

en ones. These predictions are compared in Fig. 7 with the ex-

erimental measurements of Hanan et al. (2003) . The simulated

lastic strain profiles broadly agree with the measured profiles in

oth fibres f 1 and f 2 . The strain variations predicted by the re-

uced linear model ( Section 6 ) are also shown in Fig. 7 . It is clear

hat the latter model predicts a more rapid load recovery profile

han the non-linear model in the broken fibre. This shows that the

on-linear phenomena, viz., matrix yielding, and interfacial slid-

ng, modelled presently play an important role in determining the

ear-break mechanical fields. 

Systematic differences between the predicted and measured

trains are, however, observed. Over 0 mm ≤ z ≤ 0.5 mm, the

trains predicted in the broken fibres are in excess of the measure-

ents. Over the same range of z , the strains are somewhat under-

redicted in the next intact fibre, f 2 . For 0.5 mm ≤ z ≤ 1.4 mm, the

greement between predictions and experiment is better. The er-

or bars reported by Hanan et al. (2003) for the fibre strain mea-

urements are too small to account for the observed discrepancy

n 0 mm ≤ z ≤ 0.5 mm. A plausible explanation is that the assump-

ion of a uniform interfacial strength τ ∗ may not be obeyed in the

hysical specimen. Sizeable variation in τ ∗ near the fibre breaks

ay underlie the observed discrepancies in the fibre strains. 
Hanan et al. (2003) also measured the change in the elastic

trains, 

ε el 
f i 
(z) = ε el 

f i 
(z) 

∣∣
850 MPa 

− ε el 
f i 
(z) 

∣∣
0 MPa 

, (46) 

n the fibres after unloading from the peak load of 850 MPa. These

easurements are compared with the predictions of the present

odel in Fig. 8 . As before, broad agreement of the predictions and

easurements is noted. 

Finally, the change in the elastic matrix strains, 

ε el 
tm j 

(z) = ε el 
tm j 

(z) 
∣∣

850 MPa 
− ε el 

tm j 
(z) 

∣∣
0 MPa 

, (47) 

pon unloading from the peak load are considered in Fig. 9 . The

ensile matrix strains in the broken tm 1 and intact tm 3 are rea-

onably captured. However, the tensile matrix elastic strain in the

ntact matrix bay, tm 2 , is over-estimated by the model near z = 0 .

anan et al. (2003) report larger error bars in their matrix strain

easurements, than in their fibre strains. Yet, these are not big

nough to explain the present discrepancy. They also report that

he adjacent matrix bays, tm 2 , were partially cut at z ≈ 0 either

uring specimen preparation, or testing. Since a cut matrix bay will

ocally be more compliant than an intact one, it will take smaller

oads, and therefore develop smaller elastic strains. This offers a
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Fig. 10. Total and plastic strains in the tensile matrix elements tm 1 , tm 2 , and tm 3 

predicted at the peak load of 850 MPa. 

Fig. 11. Total and plastic shear strains in shearing matrix elements sm 1 , sm 2 , and 

sm 3 predicted at the peak load of 850 MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Sliding displacements in sliding elements s 1 , s 2 , and s 3 predicted at the 

peak load of 850 MPa. 
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plausible explanation for the smaller measured elastic strains in

these bays. 

8.2. Matrix plasticity and interfacial sliding 

The mechanical fields in the vicinity of the breaks in the Hanan

et al. (2003) composite predicted by the present non-linear model,

corresponding to the peak imposed stress of σc = 850 MPa, are

now presented. 

Fig. 10 shows the total and plastic tensile strains in tensile ma-

trix bays tm 1 , tm 2 , and tm 3 as a function of position. Both total

and plastic strain in all the bays reach their far-field values at a

distance of about 1.4 mm, or 10 fibre diameters. The far-field plas-

tic strain is not zero, which implies that the matrix is undergoing

gross yielding. The fraction of elastic strain to total strain decreases

as the break plane, z = 0 mm is approached. In other words, the

plastic strain becomes the more important as the break plane is

approached. 

The shear strains predicted in the shear matrix bays near the

breaks is shown in Fig. 11 . As noted previously in connection with

Fig. 4 , the sign of the shear strain simply indicates the state of

breakage of the abutting tensile members, and is not in itself im-

portant. Plastic strains in the shear matrix are much more localised

than that in the tensile matrix. Only the shear matrix bay sm 2 ,

which is abutted by a broken fibre and an intact tensile matrix
ields in shear. This is because shear stresses are developed only

n the vicinity of breaks to transmit axial loads from intact to bro-

en fibres. 

The sliding displacements predicted in the sliding elements

ear the broken fibres are shown in Fig. 12 . The sliding displace-

ent is negligible in sliding elements whose abutting tensile ele-

ents are either both broken, e.g., s 1 or both intact, e.g., s 3 . In ele-

ent s 2 , one of whose abutting tensile elements is broken, and the

ther intact, the sliding displacement is greatest, reaching as high

s 3 μm at the break plane z = 0 . This large displacement serves

o blunt the shear stress in the associated shear matrix, sm 2 , and

lunts the stress concentration due to the breaks. 

. Discussion 

A non-linear shear lag model of a metal matrix composite has

een developed. This model accounts for fibre and matrix cracking,

atrix plasticity, and fibre-matrix interfacial sliding. The model has

een used to predict the elastic strains developed near a cluster of

bre and matrix breaks, both at a peak stress of 850 MPa and af-

er unloading. The predictions compare well with the experimental

easurements of Hanan et al. (2003) . The role of the various ele-

ents of the present model in producing good agreement is dis-

ussed below in the context of the literature. 

In a polymer matrix composite, Wagner et al. (1996) showed

hat the stress concentration in the intact neighbour of a broken

bre decreases with increasing fibre spacing. They used micro-

aman spectroscopy for their measurement. They attributed this

bservation to increasing tensile load the matrix, with decreasing

bre volume fraction. Since the Hedgepeth (1961) model entirely

eglects the load carried by the matrix, it cannot account for the

xperimental observation. The MSSL model, due to Beyerlein and

andis (1999) , is an effort to extend the Hedgepeth (1961) model

o include matrix stiffness. The Beyerlein and Landis (1999) model,

owever, assumes linear elastic fibre and matrix elements. Zhang

nd Wang (2009) also considered the effect of matrix stiffness and

lso that of matrix yielding in tension. They however, unrealisti-

ally assumed that the yielding was localised to an infinitesimally

hin strip in the matrix collinear with the adjacent fibre breaks. On

he other hand, Landis and McMeeking (1999) proposed a shear-

ag model assuming an elastoplastic matrix obeying J 2 flow theory.

his model represents the most detailed accounting of the yielded

tate in the matrix. The matrix is assumed non-hardening. They

ound that for an elastically rigid matrix, the axial and shear stress
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rofiles approach the simple forms predicted by the simple sliding

odel, due to Kelly and Tyson (1965) . 

The loading of the present Ti matrix cannot be sufficiently

escribed either by the linear model of Beyerlein and Landis

1999) or by the simple sliding model of Kelly and Tyson (1965) .

his is because the present matrix yields on the one hand grossly

nder the imposed load. On the other hand, the present E f / E 1 ≈
, so that the matrix cannot be assumed elastically rigid. Treating

he matrix constitutive law using a flow theory, as in Landis and

cMeeking (1999) , in the multi-fibre composite is computation-

lly expensive. Therefore, in the present work, matrix deformation

s decomposed into tensile and shear parts, which are assumed un-

oupled, following Zhou et al. (2002) . The plastic and elastic strains

n both the tensile matrix, and shear matrix elements, adjacent

o the initially broken models elements, are comparable. Despite

he decomposition of the matrix response into tensile and shear

arts, it is seen that the present model captures the measured

lastic strains well. This is consistent with a finding of Zhou et al.

2002) under dynamic loading conditions. 

The importance of modelling the shear yielding of the matrix

nd interfacial debonding has been emphasised in the polymer

atrix literature. Behzadi et al. (2009) compared the strains to fail-

re predicted with and without accounting for matrix shear yield-

ng with experimentally obtained values. They found that while

oth models overestimate the failure strain, the model with shear

ielding produces the smaller overestimate. They attributed this to

he reduced stress concentration in the fibres neighbouring broken

nes when the matrix yields in shear. Accounting for both ma-

rix strain yielding and interfacial debonding, Okabe and Takeda

2002) could capture the measured composite strength of a ma-

rix. Mishnaevsky and Brøndsted (2009) studied the competition

etween interfacial debonding, and matrix cracking. The aforemen-

ioned mechanisms have been represented in the present model

lso. As in the aforementioned studies, these mechanisms are es-

ential for the predictive success of the present model. Suppression

f any of these mechanisms is found to lead to qualitatively poorer

redictions in Section 8.1 . 

0. Conclusions 

A non-linear shear lag model capable of accounting for mul-

iple realistic damage modes in metal matrix composites and a

ast computational algorithm for its solution have been developed.

hese failure modes are fibre breakage, matrix cracking, matrix

lasticity, and fibre-matrix interfacial slippage. Model predictions

ave been compared with experimental results given in the litera-

ure and good agreement is found. The validated model has been

sed to elucidate the effects of non-linear material response near

bre breaks. Large differences in the mechanical fields have been

ound near the fibre breaks between the predictions of the present

on-linear model, and that of a reduced linear model. This shows

hat fully accounting for these non-linearities is essential for ob-

aining good estimates of metal matrix composite reliability. This

spect will be discussed in future work. 
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