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We extend the methodology introduced for the
initiation of damage within the context of a class
of elastic solids to a class of viscoelastic solids
(Alagappan et al. 2016 Proc. R. Soc. Lond. A: Math. Phys.
Eng. Sci. 472, 20160231. (doi:10.1098/rspa.2016.0231)).
In a departure from studies on damage that consider
the body to be homogeneous, with initiation of
damage being decided by parameters that are
based on a quantity such as the strain, that
requires information concerning a special reference
configuration, or the use of ad hoc parameters
that have no physically meaningful origins, in this
study we use a physically relevant parameter that
is completely determined in the current deformed
state of the body to predict the initiation of damage.
Damage is initiated due to the inhomogeneity of
the body wherein certain regions in the body are
unable to withstand the stresses, strains, etc. The
specific inhomogeneity that is considered is the
variation of the density in the body. We consider
damage within the context of the deformation of two
representative viscoelastic solids, a generalization of
a model proposed by Gent (1996 Rubber Chemistry
and Technology 69, 59–61. (doi:10.5254/1.3538357)) for
polymeric solids and a generalization of the Kelvin–
Voigt model. We find that the criterion leads to results
that are in keeping with the experiments of Gent &
Lindley (1959 Proc. R. Soc. Lond. A: Math. Phys. Eng.
Sci. 249, 195–205. (doi:10.1098/rspa.1959.0016)).

1. Introduction
Recently, Alagappan et al. [1] proposed a possible
methodology to identify the initiation of damage in a
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class of elastic bodies. The criterion that they came up with, which we shall discuss in more detail
later, merely identifies the onset of damage and does not apply to the evolution and progression
of damage leading ultimately to the failure of the body. By failure we mean the inability of the
body to carry out its intended purpose, which from a purely mechanical perspective invariably
implies the inability to carry the applied loads. Once a material is damaged, the constitutive
relation by means of which its response is specified before damage becomes inoperative and
a new constitutive relation needs to be put into place. While a composite constitutive relation
that describes the response of the material both before and after the initiation of damage can
be specified, some new parameters have to be identified that come into play after the onset
of damage that determine how the damage progresses. In the literature pertinent to damage,
one often finds the use of ‘damage parameters’, scalar, vector or tensor in character that evolve
as the damage unfolds. In many instances, there is no clear physical meaning given to such
‘damage parameters’, and when one can in fact attribute physical meaning it usually depends
on knowledge and information from some reference configuration, which one is not aware of,
in which the body was free of stress or strain. More importantly, the body that is undergoing
damage is invariably treated as a homogeneous body and herein lies the main drawback of most
approaches to damage.1 It would be appropriate to point out that the recent study by Puglisi
& Saccomandi [7] is relevant to the current work in that in their study of the Gent model, the
response exhibits a non-uniformity that occurs in the limit of infinite loading. But such a response
is not what we refer to as ‘damage’; to us ‘damage’ is the deterioration in the load-carrying
capacity that occurs at a finite load. The study of Puglisi & Saccomandi [7] also provides an
explanation for the Mullins effect which is observed in rubber-like materials, but to explain this
phenomenon they introduce a ‘damage’ parameter which satisfies a rate equation and is allowed
to take values between 0 and 1, but this is precisely what we want to avoid, the use of a ‘damage’
parameter without any clear physical underpinning.

Damage invariably occurs as a consequence of the inhomogeneity of the body under
consideration, at a location wherein there is some structural defect at the microscopic scale which
weakens the body at that particular place. While this microscopic structural defect could take
various forms, for certain classes of polymeric materials this might be a consequence of the
value of the mass density of the polymer or the density of the cross-links or the density of the
elastic strands or a combination of these quantities, which comprises the polymer network. These
quantities are related (see Bueche [8] and Langley [9]). In this study, we use the mass density of
the polymer as the variable to characterize and diagnose the onset and evolution of damage.

In this paper, we are only concerned with pinpointing the inception of damage in a class
of viscoelastic materials. We consider a class of compressible bodies whose material properties
change with density. Thus, if the body is inhomogeneous with the density varying over the extent
of the body, then the material properties at different locations would be different. As the body
undergoes deformation due to the applied forces, its density changes at different locations and
we expect the onset of damage to occur at the location wherein the material properties are such
that the damage criterion is met. We postulate that the initiation of damage will occur at the
location wherein the derivative of the magnitude of the stress with respect to the stretch becomes
negative or when one reaches an inflection point for the norm of the stress versus density during
loading (see [1] for the rationale for the criterion).

In our previous study, we had looked into the commencement of damage in elastic bodies and
compared the predictions of our methodology with the experimental results of Gent & Lindley
[10] on rubber specimens. Unlike the idealized inhomogeneity that is assumed in our study, their
experimental study concerns a real specimen with a random distribution of inhomogeneities.
Thus, one cannot expect perfect quantitative agreement with regard to the initiation of damage in
the specimen; at best one can expect reasonable quantitative and good qualitative agreement.

1There have been numerous studies devoted to the issue of damage and it would be impossible to discuss even the salient
ones in this paper. One of the early studies concerning damage was carried out by Kachanov [2]. Copious references to
studies regarding damage can be found in the books by Kachanov [3], Lemaitre [4] and Krajcinovic [5]. Volokh [6] appeals to
the notion of a bond energy that needs to be overcome for the initiation of damage.
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In our previous study (see [1]), we assumed that rubber could be described by a constitutive
relation for elastic bodies. While rubber can and is often assumed to respond like an elastic body
in that the dissipation is negligible, natural rubber and especially filled rubbers are viscoelastic. It
is the dissipation that is at the heart of phenomena such as the Mullins effect. Thus, it would be
reasonable to investigate whether the methodology that we proposed in our earlier study is also
applicable to viscoelastic bodies, and in order to determine this we consider the consequences
of our methodology when applied to viscoelastic solid models that have been proposed to
describe the response of rubber and rubber-like materials. In this study, we evaluate the efficacy
of our proposed methodology within the context of two viscoelastic models, one a generalization
of a model proposed by Gent [11] and the other a generalization of the compressible Kelvin-
Voigt model. Some remarks concerning our generalization of the Gent model is warranted.
Gent developed a model that describes elastic response and used it to describe the response of
rubber. However, the response of rubber is viscoelastic, and hence it is necessary to generalize
his model to describe viscoelastic response. In this paper, the generalization is made in such
a manner that the generalization is compatible with the demands of thermodynamics. To start
with, Gent’s model has a complicated structure, hence it is not a surprise that our generalization
leads to a very complicated constitutive relation. Our consideration of a generalization of the
compressible Kelvin–Voigt model with a much simpler constitutive structure stems from our
wanting to ensure that the initiation of the ‘damage’ that arises is not due to the complicated
structure of the generalization of the Gent model. We found that the generalized Kelvin–Voigt
model also qualitatively showed the same sort of behaviour as the generalized Gent model.

Gent & Lindley [10] found that the specimens were damaged between stretch ratios of 4 and
10, depending on the specimen and this is in qualitative agreement with the results established for
the above two models in this paper. We emphasize that our study concerns an ideal body with a
single inhomogeneity while the experiments pertain to a random distribution of inhomogeneities.
Furthermore, we assume a particular value for the density of the inhomogeneity and this may not
necessarily reflect the densities associated with any of the inhomogeneities in the experimental
specimen.

We consider a thin square plate of length L comprised of a viscoelastic material with a central
circular region of radius 0.0001 L wherein the density is significantly smaller than the region
external to it. We consider two types of loading, first a ramp (figure 2a) and then a two-step
ramp (figure 2b). On being loaded, the square plate stretches and the density starts to change,
the change being much more pronounced in the circular region wherein the initial density was
lower. We find, as is to be expected, that damage is initiated in this central circular region of
lower density. Our results are in keeping with the results that we obtained for the initiation of
damage for elastic bodies and the results are once again in good qualitative agreement with the
experimental observations of Gent & Lindley [10].

The parameter that determines damage, namely the density, is specific to the problem under
consideration. For other problems, say involving metals, the parameter could be a quantity that
is related to the microstructure, for instance the density of dislocations. The important point to be
cognizant of is that damage is mostly a consequence of material inhomogeneity and the nature of
the inhomogeneity might depend on the class of materials being considered.

The organization of our paper is as follows. In the next section, we provide a brief introduction
to the relevant kinematics. The constitutive relations that we use are introduced in §3, and this
is followed by the delineation of the initial-boundary value problem in §4. We devote §5 to a
discussion of the results and the final section is devoted to some concluding remarks.

2. Kinematics
Let κR(B) and κt(B) denote the reference configuration of the body and the configuration of the
body B at time t, respectively. Let X and x denote a typical point belonging to κR(B) and κt(B),
respectively. Let χκR be the one to one mapping that assigns each X in the reference configuration,
κR(B), to x in the current configuration, κt(B), i.e. x = χκR (X, t).
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We shall assume that χκR is sufficiently smooth so that all the derivatives that are taken
make sense. The velocity v, the velocity gradient L and the deformation gradient FκR are defined
through

v := ∂χκR

∂t
, L := ∂v

∂x
and FκR := ∂χκR

∂X
. (2.1)

It immediately follows that
L = ḞκR F−1

κR
. (2.2)

The symmetric part of velocity gradient D is given by

D := 1
2 (L + LT), (2.3)

where ˙(.), (.)−1 and (.)T are the material time derivative, inverse and transpose of second-order
tensor, respectively. The left and right Cauchy–Green tensors BκR and CκR are, respectively,
defined through

BκR := FκR FT
κR

and CκR := FT
κR

FκR . (2.4)

Let κp(t)(B) denote the natural configuration2 corresponding to κt(B). We can define Fκp(t) :=
∂x/∂XP, where XP ∈ κp(t)(B) corresponds to the point X. We can define the corresponding Cauchy–
Green tensors through

Bκp(t) := Fκp(t) F
T
κp(t)

and Cκp(t) := FT
κp(t)

Fκp(t) . (2.5)

The unimodular tensors ¯̄B and ¯̄C are defined through

¯̄BκR : = (det F−2/3
κR )BκR and ¯̄CκR := (det F−2/3

κR )CκR ,

¯̄Bκp(t) : = (det F−2/3
κp(t) )Bκp(t) and ¯̄Cκp(t) := (det F−2/3

κp(t) )Cκp(t)

and their corresponding first principal invariants of are I1κR
= tr ¯̄BκR = tr ¯̄CκR , I1κp(t)

= tr ¯̄Bκp(t) =
tr ¯̄C−1

κp(t)
. The tensor G is a mapping between appropriate tangent spaces from X belonging to κR(B)

to that at x belonging to κp(t)(B), i.e. G = FκR→κp(t) := F−1
κp(t)

FκR . We define the tensors CκR→κp(t) , Bκp(t) ,
Lκp(t) and Dκp(t) through

CκR→κp(t) := GTG, Bκp(t) := FκR CκR→κp(t) F
T
κR

and Lκp(t) = ĠG−1

⎫⎬
⎭ (2.6)

and
Dκp(t) := 1

2 (Lκp(t) + LT
κp(t)

). (2.7)

Further, we note that the upper convected Oldroyd derivative [13] of Bκp(t) can be related to
Dκp(t) through3 (see [14])

�
Bκp(t) := Ḃκp(t) − LBκp(t) − Bκp(t) L

T = −2Fκp(t) Dκp(t) F
T
κp(t)

. (2.8)

3. Constitutive relations
We use the second law of thermodynamics in the form of the reduced energy dissipation equation
[15], which is given by

T • D − ρψ̇ = ξ ≥ 0, (3.1)

where T is the Cauchy stress, ψ is the specific Helmholtz free energy and ξ is the rate of
dissipation.

2A detailed discussion of what is meant by a natural configuration can be found in Rajagopal [12]. For our purpose, it is
sufficient to think of the natural configuration as the configuration that the body would attain when all the external stimuli
acting on the body in its current configuration at time t are removed.
3Henceforth, we suppress ‘t’ from the subscript.



5

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180064

...................................................

The first model we consider is a generalization of a model due to Gent (see [11,16]) whose
Helmholtz potential ψ and the rate of dissipation ξ are of the form

ψ = −μ1(X)
2ρκp

(I(1)
m (X) − 3) log

(
1 −

(
I1κp − 3

I(1)
m (X) − 3

))
+ K1(X)

2ρκp

⎡
⎣Iν1(X)

3κp
+ 1

Iν1(X)
3κp

− 2

⎤
⎦

− μ2(X)
2ρκR

(I(2)
m (X) − 3) log

(
1 −

(
I1κR − 3

I(2)
m (X) − 3

))
+ K2(X)

2ρκR

⎡
⎣Iν2(X)

3κR
+ 1

Iν2(X)
3κR

− 2

⎤
⎦ (3.2)

and

ξ = η0(X)(Dκp
• Dκp − 1

3 (tr Dκp )2) + η1(X)(tr Dκp )2, (3.3)

where μ1(X), μ2(X) and K1(X), K2(X) are the shear and bulk moduli, I(1)
m , I(2)

m are the stretch limits,
ν1, ν2 are the volumetric exponents and η0, η1 are shear and bulk viscosities and I3κR

= det FκR ,
I3κp = det Fκp are the invariants.

Substituting equations (3.2) in (3.1), we have

⎧⎨
⎩T −

⎛
⎝ μ1(X)

(det Fκp )
1

(1 − ((I1κp − 3)/(I(1)
m (X) − 3)))

dev ( ¯̄Bκp ) + K1(X)ν1(X)
det Fκp

⎡
⎣Iν1(X)

3κp
− 1

Iν1(X)
3κp

⎤
⎦ I

+ μ2(X)
(det FκR )

1

(1 − ((I1κR − 3)/(I(2)
m (X) − 3)))

dev ( ¯̄BκR ) + K2(X)ν2(X)
det FκR

⎡
⎣Iν2(X)

3κR
− 1

Iν2(X)
3κR

⎤
⎦ I

⎞
⎠
⎫⎬
⎭ • D

+ A • Dκp = ξ (Bκp , Dκp ), (3.4)

where dev (A) represents the deviatoric part of a second-order tensor A.
A sufficient condition for the equation (3.4) to be satisfied is

T = μ1(X)
det Fκp

1

(1 − ((I1κp − 3)/(I(1)
m (X) − 3)))

dev( ¯̄Bκp ) + K1(X)ν1(X)
det Fκp

⎡
⎣Iν1(X)

3κp
− 1

Iν1(X)
3κp

⎤
⎦ I

+ μ2(X)
det FκR

1

(1 − ((I1κR − 3)/(I(2)
m (X) − 3)))

dev( ¯̄BκR ) + K2(X)ν2(X)
det FκR

⎡
⎣Iν2(X)

3κR
− 1

Iν2(X)
3κR

⎤
⎦ I (3.5)

and

A • Dκp = ξ (Bκp , Dκp ), (3.6)

where

A = μ1(X)
det Fκp

1

(1 − ((I1κp − 3)/(I(1)
m (X) − 3)))

dev( ¯̄Bκp )

+ μ1(X)
2 det Fκp

(I(1)
m (X) − 3) log

(
1 −

(
I1κp − 3

I(1)
m (X) − 3

))
I

+ K1(X)ν1(X)
2 det Fκp

⎡
⎣Iν1(X)

3κp
− 1

Iν1(X)
3κp

⎤
⎦ I − K1(X)ν1(X)

2 det Fκp

⎡
⎣Iν1(X)

3κp
+ 1

Iν1(X)
3κp

− 2

⎤
⎦ I.

The equation (3.6) places restrictions on Bκp and Dκp . The latter evolves in such a way that ξ
is maximized subject to the constraint in equation (3.6). Following Rajagopal & Srinivasa [14], we
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maximize the rate of dissipation in equation (3.3) subject to the constraints in equation (3.6) by
varying Dκp , for fixed Bκp . For this, we maximize the auxiliary function ξ̂ , which is defined by

ξ̂ = ξ + λ(ξ − A • Dκp ), (3.7)

where λ is the Lagrange multiplier. Now, setting

∂ξ̂

∂Dκp

= 0, (3.8)

we get
1 + λ

λ
= 1

2
. (3.9)

Using equations (3.8) and (3.9) , we have

Dκp +
(
η1

η0
− 1

3

)
tr (A)
3η1

I = A
η0

. (3.10)

We assume the material is isotropic, hence we can choose configurations such that Fκp =
Vκp , where Vκp is the right stretch tensor in the polar decomposition Fκp = Vκp Rκp . Now pre-
multiplying and post-multiplying equation (3.10) by Vκp and using (2.8), we have the following
evolution equation:

�
Bκp + 2

Bκp

η0

(
dev(A) + η0

9η1
tr (A)I

)
= 0. (3.11)

Note that the Cauchy stress vanishes when the deformation gradient FκR and Fκp are I. We non-
dimensionalize the constitutive equations using the characteristic length scale ‘L’ and modulus
K1: u = Lū, v = Lv̄, w = Lw̄, t = t0 t̄ and T = K1T̄. The deformation gradient Fκp is non-dimensional:
but to be consistent in our notation, we denote it with an over bar. The final non-dimensionalized
Cauchy stress is given by

T̄ = μ1(X)
K0det F̄κp

1

(1 − ((Ī1κp − 3)/(I(1)
m (X) − 3)))

dev(B̄κp ) + K1(X)ν1(X)
K0 det F̄κp⎡

⎣Īν1(X)
3κp

− 1

Īν1(X)
3κp

⎤
⎦ I + μ2(X)

K0det F̄κR

1

(1 − ((Ī1κR − 3)/(I(2)
m (X) − 3)))

dev(B̄κR ) + K2(X)ν2(X)
K0 det F̄κR

⎡
⎣Īν2(X)

3κp
− 1

Īν2(X)
3κR

⎤
⎦ I (3.12)

and the non-dimensionalized evolution equation is as follows:

�
B̄κp + MB̄κp

(
dev(Ā) + η0

9η1
tr Ā

)
I = 0, (3.13)

where

M = 2K0t0

η0
(3.14)

and

Ā = μ1(X)
K0 det F̄κp

1

(1 − ((Ī1κp − 3)/(I(1)
m (X) − 3)))

dev (B̄κp ) + μ1(X)
2K0 det F̄κp

(I(1)
m (X) − 3)

× log

(
1 −

(
Ī1κp − 3

I(1)
m (X) − 3

))
I + K1(X)ν1(X)

2K0 det F̄κp

⎡
⎣Īν1(X)

3κp
− 1

Īν1(X)
3κp

⎤
⎦ I

− K1(X)ν1(X)
2K0 det F̄κp

⎡
⎣Īν1(X)

3κp
+ 1

Īν1(X)
3κp

− 2

⎤
⎦ I. (3.15)
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Also, in the above equation (3.12) K0 is a modulus that is related to the compressibility of the
body. The constitutive relations characterizing this model are equations (3.12) and (3.13).

The second model we consider in this study is a generalized form of the Kelvin–Voigt model
wherein the Cauchy stress is given by

T = K0(X)
(det F − 1)

(det F)3 I + μ0(X)
1

det F
dev( ¯̄B) + 2η0(X)D,

where μ0(X)/det F and K0(X)/det F3 are the shear and bulk moduli which decrease with increase
in detF, and η0(X) is the viscosity.

Similar to the earlier model, non-dimensionalization was carried out using the characteristic
scales so that u = Lū, v = Lv̄, w = Lw̄, t = t0 t̄ and T = K1T̄. The non-dimensionalized Cauchy stress
tensor is then given by

T̄ = K0(X̄)
K1

(det (F̄) − 1)
(det F̄)3

I + μ0(X̄)
K1

1
det F̄

dev(B̄) + 2
η0(X̄)
t0K1

D̄. (3.16)

4. The initial-boundary value problem studied
We consider a thin square plate of side ‘2L’. The reference density is constant over the region
external to a small circular region of radius 0.0001 L at the centre of the plate wherein the density is
significantly less than in the region external to it. As the variation is over a small region compared
to the overall dimension of the plate, figure 1 shows only a small portion of the plate. Using
symmetry, we consider only one quarter of the plate for analysis.

We assume that, for a thin sheet, the non-dimensionalized displacement components in X, Y
and Z are u(X, Y, t), v(X, Y, t) and w(X, Y, Z, t) = Zφ(X, Y, t), respectively. It has been shown that the
Z direction displacement is for all practical purposes linear in Z based on the three-dimensional
study done by Alagappan et al. [1]. Hence, the deformation gradient is given by

FκR = I + ∂u(X)
∂X

, (4.1)

i.e.

FκR =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + ∂u
∂X

∂u
∂Y

0

∂v

∂X
1 + ∂v

∂Y
0

Z
∂φ

∂X
Z
∂φ

∂Y
1 + φ

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4.2)

The assumption of linear dependence of Z results in the Cauchy stress components, T̄XZ and
T̄YZ also being linear in Z (see [1]). Therefore, by selecting an appropriate thickness for the plate,
the components T̄XZ and T̄YZ will be negligible and from this perspective we can drop these
terms. This results in the deformation gradient being only a function of ‘X’ and ‘Y’, i.e.

FκR =

⎡
⎢⎢⎢⎢⎢⎣

1 + ∂u
∂X

∂u
∂Y

0

∂v

∂X
1 + ∂v

∂Y
0

0 0 1 + φ

⎤
⎥⎥⎥⎥⎥⎦. (4.3)
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Figure 1. Initial reference density in a square of size 0.001 unit (close-up view). The filled shapes circle and square represents
critical points A and B, respectively. (Online version in colour.)
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Figure 2. Loadings. (a) One-step loading and (b) two-step loading. (Online version in colour.)

(a) Loading and boundary condition
The non-dimensionalized length of the plate is taken to be 1. To study the initiation of damage,
we consider the plate subjected to bi-axial loading condition. To enforce the boundary conditions,
we use the Piola–Kirchhoff stress P̄ which is defined as

P̄ = (det F̄κR )T̄F̄−T
κR

. (4.4)

The boundary conditions for the bi-axial loading are given by

P̄XX(1, Y, t) = 6.25 × 10−3t

and P̄YY(X, 1, t) = 6.25 × 10−3t

and the symmetry conditions are

u(0, Y, t) = 0 ∀ 0 ≤ Y ≤ 1 ∀ t> 0

and v(X, 0, t) = 0 ∀ 0 ≤ X ≤ 1 ∀ t> 0.
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The response of the viscoelastic plate is studied also by using one- and two-step loading. The
loading condition for one-step loading is

P̄XX(1, Y, t) = see figure 2a ∀ t> 0

and P̄YY(X, 1, t) = see figure 2a ∀ t> 0

and the two-step loading is given by

P̄XX(1, Y, t) = see figure 2b ∀ t> 0

and P̄YY(X, 1, t) = see figure 2b ∀ t> 0

and the symmetry conditions for one- and two-step loading condition are

u(0, Y, t) = 0 ∀ 0 ≤ Y ≤ 1 ∀ t> 0

and v(X, 0, t) = 0 ∀ 0 ≤ X ≤ 1 ∀ t> 0.

In this study, we shall ignore inertial effects. The non-dimensional governing equilibrium
equation in the absence of body forces is given by

Div P̄ = 0, (4.5)

where P̄ is the first Piola–Kirchhoff stress tensor. The relation between the Cauchy stress and first
Piola–Kirchhoff tensor is given by

P̄ = (det F̄κR )T̄F̄−T
κR

. (4.6)

Here, we adopt the Lagrangian formulation as it is numerically convenient and, in the case of
large deformations, it does not involve the use of an evolving geometry to study the governing
equations.

(b) Generalized Gent model
As FκR is only a function of the coordinates X and Y, the traction-free condition on the top and the
bottom of the sheet reduces to P̄ZZ = 0.

It follows from the form of FκR that the matrix associated with Bκp is given by

Bκp =

⎡
⎢⎣b1 b4 0

b4 b2 0
0 0 b3

⎤
⎥⎦. (4.7)

Using equation (3.12) and relation (4.6), the Piola–Kirchhoff stress components for the
generalized Gent model are given by

P̄XX = −
((
α2

((
∂u
∂X

+ 1
)
∂v

∂X
+
(
∂v

∂Y
+ 1

)
∂u
∂Y

)
+ α1b4

)
∂u
∂Y

Ī3κR

)/
(
∂u
∂X

∂v

∂Y
− ∂u
∂Y

∂v

∂X
+ ∂u
∂X

+ ∂v

∂Y
+ 1

)

−
((

∂v

∂Y
+ 1

)(
α2

(
∂v

∂X

2/3
− (2(∂u/∂Y2))

3
+ (w + 1)2/3

− (2(∂u/∂X + 1)2)
3

+
(
∂v

∂Y
+ 1

)2/3
)

− α3

+ α1

(
b2

3
− (2b1)

3
+ b3

3

))
Ī3κR

)/(
∂u
∂X

∂v

∂Y
− ∂u
∂Y

∂v

∂X
+ ∂u
∂X

+ ∂v

∂Y
+ 1

)
,
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P̄YY = −
((
α2

((
∂u
∂X

+ 1
)
∂v

∂X
+
(
∂v

∂Y
+ 1

)
∂u
∂Y

)
+ α1b4

)
∂v

∂X
Ī3κR

)/
(
∂u
∂X

∂v

∂Y
− ∂u
∂Y

∂v

∂X
+ ∂u
∂X

+ ∂v

∂Y
+ 1

)

−
((

∂u
∂X

+ 1
)(

α2

(
∂u
∂Y

2/3
− (2(∂v/∂X2))

3
+ (w + 1)2/3

+
(
∂u
∂X

+ 1
)2/3

− (2(∂v/∂Y + 1)2)
3

)
− α3 + α1

(
b1

3
− (2b2)

3
+ b3

3

))
Ī3κR

)/(
∂u
∂X

∂v

∂Y
− ∂u
∂Y

∂v

∂X
+ ∂u
∂X

+ ∂v

∂Y
+ 1

)
,

P̄XY =
((
α2

(
∂v

∂X

2/3
− (2(∂u/∂Y2))

3
+ (w + 1)2/3 −

(
2
(
∂u
∂X

+ 1
)2
)/

3 +
(
∂v

∂Y
+ 1

)2/3
)

− α3 + α1

(
b2

3
− (2b1)

3
+ b3

3

))
∂v

∂X
Ī3κR

)/(
∂u
∂X

∂v

∂Y
− ∂u
∂Y

∂v

∂X
+ ∂u
∂X

+ ∂v

∂Y
+ 1

)

+
((

∂u
∂X

+ 1
)(

α2

((
∂u
∂X

+ 1
)
∂v

∂X
+
(
∂v

∂Y
+ 1

)
∂u
∂Y

)
+ α1b4

)
Ī3κR

)/
(
∂u
∂X

∂v

∂Y
− ∂u
∂Y

∂v

∂X
+ ∂u
∂X

l + ∂v

∂Y
+ 1

)

P̄YX =
((
α2

(
∂u
∂Y

2/3
− (2∂v/∂X2)

3
+ (w + 1)2/3 +

(
∂u
∂X

+ 1
)2/3

− (2(∂v/∂Y + 1)2)
3

)
− α3

+ α1

(
b1

3
− (2b2)

3
+ b3

3

))
∂u
∂Y

Ī3κR

)/(
∂u
∂X

∂v

∂Y
− ∂u
∂Y

∂v

∂X
+ ∂u
∂X

∂v

∂Y
+ 1

)

+
((

∂v

∂Y
+ 1

)(
α2

((
∂u
∂X

+ 1
)
∂v

∂X
+
(
∂v

∂Y
+ 1

)
∂u
∂Y

)
+α1b4) Ī3κR

)/
(
∂u
∂X

∂v

∂Y
− ∂u
∂Y

∂v

∂X
+ ∂u
∂X

+ ∂v

∂Y
+ 1

)
,

P̄ZZ = −
((
α2

(
∂u
∂Y

2/3
+ ∂v

∂X

2/3
− (2(w + 1)2)

3
+
(
∂u
∂X

+ 1
)2/3

+
(
∂v

∂Y
+ 1

)2/3
)

− α3

+ α1

(
b1

3
+ b2

3
− (2b3)

3

))
Ī3κR

)/
(w + 1),

where

α1 = μ1(X)
K0det F̄κp

1

(1 − ((Ī1κp − 3)/I(1)
m (X) − 3))

,

α2 = μ2(X)
K0det F̄κR

1

(1 − ((Ī1κR − 3)/I(2)
m (X) − 3))

and α3 = K1(X)ν1(X)
K0det F̄κp

⎡
⎣Īν1(X)

3κp
− 1

Īν1(X)
3κp

⎤
⎦+ K2(X)ν2(X)

K0det F̄κR

⎡
⎣Īν2(X)

3κp
− 1

Īν2(X)
3κR

⎤
⎦ .

The material parameters for the above model are provided in table 1.

(c) Generalized Kelvin–Voigt model
Equation (3.16) and relation (4.6) are used to obtain the Piola–Kirchhoff stress components, in a
procedure similar to that used for determining these components for the generalized Gent model.
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Figure 3. Variation of material parameters with density. (a) Variation of ν1 and ν2 and (b) variation of I(1)m and I(2)m .

Table 1. Material parameters for generalized Gent model.

parameter value parameter value

μ1 102ρ0 μ2 102ρ0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η0 100μ1 η1 30 η0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K1, K2 fac ∗ μ1 fac 100
(
1 − exp

(−8ρ0
1000

))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K0 104 t0 80
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ν1, ν2 smoothed piecewise linear function figure 3a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I(1)m , I
(2)
m smoothed piecewise linear function figure 3b

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Material parameters for the Kelvin–Voigt model.

parameters functions

μ0 102ρ0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K0 100μ0

(
1 − exp

(
− 8ρ0
1000

))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K1 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η0 100μ0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The material parameters for the compressible Kelvin–Voigt model are documented in table 2.

5. On the criterion for initiation of damage
Initially, as the stretch increases, the norm of the stress increases monotonically. However, after
the body attains a certain stretch, we find that the stress required for continued stretching starts
to decrease. The state of stress at which the stress starts to decrease with increasing stretch is the
location where the norm of the stress has an inflection point with respect to density. The reason
for such a change in the response of the body is, we conjecture, due to the initiation of damage
which leads to the need for less norm of the stress to effect the elongation. Based on this idea,
Alagappan et al. [1,17] hypothesized that damage is initiated when the derivative of the norm
of the stress with respect to the stretch becomes zero and then starts to become negative. In this
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Figure 4. Variation of the norm of the stress tensor with time.
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Figure 5. Variation of the norm of the stress tensor with stretch.

study, we find that the same criterion leads to the prediction of the initiation of damage as in the
earlier studies by Alagappan et al. [1,17] for compressible elastic bodies.

6. Results and discussion
In this study, two major types of loading conditions, namely ramp (linear with respect to time) and
step (one-step and two-step inputs), and two material models, namely the generalized Gent and
the generalized Kelvin–Voigt model, are considered. The final non-dimensional equations were
solved using COMSOL Multiphysics� that uses the finite-element technique to solve the system
of partial differential equations. The mesh is finer adjacent to the inhomogeneity where there is
a large variation in the density in the reference configuration and the mesh is coarser away from
the inhomogeneity. Triangular elements were used and their number was fixed to be 8834 based
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Figure 7. Variation of the density with time.

on the mesh independence study. The non-dimensional mesh size used in this study corresponds
to 4 × 10−5 in the finer region and 0.035 in the coarser region. The figures 4–16 display the results
for these various cases.

7. Generalized Gent model subject to ramp loading
Figures 4–7 show the response at point A (where the density is initially the lowest) of the
generalized Gent model subject to ramp loading. It can be observed that the initiation of damage
i.e. when the derivative of norm of Cauchy stress with respect to the stretch attaining the value
zero, occurs after approximately after 9 units of time at a stretch of approximately 4 which is
perfectly in keeping with experimental results(figures 4 and 5). The corresponding value of det F̄
and current density are 2.6 and 0.115, respectively (figures 6 and 7). Moreover, the reduction of
density at the initiation of damage is 61.67%.
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8. Generalized Gent model subject to one- and two-step loading
The figures 8–10 portray the response of the generalized Gent model subject to one-step and
two-step loading. Around 4 and 6 units of time, one- and two-step loadings reach the maximum
nominal stress, respectively. But at point A the latter showed a lower value for the norm for
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Figure 12. Variation of the determinant of F̄with time.

the Cauchy stress that is imperceptible in the figure, the difference in the value being 1.1%. The
percentage difference in the det F̄ and current density is 5.4 at 6 units of time (see figures 9 and 10).
As the loading is held constant, det F̄ and the current density for both the loading conditions are
1.5 and 0.2, respectively.

9. Generalized Kelvin–Voigt model subject to ramp loading
The generalized Kelvin–Voigt model also exhibited behaviour similar to that displayed by the
generalized Gent model when subjected to ramp loading, except for the magnitude of the stress
(figures 11–13). At approximately 5.15 units of time, the derivative of the norm of the Cauchy
stress with respect to stretch is zero and the corresponding detF̄ and current density are 1.5 and
0.2, respectively (figures 12 and 13). The reduction in density at 5.15 units of time is 33.33%.

10. Generalized Kelvin–Voigt subject to one- and two-step loading
The response of the generalized Kelvin–Voigt model subjected to one- and two-step loading are
portrayed in figures 14–16. As the nominal load is held constant, there is initially an increase
in the norm of the Cauchy stress after which it reaches a constant value irrespective of the
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type of loading. This variation, after the load is held constant, also resulted in an increase in
det F̄ and decrease in the current density. The difference between the maximum values for the
det F̄ for the one- and two-step loading is 0.4%. The long-term response when the nominal
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load is held constant is similar to that for the generalized Gent model. At 10 units of time,
det F̄ and current density are 1.185 and 0.253, respectively, which is the same for both the
loading conditions.

11. Conclusion
We have extended our earlier studies regarding the development of a methodology for the
initiation of damage for compressible elastic bodies, to the class of compressible viscoelastic
bodies. Recognizing that damage is triggered by inhomogeneity and that the initiation is best
characterized by means of physically meaningful quantities that are completely determined in
the current configuration of the body, we carry out our study based on the density being the
physical parameter that determines the onset of damage. We assume that damage starts when the
derivative of the magnitude of the Cauchy stress with respect to the stretch becomes negative.
At such a state, the body’s load-carrying capacity starts to decrease, the signal that the body
is starting to get damaged. Our results are in keeping with our earlier study on elastic bodies
(see Alagappan et al. [1]) in that the stretch ratio at which damage is initiated in the two studies
are close. The previous study of Alagappan et al. [1] used a model proposed by Gent [11] to
describe elastic bodies, and the damage initiation criterion that they proposed agreed well with
the experiments of Gent & Lindley [10]. However, modelling rubber as an elastic body is an
idealization as it is well known that its response is viscoelastic. In view of this fact, the results
established in this work can also be compared against the experiments of Gent [11] on rubber,
and the results provide good agreement with the experiments. It is possible to get even better
agreement by fine-tuning the model, but our interest is in showing that the damage initiation
criterion based on a physically meaningful parameter rather than ad hoc damage parameters is
worthwhile and useful.
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