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A Convex Optimization Framework for Almost
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Abstract—We address the problem of allocating a single divis-
ible good to a number of agents. The agents have concave valuation
functions parameterized by a scalar type. The agents report only
the type. The goal is to find allocatively efficient, strategy proof,
nearly budget balanced mechanisms within the Groves class. Near
budget balance is attained by returning as much of the received
payments as rebates to agents. Two performance criteria are of in-
terest: the maximum ratio of budget surplus to efficient surplus,
and the expected budget surplus, within the class of linear rebate
functions. The goal is to minimize them. Assuming that the val-
uation functions are known, we show that both problems reduce
to convex optimization problems, where the convex constraint sets
are characterized by a continuum of half-plane constraints param-
eterized by the vector of reported types. We then propose a ran-
domized relaxation of these problems by sampling constraints. The
relaxed problem is a linear programming problem (LP). We then
identify the number of samples needed for ‘“near-feasibility” of
the relaxed constraint set. Under some conditions on the valua-
tion function, we show that value of the approximate LP is close
to the optimal value. Simulation results show significant improve-
ments of our proposed method over the Vickrey—Clarke-Groves
(VCG) mechanism without rebates. In the special case of indivisible
goods, the mechanisms in this paper fall back to those proposed by
Moulin, by Guo and Conitzer, and by Gujar and Narahari, without
any need for randomization. Extension of the proposed mecha-
nisms to situations when the valuation functions are not known to
the central planner are also discussed.

Note to Practitioners—Our results will be useful in all resource
allocation problems that involve gathering of information pri-
vately held by strategic users, where the utilities are any concave
function of the allocations, and where the resource planner is
not interested in maximizing revenue, but in efficient sharing
of the resource. Such situations arise quite often in fair sharing
of internet resources, fair sharing of funds across departments
within the same parent organization, auctioning of public goods,
etc. We study methods to achieve near budget balance by first
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collecting payments according to the celebrated VCG mechanism,
and then returning as much of the collected money as rebates. Our
focus on linear rebate functions allows for easy implementation.
The resulting convex optimization problem is solved via relaxation
to a randomized linear programming problem, for which several
efficient solvers exist. This relaxation is enabled by constraint
sampling. Keeping practitioners in mind, we identify the number
of samples that assures a desired level of ‘near-feasibility” with
the desired confidence level. Our methodology will occasionally
require subsidy from outside the system. We however demonstrate
via simulation that, if the mechanism is repeated several times
over independent instances, then past surplus can support the
subsidy requirements. We also extend our results to situations
where the strategic users’ utility functions are not known to the
allocating entity, a common situation in the context of internet
users and other problems.

Index Terms—Constraint sampling, convex optimization, divis-
ible good, game theory, mechanism design, resource allocation.

I. INTRODUCTION

LARGE NUMBER of resource allocation problems arise

in the internet and other communication networks where
several agents access shared resources. An efficient resource
allocation maximizes the aggregate utility of all the agents.
Often, the allocation depends on information privately held by
the agents, also known as types. Strategic agents may misrep-
resent their private information so as to maximize their own
utility even if at the expense of aggregate utility. Mechanism
design theory deals with the problem of designing mechanisms
that induce truthful reporting by agents of their private infor-
mation. It contains a social planner who collects bids (reported
types) from agents, knows (or assumes) value functions of
agents, allocates available resources, and collects payments.
In the Groves class of mechanisms [1], resources or goods
are allocated efficiently, and payments are constructed such
that the dominant strategy of each agent is to report the true
value, i.e., these are dominant strategy incentive compatible
(DSIC). The most celebrated mechanism in this class is the
Vickrey—Clarke—Groves (VCG) mechanism (see [2] and [3]).
The VCG mechanism maximizes the total payments from the
agents to the social planner. While this is indeed of interest in
situations where an auctioneer sells his goods to agents, our
interest is in scenarios where the resources have no owner and
the social planner unlike the auctioneer desires no surplus (i.e.,
he desires budget balance). The well-known Green—Laffont
impossibility theorem [4], however, says that under some con-
ditions there is no mechanism in a quasi-linear environment!
that is DSIC, achieves allocative efficiency, and is budget

INet utility is value of allocation minus payment.

1545-5955/$26.00 © 2011 IEEE



CHORPPATH et al.: A CONVEX OPTIMIZATION FRAMEWORK FOR ALMOST BUDGET BALANCED ALLOCATION OF A DIVISIBLE GOOD 521

balanced. Moulin [5] and Guo and Conitzer [6] proposed mech-
anisms within the Groves class for allocation of one or more
homogeneous indivisible goods. Their mechanisms are almost
budget balanced. In this paper we extend their mechanisms to
more general situations when goods are perfectly divisible.

Near budget balance is achieved by supplying rebates, or
redistribution of payments, back to the agents. This idea was
first proposed by Laffont and Maskin [7] and further studied
by Bailey [8], Cavallo [9], and others. Moulin [5] studied
rebates for allocation of m homogeneous indivisible goods
among n agents, where m < n, each with unit demand. The
VCG payments from agents are redistributed to the agents
as rebates to the extent possible. The mechanism remains
allocative efficient, individually rational, and DSIC. Moreover,
it minimizes the worst (maximum) ratio of budget surplus to
efficient surplus (sum of valuations) subject to the constraint
that it is weakly budget balanced. Guo and Conitzer [6] showed
that the same mechanism maximizes the worst-case (minimum)
rebate redistribution fraction relative to the VCG payments.
The optimal rebate for a particular agent is linear in the reported
types of all other agents. Gujar and Narahari [10] analyzed the
allocation of m heterogeneous goods among n agents (again
m < n) when each agent submits only a scalar bid. A valuation
vector is constructed by multiplying the scalar bid of each agent
with a common vector corresponding to the heterogeneity of
the objects. They showed the optimality of linear rebates in
this more general setting. Guo and Conitzer [11] proposed
a different (but again linear) redistribution mechanism that
maximizes the average rebate redistributions.

In this paper, we study linear redistribution mechanisms when
the resource is perfectly divisible and when the valuation func-
tion of an agent is any concave function.2 We first show that the
worst-case and average-case optimal linear rebate functions are
solutions to convex optimization problems. The constraint set
however is determined by an infinite number of half-plane con-
straints, parameterized by the set of bid profiles. We then pro-
pose a randomized approximate linear program (LP) and argue
that its constraint set is “near-feasible” with high probability.
We then show that, under a rather general condition on the val-
uation function, the min—max value for the approximate LP is
close to the true value, with high probability, with a similar state-
ment for the average rebate redistributions problem. Our pro-
posed mechanisms reduce to those proposed by Moulin, Guo
and Conitzer, and Gujar and Narahari in the corresponding spe-
cial settings.

The assumption that the valuation function is known to the
central planner is often unrealistic. Reporting the entire valu-
ation function is a considerable communication burden to the
system (see Johari and Tsitsiklis [12], [13]). Hence, mechanisms
for allocation of divisible goods, based only on scalar signals
(bids) from agents, are of interest. If the allocation mechanism
is based only on reported scalar values in quasi-linear environ-
ment, then dominant strategy implementation is not possible and
the central planner should rely on Nash equilibrium played by
agents. Sanghavi and Hajek [14] focused on one-dimensional
real-valued bids as payment by agents, and studied the Nash

2Utility functions are usually nonlinear and concave in constrained resources
settings. Moreover, the concavity of utility functions, if they can be shaped, is
influenced by the degree of fairness desired.

equilibrium implementation. Kelly [15] proposed a mechanism
where the central planner creates surrogates for the valuation
function from the one-dimensional bids. The allocation and pay-
ment are derived using these surrogate valuation functions. Yang
and Hajek [16] proposed a VCG-Kelly mechanism by com-
bining the one-dimensional bid idea of Kelly with the VCG
mechanism for the network rate allocation problem. Johari and
Tsitsiklis [12], [13] analyzed the more general convex environ-
ment, proposed a scalar strategy VCG (SSVCG) mechanism,
and obtained an efficient Nash equilibrium implementation. Our
proposed almost budget balanced mechanisms can be easily ex-
tended to this general setting as well.

We must remark at this point that our study comes with the
following caveats. First, we restrict attention to VCG mecha-
nisms. We have not explored beyond this class. Second, even
within the VCG class, we restrict attention to linear redistribu-
tion schemes. Optimality of linear rebates, and if suboptimal,
the goodness of the proposed linear rebates, remain open ques-
tions. Our approach is similar to Cavallo’s [17]: focus on sim-
pler, easily implementable, but possibly suboptimal redistribu-
tion schemes. In a situation different from ours where types are
vectors, Gujar and Narahari [10] have indeed shown that linear
rebates are suboptimal when goods are heterogeneous.

The rest of this paper is organized as follows. Section II
describes the system model and discusses efficient allocation
mechanisms. Section III analyzes the worst-case optimal mech-
anism and optimal-in-expectation mechanism under the linear
rebates setting and proposes the randomized approximate LP.
In Section IV, we discuss the goodness of the randomized ap-
proximation procedure. In Section V, we argue that our results
of Sections III and IV can be extended to the case where the
valuation functions are private to agents and the agents report
only a scalar value. Section VI discusses the simulation setting
and results. Section VII is a concluding summary of this paper.
The Appendix contains the key proof on the goodness of the
proposed randomized scheme.

II. EFFICIENT ALLOCATION MECHANISMS

Consider a perfectly divisible good to be allocated to agents
{1,2,...,n} = N. Agents report their types or scalar bids
{61,02,...,0,} with each §; € ©® = [0, 1]. Since we consider
mechanisms only within the class of Groves mechanisms, which
are DSIC, we may assume that all agents report their true pri-
vate values. Agent ¢ receives an allocation of resource a; that
will depend on the entire bid profile § of size n x 1. Let a be
the allocation vector of size n x 1 and let A be the set of all
possible allocations, i.e., a; > 0 for each ¢ and ZieN a; <1,
with possibly further allocation restrictions. An agent obtains a
valuation, depending on her bid and the allocation received.

Assumption 1: The valuation function v;(,6;) that maps
a; — v;(a;,0;) is concave, nondecreasing in [0, 1], and satisfies
U,;((l,;, 0) = 0.

An allocation a* is efficient (or) socially optimal if it attains
the maximum aggregate value for given valuation functions and
bid vector, i.e.,

g*(Q) = arggleaj(z:vi(ai./ei). (1)

1EN
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In this section, we focus our attention on mechanisms within
the Groves class of mechanisms which are known to achieve
allocative efficiency. Let 6 _,; denote the bid vector with zero in
the * position of #. An allocation vector a_; € A_; isobtained
by considering §_ ;. Let a* ; be the efficient allocation when the
ith agent is out of contention, i.e.,

Zi(0_;) =arg

a

a

max. > vilaij,05)

JF

where a_; ; is the jth component of ¢ _;. The payment p;, (6) for
the i*" agent under the VCG mechanism is given by

pi(0) =D v (aZi;(84),6;) = > vi (a5(6).6,) - (2

JFi J#i

The VCG payment for an agent is the difference the agent makes
to the aggregate value of other agents by participating in the
mechanism. To make the mechanism more budget balanced,
a rebate (or) redistribution of payments is given to the agents
(see, for example, Moulin [5]). A rebate function determines
the redistributions of a portion of the VCG payments back to
the agents. The choice of these rebates should be such that the
DSIC property of the mechanism is preserved. Moreover, the
mechanism should be deterministic and anonymous, i.e., two
agents with identical bids should get identical rebates. The con-
dition for obtaining a deterministic, anonymous, and DSIC re-
bate function is given in the following theorem.

Theorem 1: Suppose that agents bid scalar values and that
the scalar parameterized value functions satisfy Assumption 1.
Then, any mechanism with deterministic and anonymous re-
distributions is DSIC if and only if the rebate function can be
written as

ri = f(61,02,...,0i—1,0i11,...,0n)

for some f with arguments satisfying 6, > 6 > ... > 6,1 >
Oiv1 > ... > On.

Proof: This is identical to Guo and Conitzer’s proof of [6,
Lemma 2]. In their proof, f is a function of the reported valua-
tions v; (prior to allocation) instead of types 6;. However, their
v; = 6;, and so the same proof holds. [ ]

The payment for the new mechanism with rebates, one that
remains within the Groves class of mechanisms, is given by

pi(0) = wi (0% ;(0_4),0;) = > v; (a3(8),6;) —ri(6_,).
i i
3)

The rebate function in Theorem 1 should preserve all desirable
properties of the VCG mechanism. These are the following.

1) Feasibility (F) or Weak Budget Balance: This property en-
sures that the mechanism need not be subsidized by ex-
ternal supply of money. There is a net payment (budget
surplus) from the agents to the mechanism

> i) >0, V8. )

1EN

Substitution of (3) in (4) yields

Z ri(f_;) < Z Zvj (aii,j(g—i)v 93’)
ieN iEN j#i
—(n—1)) " vi(a}(6).6:)
iEN
= :pvca(d), V0 Q)

where pyca(8) is the total VCG payment by all the agents.

2) Individual Rationality (or) Voluntary Participation (VP):

This property ensures that the utility of all agents is greater

than or equal to the utility they would get by dropping out

of the mechanism. In this paper, we take the utility of a
nonparticipating agent to be zero. Thus

Vi (a*(Q),&)—p,(Q) ZO\V/LEN\V/Q (6)

K2

Substitution of (3) in (6) yields

ri(0_;) > ZUJ' (aii,j(ﬁ—i)ﬂj)
JFi
- Z Uj (aj(g)ej)
JEN
=:n;(0),Vie N,V4. 7

Adding all the n constraints in (7) and using (5), we get

pvea(®) = vi(ai(9),6:) < Y ri(6_,)

i€N ieN
<pvca(?),V 4. 8)

We shall consider the case of a single divisible good allocated
to a number of agents. We assume that the valuation function
satisfies Assumption 1. The Moulin [5] and Guo and Conitzer
[6] mechanisms are for allocation of m homogeneous indivis-
ible goods to n agents, each demanding a unit good3, where
m < n. This fits our framework when we divide the single
good into m equal parts with m < n and take the piecewise
linear valuation function v;(a;,6;) = 6; min{a;,1/m}, ie.,
each agent’s valuation increases linearly, but saturates at 1/m.
The Gujar and Narahari [10] mechanism for allocation of m het-
erogeneous goods also fits into our framework when we divide
the good into m unequal parts, take the valuation function to be
v;(a;, 0;) = 0;a;, and impose the allocation constraint that each
agent gets at most one of the unequal parts.

III. LINEAR REDISTRIBUTION MECHANISMS

The redistribution function can take any form as specified in
Theorem 1. A linear form of redistribution function was pro-
posed by Moulin [5] and by Guo and Conitzer [6]. The latter
authors showed that for the worst-case problem, linear redis-
tribution mechanism is optimal among all Groves mechanisms

3Guo and Conitzer [6] do address multiunit demand, but the worst-case re-
duces to that of single unit demand.
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that are feasible and individually rational. Optimality was sub-
sequently extended by Gujar and Narahari [10] to the hetero-
geneous goods case where the reported type is a scalar that
multiplies a common valuation vector. Motivated by these opti-
mality results, the simplicity of linear rebate functions, and their
tractability as we shall soon see, we too shall focus on a linear
redistribution function.
The rebate for the i*" agent is given by

Ti(Q_i) =co+cib1+...+ci_10;-1+ Cz'tgH_l +...+cp_10,

where 6; > 62 > ... > 6,,. Consequently, we have

n—1
Z ri(8_;) = nco + Z ¢i (Wig1 + (n—19)6;).  (9)
ieN i=1

After substitution of (9) in (5) and (7), constraints F and VP in
the linear redistribution case become

n—1

(F) mnco+ Z ¢i (1041 + (n —14)6;) < pvea(8),V 6,

=1

1—1 L —
co + ZC]'HJ' + Z C]'Hj_H > Th(Q)VQ,VZ € N.

Lete, = (1,1,...,1,0,0,...,0) with k& 1s. Setting § = ¢,
we get ¢ = 0 from F and VP constraints. Setting § = ¢;, we
get pyea () = 0 and n;(§) = O for any ¢ > 2. Therefore,
using constraint F, we get (n — 1)c; < 0. On the other hand,
using constraint VP, we get r2(6_,) = ¢; > 0, yielding ¢; = 0.
Furthermore, see Lemma 1.

Lemma 1: The following systems of inequalities are
equivalent:

(a) ri(6_;) = ni(8),
207 0,

=2

Vg, VielN.

k=23,...,

Proof: (a) = (b): The definition of n;(6) in the right-hand
side of (7) yields

n;(8) = Z vj (a®; (0 ZUJ ) <0
JEN\{i} j=1

(10)

because a* ;(6_;) is an inefficient allocation in comparison to

a*(8) when all the n agents are active.
Consider § = ¢, for k = 2,3,...,n — 1. The rebate to agent
k+1is

Tk+1 (Q_(k+1)) = Xk: Ci-

=2

Moreover

nr41(8)

> U-(a (41 (9 (k+1)) 9)

JEN\{k+1}

Il
M |
ol

.

I M:

I
]
.
—

Vi (“ (k+1), (9 (k+1)) ) Zvﬁ a;(6), 6

1

because vj(a;,0) = 0 for j > k + 1, and therefore

0 ) (B-giin) ) = a°(0)

as a consequence of the fact that 6_ ;1) = ¢ = ¢;. Substi-
tution of these in the VP constraint yields Zf:z c¢; > 0 for
k=23,...,n—1.

b) = (a): From Guo and Conitzer [6, Lemma 1], if
Yioci > 0forallk =2,3,...,n—1then

cofly + ...+ ci_10,_1 + Ciei-l—l + ...+ cp_10, >0

forall§y > 0y > 65 > ... > 6,. Consequently, r;(6_,) > 0
forall7 € N and the reverse implication follows from (10). This
proves the lemma. [ |

A. Worst-Case Optimal Mechanism

Moulin [5] proposed a mechanism that minimizes the worst-
case efficiency loss. We shall now describe this objective. Let
the efficient surplus be

Y

= Z V4 (Q:(Q% 91) :

i€EN

The worst-case efficiency loss is the maximum ratio of budget
surplus to the efficient surplus over all possible 0, i.e.,

i ml0),

Lin) = o (0)

sup
€OV \{0}

(12)

Moulin [5] minimized this objective function L(n) subject to F
and VP constraints, but under the homogeneous goods setting.
To generalize this to the perfectly divisible case with the linear
redistribution constraint, i.e., we shall solve

pvea () — g ci (841 + (n — i)6;)

min sup

2=t geOM\{0) 7. (0)
subject to
n—1
1) Y i (ifia + (n—i)6:) < pvea(9),V 6,
1=2
k
2) Y i >0Vk=23,...,n—L (13)

=2
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In arriving at the constraints for this min-max problem, we
used Lemma 1 and e;, profiles. The min—max problem can be
rewritten as a minimization problem by adding an additional
constraint

i L
B iy )
subject to

n—1

1) Y i (i1 + (n = i)8;) < pvea(8), V6,
1=2

k

2) Y i >0Vk=23,...,n—1,
=2
n—1

3) Y ci (iflig1 + (n—0)6;) + L(n)o(6)
1=2

> pvea(8),V 0. (14)

In constraint 1) of problem (14), let C;(f) be a set of fea-
sible coefficients for a given value of §. This defines a half
plane, a convex set. Thus the intersection of these half plane
constraints C; = (1), C1(8) is also a convex set. In constraint
3), if C() is the set of feasible coefficients for a given §, then
Cy =y C2(8) is also a convex set, and C1 () Cs, the set of co-
efficients that satisfy both constraints 1) and 3), is a convex set.
Finally, the n — 2 conditions in constraint 2) define a polygon,
another convex set, and the minimization problem in (14) sub-
ject to constraints 1)-3) is a convex optimization problem. Let
us denote the convex constraint set by C.

In problem (14), constraints 1) and 3) are each half-space
constraints parameterized by § € ©~. What we then have is a
continuum of half-space constraints whose intersections, along
with those of constraint 2), yield the overall convex constraint
set C. Guo and Conitzer [6] proved that the constraints obtained
with @ profiles ¢, = (1,1,...,1,0,...,0) having k 1s, for
k=0,1,..., n, are enough to specify the feasible region in the
case of indivisible goods. While these significantly narrow the
constraint set, they do not fully characterize the feasible region
for the divisible goods case; see Fig. 1. Moreover, an explicit so-
lution via the method of Lagrange multipliers does not appear
likely because the coefficient o, (f) and the constant pycg(6)
are themselves functions of § arising out of optimizations over
allocations and without any apparent structure.

We propose a relaxation by considering all of constraint 2),
and only a subset of constraints 1) and 3) parameterized by a
subset W of © . This subset W contains ¢,, profiles that helped
reduce the optimization problem to (14). In addition, we sample
random values of § according to some probability measure on
O, and include them in W. The resulting constraints yields an
approximation C of C. The relaxed constraint set C is clearly a
polyhedron, and the corresponding minimization problem is an
LP.

The natural questions that arise are: a) the goodness of the ap-
proximation C as the number of random samples increases and
b) the number of samples needed for a desired degree of preci-
sion. Both of these are addressed in the next section. Section VI
provides some simulation results.

In Fig. 1, the number of agents n = 8, the variables
are co,cs,...,c7 and L(n), and for pictorial depiction, only

-3
8 L
6 L
4t
2 L
L
(&)
0 L
2+
with e, profiles
=41 _o— with e, profiles+ 500 random @
-6 H —+— with e, profiles+ 5000 random @
—a— with e, profiles+ 6000 random 6
-8 . . ‘
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
C2
Fig. 1. Feasible region of ¢, and ¢ for number of agents = 8 obtained with

different number of uniformly random generated §’s and e, profiles.

the co—c3 region is plotted after disregarding the constraints on
other variables. Fig. 1 gives a sequence of approximations to
the feasible region for co and c3. The coarsest is the one that
uses only the e, profiles. This region is progressively refined
with 500, 5000, and 6000 samples of § € [0, 1]™. We observe
that the difference between the regions for 5000 and 6000
samples is small.

B. Optimal-in-Expectation Mechanism

In some scenarios, the worst-case f profiles may seldom
occur. An optimistic approach is to minimize the efficiency
loss in an expected sense. In this subsection, we design another
mechanism, also in the class of Groves mechanisms, that is
optimal in expectation. The prior distribution of the agents’
types is assumed to be known and the objective is to minimize
the expected efficiency loss given by

E |pvca(f) - Z (05
o 15)
E[0v(8)]
subject to the same constraints (F) and (VP) as in the worst-case
problem. By using the same form of linear rebate function as
proposed above, the objective function becomes (with variables
€2,y Cn—-1)

E lpvec®] — E| S 6 (011 + (N = 0
=2 . (16)
E o0 ()]
Given prior distributions, the quantities E[¢;], E[o,(8)] and
El[pvce(8)] are constants. Thus, the problem becomes

n—1
max Y ¢; (iE[fi1] + (n — )E[6:])
25.03Cn—1 i—2
subject to
n—1
1) Z C; (I;Hz+1 + (n - L)a ) < pvcg(ﬁ) VQ,
i=2
k

2)> e >0Vk=23,...,n-1 (17)

=2



CHORPPATH et al.: A CONVEX OPTIMIZATION FRAMEWORK FOR ALMOST BUDGET BALANCED ALLOCATION OF A DIVISIBLE GOOD 525

In the convex optimization problem (17), constraint 1) is the
same as in the worst-case problem. As done for that problem, an
approximate feasible region can be obtained via sampling. The
problem can then be solved numerically to obtain the optimal
linear rebate function coefficients. Goodness of the approxima-
tion is discussed briefly in the next section. Simulation results
are discussed in Section VI.

IV. GOODNESS OF SAMPLED APPROXIMATION

In the previous section, we suggested a randomized procedure
to solve the convex optimization problem (14) that had an infi-
nite number of constraints. We now study the goodness of the
randomized relaxation. The optimization is over the variables
€2,C3, ..., Cn—1, L(n) which we compactly denote as c. They
take values in the constraint set C obtained via intersections of
constraints 1)-3) over all § € OV,

Recall (' () and C(8) as the sets of ¢ that satisfy constraint
1) and constraint 3), respectively. Let C12(6) = C1(8)NCy(8).
Let ¢ be a probability measure on ©. Let §(1) 4 4(m)
be m random values obtained by sampling independently and
according to the measure 1), and define

W= {0<1>,9(2>,...,9<m>} U{ep,k=0,1,...,n}.

Let C be the (random) approximate constraint set obtained via
the intersections of constraints 1)-3) overall § € W, i.e.,

The set W is random and so is the approximate constraint set
C. Clearly, the optimization of (14) over Cisa linear program-
ming problem. Let V be its value. For any ¢ € C, there is a
possibility that constraints are violated for some §~ € © \ W.
Our first quantity of interest is the following degree of tolerance:
for any c¢ in the approximate constraint set C, the set of violating
types has measure at most ¢, i.e.,

supth {0 c & Cia(8)} < e.

CGC’

(18)

As C itself is random, the condition (18) is a near-feasibility

random event. We can only ask that this random event occurs

with high probability, say at least 1 — §. We then have the fol-

lowing restatement of de Farias and van Roy’s [18, Th. 2.1].
Theorem 2: Forany § € (0,1),e € (0,1), and

4 12 2
>Z (tn-—1)m=4m=
m_€<(n )nE+n6>

the event (18) occurs with probability at least 1 — 6.

This follows immediately from a result of Anthony and Biggs
[19, Cor. 8.4.2] and the fact that the Vapnik—Chervonenkis (VC)
dimension of the collection of sets

{{(a,b)

is n — 1, a result due to Dudley [20].

Observe that no assumptions are made on the individual val-
uation functions, and no use is made of the nature of the con-
straints in 1) and 3). Theorem 2 thus states, in full generality, the

19)

:ng—l—bZO}:gER”_l}

number of samples needed so that with high confidence (1 — ),
a violation for a randomly sampled § occurs with small prob-
ability (). This violation may be either constraint 1), i.e., the
mechanism needs a subsidy from outside the system, or con-
straint 3), the sampled f has a larger efficiency loss than the
value of the approximate optimization problem.

We next address the goodness of the approximate value. This
requires some assumptions on the valuation functions and ex-
ploits the specific structure of the constraints.

For an arbitrary v € [0, 1], define

oN(v) := {QG@N:zn:wUJZU}U{Q}

=2

where o is the permutation that orders f in the decreasing order.
Define the worst-case efficiency loss, restricted over OV (1), to
be

X pil6)

L(n;v) = sup oo ()

geoN (v)\{0}

This is the same as (12), but with the maximum over the re-
stricted set ©™ (v). Analogously consider modifications of the
min—-max problem in (13) and the convex optimization problem
in (14), where § € O~ (v). Let C(v) and V() be the con-
straint set and value of the modified optimization problem, re-
spectively. V(v) is then the corresponding min—-max value for
the modification of (13).

Let 6 be such that its second highest component is 0, i.e.,
0y, = 05, = -+ = 0,, = 0. Clearly constraint 1) and 3)
are satisfied for such a f. It follows as a consequence that

C=[)Cw

v>0

and therefore V(v) — V as v — 0 because V(v) and V
are minima of projections of C(v) and C, respectively, on the
L(n) component direction. So V' (v) is close to V' for sufficiently
small v.

Consider now the random independent sampling of m points
via a measure 1) on O (v). Let C'(v) be the corresponding con-
straint set for the linear programming problem, and let V(y) be
the corresponding value of the optimization problem. We next
address the proximity of C'(v) and C(v), and similarly V' (v)
and V (v). To this end, let us define d(c, §2) as the distance of ¢
fromaset 2, i.e., d(c, ) = infaeq ||c—a||. Our interest will be
in sets €2 that are closed, bounded, and convex, and the infimum
is attained at the projection of ¢ onto {2. We now state our main
result.

Theorem 3: Foralln > 1, N = {1,2,...,n}, let the value
of the optimum allocation o, : © — R be Lipschitz* with a
Lipschitz constant Ko(n). Let 1) be the probability measure with
uniform density on © (). Then, there exists a constant K1 (n)
such that, for any 7 > 0, § € (0,1), and any m satisfying (19)
with e = Ky (n)v"7", the event

sup d(c,C(v)) <7
ceC(v)

“4Recall that a function g is Lipschitz over a domain if there exists a constant
K such that |g(x) — ¢(y)| < K||x — y]| for all # and y in the domain. K is
the Lipschitz constant.
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occurs with probability at least 1 — §. Consequently

PI‘{‘V(V)—V(I/)‘ ST} >1-06. (20)

Theorem 3 says that if we (conveniently) restrict attention to
the min—max value outside a small region around the origin,
i.e., in ©V(v), then we can guarantee proximity of value of
the approximate problem V() to actual value V (1), with high
probability. As the restriction parameter v — 0, we need a
greater number of samples for the same confidence and degree
of tolerance.

Our method to prove the above result will exploit Theorem 2,
and is relegated to the Appendix.

We must point out some limitations of our theory and some
methods to redress them. While one can make V' (v) close to
V (and therefore V() close to V with high probability) by
choosing a small enough v, no results are available yet on what
v should be to make V' — V(v) less than a given target, say
7. The above theorem only claims proximity of the value of
the randomized procedure V(1) to the weaker V (1), with high
probability, for a given v.

Another drawback is that the number of samples needed for
fixed 7, v, and 6 grows exponentially in n. The growth of the
constant K (n) with n is also an issue. A heuristic argument
(see Chorppath [21, Sec. 3.1.1]) indicates that for large n, there
is a concentration of o, and pycg when the underlying measure
1 on ©F is the probability measure with constant density; in
particular

o :g [—2log A(n) — 1+ A*(n)] (21)
pveg ~n(n —1)/4 [—210g)\(n — 1)+ M(n-1)
+2log A(n) — A%(n)] (22)

with

1-v2n+1

n

Aln) =1+

and both ¢, (0) and pyce(f) tend to 1 as n — oo. Observe
that the right-hand sides in (21) and (22) are independent of
6. This concentration relaxes the problem to a simpler linear
programming problem, a fact that can be shown as in Guo and
Conitzer [6], and might alleviate the exponential increase in the
required number of samples. The exact tradeoff is beyond the
scope of this paper. Alternatively, one could get better bounds
on m that exploit the structure of the linear constraints instead
of the general bound via the VC-dimension result of Dudley;
this is another avenue for future study.

Despite the above drawbacks, Theorem 3 is a useful result
because it suggests a baseline number of samples needed for
V(v) to be close to V (v), for an arbitrary v and a desired level
of confidence.

A statement almost verbatim to Theorem 3 can be made for
the optimal-in-expectation problem, with the only difference
being a multiplicative factor to 7 in (20). See remark at the end
of the proof of Theorem 3 in the Appendix.

We end this section with an example family of valuation func-
tions v;(a;, ;) for which o, is Lipschitz.

Theorem 4: Let v;(a;,0;) = 6;U(a;), where U is a strictly
concave and strictly increasing function on [0, 1] with U(0) =
0. Then, o, is Lipschitz with a Lipschitz constant that depends
on the number of agents n and the function U.

Proof: Recall the definition of efficient surplus from (11)
and (1). Use the shorthand a and &’ for the optimal allocations
under profiles # and §’, respectively. Then, Yo via,0;) <
o,(8") because the latter is the value under the optimal alloca-
tion for ', and so

ou(0) = ou(0) < Z 0:U (ai(8)) — Z%U (ai(6))
= g (6; — 07) U(a;(eﬁj)\)
sllfe(% > 16: -]
=U(1)|];N— 7'l)s-

Reversing the role of § and ' and using the symmetry of ||§ —
0'||1, we have |o,(8) — 0,(8')] < U(1)||@ — #'||,. Finally,
Cauchy—-Schwarz inequality gives || — 8’|, < /=8 — ¢'|,
in terms of Euclidean norm. This proves the Lipschitz property
with constant U(1)+/n. ]

V. SCALAR STRATEGY, EFFICIENT AND ALMOST BUDGET
BALANCED MECHANISMS

We now consider the case when the valuations functions are
private information of the agents. Each agent reports a scalar
value that is used to choose a surrogate valuation function from
a single parameter family of valuation functions as in Johari
and Tsitsiklis [12], [13]. As the true valuation functions are un-
known to the social planner, dominant strategy implementation
is not possible. Instead, an efficient Nash equilibrium implemen-
tation, that is almost budget balanced, can be achieved.

To be consistent with Johari and Tsitsiklis [12], [13], we let
A be a compact and convex set. Let U;(a;) be the valuation
for agent 7 when q; is allocated, where U; : [0,00) — R is
concave, strictly increasing, and differentiable on (0, c0). An
efficient allocation is a solution to the following problem:

max Ui(a;). (23)

e€d fen
Let the efficient allocation be a".

Each agent sends a one-dimensional bid #; to the social
planner. From the reported bids, the central planner constructs
a surrogate valuation function v (a;, 6;), where v* (-, -) is as fol-
lows ([12], [13]): (i) for every § > 0, v*(+, 6) is strictly concave,
strictly increasing, continuous, and differentiable in (0, co) and
(ii) for every v € (0,00) and a > 0, there exists a # > 0 such
that (0/0a)v®(a,d) = ~, where (0/da)v®(a, ) is the deriva-
tive of v*(a, #) with respect to a. The allocation and payment
are calculated according to VCG mechanism, but using the
surrogate valuation functions. These mechanisms are generally
referred to as scalar strategy VCG (SSVCG) mechanisms [12],
[13]. A special case is the VCG-Kelly mechanism introduced
by Yang and Hajek in [16] where v3(a;,0;) = 6;U;(a;) for
agent ¢, and the U,’s are strictly increasing, concave, and twice
differentiable over (0,00). In our mechanism, we include a
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rebate function as in Section III to obtain an almost budget
balanced mechanism.

Let us represent the optimal allocation using surrogate valu-
ation functions by

where the dependence of ¢® on § is understood and suppressed.
The payment of i*" agent after rebate is

pz ’U (l Z’U 71]7 Zv r’i(in)
J# J#i
)= vi(aj.0
J#i
where

a®, = arg max Z vj(aj,0;).
_71 JEN,jFi
The actual utility obtained by agent ¢ is
ui(0:,0_;) = Ui (Uﬁ) - p;(v*,a%)
Z F(a5,0;) — hi(0_,).

J#i

Finally, the profile 6" is a Nash equilibrium if and only if

ui (07, 08F) > i (6, 62F) w0, Vi€ N.

Johari and Tsitsiklis [12, Lemma 2] showed that, for any
SSVCG mechanism, the bid vector 6 is a Nash equilibrium if
and only if the corresponding a°, which implicitly depends on

6, satisfies
al + Z’U a]
Jj#i

)ViéeN.

o’ € arg max
acA

Indeed, this result holds even for our proposed mechanism
with rebates because even when the h;(-) includes rebates it
remains independent of the value reported by agent 7. Further,
[12, Cor. 3] states the existence of an efficient Nash equi-
librium determined as follows. Agent ¢ chooses 6; such that
(0/0a)vi(a¥,b;) = Ul(a?), i.e., each agent chooses her bid
so that the declared marginal utility equals the true marginal
utility. The resulting allocation satisfies a®* = a". Therefore,
the resulting # is an efficient Nash equilibrium point. Thus, by
using the rebate functions proposed in our paper, we will obtain
an almost budget balanced and efficient Nash equilibrium point.

VI. SIMULATION SETUP AND RESULTS

Worst-case efficiency loss of our proposed worst-case optimal
mechanism is obtained by simulation for the valuation function
v; = 0;log(1+4a;). We return to A being the set of all allocation
vectors that satisfy Y. a; = 1.

The worst-case efficiency loss (L(n)) and coefficients
c2,C3,...,Cn—1 are obtained by solving the approximate LP’s
numerically over the approximate feasible region obtained
using the g, profiles and m = 2836n randomly generated
6 samples.5 For the optimal-in-expectation mechanism, the

5Sete = 0.01,8 = £/6 in (19) to get m > 2836n.

0.9 1
0.8+ — - PE— ol
—*— Optimal-in—-expectation mechanism with uniformly sampled 6’s
0.7 + | —+— Worst-case optimal mechanism with uniformly sampled 6’s
——VCG mechanism
0.6} —©— Worst-case optimal mechanism with mean field approximation | |
=
— 0.5¢
-
0.4+
0.3
0.2
0.1r
0 L L 1 L I 1 L L 1
0 5 10 15 20 25 30 35 40 45 50

Number of Agents

Fig. 2. Worst-case efficiency loss of worst-case optimal, optimal-in-expecta-
tion and VCG mechanisms.

feasibility region is obtained in an analogous fashion. Since 6
is uniformly distributed on ©V and then subsequently ordered,
the ordered quantities satisfy

n—1i+1

E[ei] - n—+1

1=1,2,....,n
which enables the calculation of the expected rebates in (17).

The worst-case optimal mechanism is compared with mean-
field approximation mechanism explained in Section IV, VCG
mechanism and optimal-in-expectation mechanism in Fig. 2 for
worst-case efficiency loss. 500000 independently sampled 6
values were used to estimate the worst-case efficiency loss for
the optimal-in-expectation mechanism. As the number of agents
increases, the worst-case efficiency loss reduces for the worst-
case optimal mechanism. On the other hand, the worst-case
efficiency loss converges to 1 for the VCG mechanism. As ex-
pected, the optimal-in-expectation performs poorly in the worst-
case sense when compared with worst-case optimal mechanism,
especially for large number of agents. It can be observed that
with mean-field approximation the resulting mechanism is not
worst case optimal.

In Fig. 3, the expected efficiency loss of the optimal-in-expec-
tation mechanism obtained by uniform sampling of § and mean-
field approximation is compared with the worst-case optimal
and VCG mechanisms. Again, 500 000 independently sampled
0 values were used to estimate E[o,(¢)] and thence the ex-
pected-sense efficiency loss of the worst-case optimal mecha-
nism. Fig. 3 shows that the optimal-in-expectation mechanism
obtained by uniform sampling of 6 outperforms the other three
mechanisms in the expectation sense. The expected efficiency
loss of the optimal-in-expectation and worst-case optimal mech-
anisms reduce as the number of agents increases. On the other
hand, the expected efficiency loss of the VCG mechanism in-
creases as the number of agents increase.

Fig. 4 shows the mean surplus, averaged over 500 000 sam-
ples of 8, for the approximate versions of optimal-in-expectation
and worst-case optimal mechanisms. Note that in both cases, the
average surplus is positive. If the mechanism is repeated several
times, then, on the average, budget surpluses more than make
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Fig. 3. Expected efficiency loss of optimal-in-expectation, worst-case optimal
and VCG mechanisms.
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Fig. 5. Number of violations of each type in 500 000 samples.

up for the subsidies needed when profiles violate the feasibility
constraint. Fig. 5 shows three curves. The solids represent the
number of violations of the feasibility constraint for each (ap-
proximate) mechanism. The dashed curve is the number of sam-
ples for which the efficiency loss was lower than the computed
approximate min—max value.

VII. CONCLUSION

In this paper we proposed mechanisms for allocation of a
single divisible resource to a number of agents when the agents
report only scalar values. We proposed a mechanism within the
Groves class that is almost budget balanced—with high proba-
bility, it approximately minimizes the worst-case efficiency loss.
The proposed mechanism is feasible and has voluntary partici-
pation and anonymity properties. The mechanism is applicable
to allocation of divisible or indivisible goods and simplifies to
the mechanism proposed by Moulin [5] and Guo and Conitzer
[6] for the indivisible goods case. In these special cases, con-
straint sampling randomization is not needed. A mechanism that
with high probability is approximately optimal-in-expectation
is also proposed by assuming that distribution of the values are
known. The resulting convex optimization problems are numer-
ically solved to obtain the optimal coefficients of the linear re-
bate function. This is done over an approximate feasible region
via sampling of constraints. We provided a lower bound on the
number of samples for near-feasibility, and showed under a Lip-
schitz assumption for the optimal valuation function that the
value of the approximate LP is close to optimum, with high
probability.

The proposed approximations of the worst-case optimal
and optimal-in-expectation mechanisms are compared with
each other and with the VCG mechanism, in both worst-case
and optimal-in-expectation senses. A significant reduction in
efficiency loss is obtained for both linear rebate mechanisms
when compared to the VCG mechanism. As number of agents
increases the efficiency loss tends to zero. The question of ex-
istence or otherwise of nonlinear rebate functions that achieve
better budget balance than linear rebates is open.

We also discussed extensions of our proposed mechanisms
to a case where the valuation functions are private information
to agents. The agents report only scalar values and surrogate
valuation functions are constructed from them (Johari and Tsit-
siklis in [12] and [13]). A similar optimization will yield almost
budget balanced and efficient Nash equilibrium implementation
for this setting. Mechanisms outside Groves class that are more
competitive but inefficient were proposed in [22]. These involve
either partial wastage of resources, or partitioning of agents and
goods into two parts, where money collected from one set of
the partition is returned to the other as rebates. Their usefulness
in the divisible goods setting appears to be limited, and is dis-
cussed in the thesis of Chorppath [21, Ch. 6].

APPENDIX A
PROOF OF THEOREM 3

The main steps of the proof are as follows. Note that 1) is the
probability measure with uniform density on O" (v). Consider
an arbitrary ¢ € C(v) \ C(v). Let its projection onto C(v) be
¢*. On account of the convexity of C(v), ¢* lies on its boundary.
However, all thq constraints in 2) are met by all elements of
C(v) as well as C(v). It then follows that there isa §* € O~ (v)
and a constraint, either 1) or 3), such that the associated hyper-
plane separates ¢ from C(v), and is supported at ¢*. In other
words, for this #*, we have that ¢ violates a constraint [either 1)
or 3)] with strict inequality (in the appropriate direction). The
Lipschitz property of o, implies a similar property for pyvcg,
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and enables us to identify a ball around §* for all of whose el-
ements ¢ continues to violate the constraint. Thanks to the Lip-
schitz properties and the fact that §* € O% (v), the radius of
this constraint violating ball is proportional to the distance of ¢
from C'(v). Since the volume of this ball must be small due to
Theorem 2, it must be the case that the distance between ¢ and
C(v) is small. Since ¢ was arbitrary, and the objective function
is a continuous function (in fact linear, because it is merely the
projection of the vector onto the L(n) direction), V(v) and V
must be close to each other. We now fill in the details.

Lemma 1: If o, is Lipschitz for each n with a constant that
depends on 7, then so is pyvcg-

Proof: Let the Lipschitz constant for o, be K(n) when

there are n agents. For two profiles § and ', applying the defi-
nition of pycg in (5), we get

lpvea(d) — pvea(®)|
§Z|O—U<Q7 _UU HI |+ n_l |Uv _UU(QI)|
iEN
<K= )Y = o]+ (o= K]
iEN

< (nK(n—1)+(n—1)K(n)) I8 - ']
where the last inequality follows because ||§_, — 6" ;|| < ||0 —
6'|| for all 4. ]
Lemma 2: The sets C, C(v), C(v) are all bounded.
Proof: We first argue that we may restrict attention to
L(n) € [0, 1]. Indeed, from constraint 3), we have

1
C; (i9i+1 + (n — L)GZ) Z 0
1

n

L(n)o,(8) > pvea(€) —

i

where the last inequality is merely constraint 1). Since o, is
nonnegative, we have L(n) > 0. To see L(n) < 1, observe that
the first inequality in (8) implies that constraint 3) holds with
L(n) = 1 forany ¢ € C (resp., C(v) and C(v)). The vector
at which the minimum is attained must then have L(n) < 1,
because the objective is to minimize this component.

For the c¢; variables, & = 2,3,...,n — 1, observe that
pvea(e,) are nonnegative, and bounded by a constant, say
B(n), that depends only on n and the nature of the functions
v;. With § = ¢,,, constraint 1) becomes

k1
anZ + (n—k)er <pvealey),k=2,3,...,n—1
1=2
n—1
”Z ci +nen, <pveale,) k=n
i=2

which together with constraint 2) and the fact that pycg(ey,) is
bounded implies that ¢, < B(n)/(n—k)fork =2,3,...,n—1
and ¢,, < B(n)/n. To prove a lower bound on each variable,
note that constraint 2) gives co > 0 and

k
Ck>—) ¢ 22—

|
—
el
—

B(n)/(n = j) 2 =B(n)logn

~
||
o

~
||
N

fork=3,4,...,n—1. ]

We now return to the proof of the Theorem 3. Recall that c* is
the projection of ¢ onto C(v) and §* is the parameter for which
either constraint 1) or 3) is violated for ¢, satisfied for all ele-
ments of C'(v), and satisfied with equality for ¢*. We shall show
our arguments assuming constraint 1) is violated. A similar ar-
gument holds if constraint 3) is violated.

The supporting hyperplane at ¢* separating C(v) and c is
therefore

Z (71 + (0= D07) = pvea (@) 24
and we have the violation for ¢ given by
n—1
ci (10,1 + (n—9)8F) > pvea(8”). 25)

I|
N

i

From elementary analytical geometry, the distance between c
and the plane (24), and therefore c* is

(o) = G(e") (Z i (i85 + (n = 1)67) - pm(e*))
1=2 (26)

G(8") =
=2

n—1 1/2
lz (050 + (n L')ej)zl

is the norm of the coefficients for the equation in the plane.

We now look for a ball around * such that constraint 1) con-
tinues to be violated for this ¢ for all § in the ball. Consider the
plane of £ € ©N(v) given by

|
—

n

ci (i1 + (n —i)&) = pvea(8”).

||
N

i

This does not contain §* because of (25). Elementary analytical
geometry once again tells us that the distance between §* and
the above plane is

n—1
7 (c) [Z ¢i (0711 + (n —0)0;) — pvea(f”)
=2

27
where

n—1

H(c) = [c%(n =22+ (i = Deioy + (n—i)e;)?
1=3
+_(n—-1)2"7 @8)
is the norm of the coefficients of the plane equation.

Let pycg be Lipschitz with constant K (n). Consider the
open ball around 6 of radius r given by
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Clearly r < 7/(c), and so the entire ball remains on one side of
the {-plane. Further, any point { in this open ball has a distance
strictly greater than 7'(c) — r from the {-plane, i.e.,

n—1
H(e)™ | ei(ibiyr+(n—i)&) —pvea(8) | > (c)—r.
=2 (30)
It follows that, for all § in this open ball
n—1
> ci (i + (n =)&) = pvea(€)
=2
n—1
= ¢i(iiq1+ (n—1)&) —pvea(l)
1=2
+ pvea(8”) — pvea(§)
> H(c) (7'(c) =) = K(n)||€ - &7
> H(c) (7'(c) =) = K(n)r
=0

where the second (strict) inequality comes from the Lipschitz
property of pycg and (30), the following inequality comes from
the fact that [|¢ — §%|| < r, and the last equality follows via
substitution of (29). Consequently, all £ in the open ball violate
constraint 1). B

The choice of r depends on ¢ through 7(¢) and through H(c)
and G(6"). To make the choice of the radius dependent of ¢
only through 7(c), observe that H(c) < B(n)(n — 1)/ logn
using Lemma 2. Next, for every § € ©% (v), Cauchy—Schwarz
inequality and nonnegativity of the 6;’s imply

1=, -
GO 2 gz 2 @+ (=) (D
=2
>(n—2)"2> "0 (32)
1=2
> (n — 2)1/21/. (33)

Thus, any § in the smaller ball of radius 7y given by [cf. (29)]

© (n—2)"2p
K + Bn)(n— 1)*2logn

= Ks(n)vr(c)

To =

violates constraint 1). Note that the dependence on ¢ is now
only through its distance from C(v). This ball has measure
Ks(n)v"7(c)™ for some constant K3(n). The intersection of
this ball with ©” (/) has measure at least K3(n)v"7(c)" /2" =
K1(n)v™7(c)™, where the division by 2" corresponds to the
worst case measure when #* is an extreme point of OV (v)
where the intersection of the ball with © (v) may yield in the
worst case only one orthant.

From Theorem 2 due to de Farias and van Roy [18], for any
c e C(v), forany § € (0,1), ¢ € (0,1), and any number of
samples m satisfying (19), the event

Ki(n)v"r(c)" <e

occurs with probability at least 1 — §. Set 7 so that
Ki(n)v"7", take the supremum over ¢ € C(v), to
get that the event

e =

sup d (e, C(v)) = (34)

ceC(v)

sup 7(c) < T
ceC(v)

occurs with probability at least 1 — 6.

If the violating constraint was constraint 3), a similar argu-
ment holds with a Lipschitz constant K (n) replaced by the Lip-
schitz constant for the function o, + pvcg. This proves the first
statement.

Finally, since the objective function of the argument c is
merely L(n), it follows that event (34) implies the event
[V(v) — V(v)| < 7. To see this, let Copt and ¢, attain the
mimima for problems with constraint sets C'() and C(v),
respectively, with objective function components ﬁopt(n) and
Lopt(n), respectively. Let ¢* be the projection of ¢, onto C(v)
with objective function component L*(n). Clearly

Lopt(n) = L*(n)| < [|éope = [l < 7

and therefore

A A

V(v) = Lopt(n) > L*(n) =7 > Lope(n) — 7=V (v) = 7

or V(v) — V(v) < 7. Also, V(v) > V(v). Thus, the event
|V (v) = V(v)| < 7 occurs with probability at least 1 — §. This
completes the proof of Theorem 3. O

Remark: For the analogous statement for the optimal-in-ex-
pectation problem, only constraint 1) is of interest. Furthermore,
the objective function is a” ¢ for some a that depends on the ex-
pectations of ordered 6;; see (23). The error in the value V(v)
at the optimum point ¢ and the value at its projection c* is upper
bounded via Cauchy—Schwarz inequality as

(&—c)a| < d(eCW)) |l

So a statement analogous to Theorem 3 holds with a multipli-
cation factor for T given by ||al|.
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