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Abstract

Let H1 and H2 be indefinite inner product spaces. Let L(H1) and L(H2) be the sets of all linear operators
on H1 and H2, respectively. The following result is proved: If Φ is [∗]-isomorphism from L(H1) onto
L(H2) then there exists U :H1 → H2 such that Φ(T ) = cUT U [∗] for all T ∈ L(H1) with UU [∗] = cI2,
U [∗]U = cI1 and c = ±1. Here I1 and I2 denote the identity maps on H1 and H2, respectively.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, Kulkarni et al. [2] gave an elementary proof of characterizing onto ∗-isomorphisms
of the algebra BL(H) of all bounded linear operators on a Hilbert space H using simple and
well-known properties of operators in a Hilbert space. The classical proof of this result utilizes
the theory of irreducible representations of C∗-algebras [1, Corollary 2, p. 20]. In this paper we
prove a similar characterization theorem for ∗-isomorphisms in an indefinite inner product space.
One of the main results (Corollary 3.5) also demonstrates that there is no qualitative difference in
the behaviour of a ∗-isomorphism of the algebra BL(H), with H being a complex Hilbert space
in one instance and an indefinite inner product space in the other. In other words, completeness

* Corresponding author.
E-mail address: kcskumar@iitm.ac.in (K.C. Sivakumar).
0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.06.099



1140 K.C. Sivakumar, K. Kamaraj / J. Math. Anal. Appl. 329 (2007) 1139–1144
of the norm and positive definiteness of the inner product are not of concern, in the representation
of ∗-isomorphisms. The main results are Theorem 3.4 and Corollary 3.5.

2. Preliminary results

In this section, we prove some preliminary results which will be used in the sequel. Let 〈�,�〉
denote the conventional Hilbert space inner product on a Hilbert space H and N be an invertible
Hermitian operator on H . An indefinite inner product on H is defined by the equation [x, y] =
〈x,Ny〉, where x, y ∈ H . Such a matrix N is called a weight. A space with an indefinite inner
product is called an indefinite inner product space (IIPS). A vector x is called normalized vector
if [x, x] = ±1. If [x, y] = 0 then the vectors x and y are called orthogonal vectors. Let T be
an operator from H1 into H2. We define the adjoint T [∗] (of the operator T ) by [T (x), y] =
[x,T [∗](y)] for all x, y ∈ H1. T is called a projection iff T = T 2 and orthogonal projection iff T

is a projection and T = T [∗]. Throughout this paper R(T ) and N (T ) denote the range space and
the null space of T , respectively.

Lemma 2.1. If P is an orthogonal projection then R(P ) and N (P ) are orthogonal complemen-
tary subspaces. In this case [x, x] �= 0 for all nonzero x ∈ R(P ).

Lemma 2.2. If P = P 2 then P = P [∗] iff R(P ) and N (P ) are orthogonal complementary sub-
spaces of H .

Proof. Sufficiency follows from Lemma 2.1. We now prove the necessity part. Suppose R(P )

and N (P ) are orthogonal subspaces. If z ∈ N (P ), then [P [∗]x, z] = [x,P z] = 0 for all x. Thus
N (P ) ⊆ N (P [∗]). Similarly, N (P [∗]) ⊆ N (P ). Thus N (P [∗]) = N (P ). Since I − P is an or-
thogonal projection whenever P is so, it follows that N ((I − P)[∗]) = N (I − P). Equivalently,
R(P [∗]) = R(P ). Thus P = P [∗].

Lemma 2.3. Let P , Q be orthogonal projections. Then

(i) R(P ) ⊆ R(Q) ⇔ PQ = P = QP ;
(ii) R(P )[⊥]R(Q) ⇔ PQ = 0 = QP .

Definition 2.4. Let H be a indefinite inner product space. For x, y ∈ H , define the operator Tx,y

on H by Tx,y(u) = [u,y]x, u ∈ H and Px = sgn(x)Tx,x , where

sgn(x) =
{

1, if [x, x] � 0,

−1, otherwise.

Next we list some properties of Tx,y . Let x, y, z ∈ H .

Lemma 2.5. Tx,y is a linear and a rank one operator.

Lemma 2.6. Tαx,βy = αβ̄Tx,y , where α, β are scalars.

Lemma 2.7. T
[∗]
x,y = Ty,x .
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Lemma 2.8. If [x, x] = ±1, then Px is an orthogonal projection.

Proof. We have for all u ∈ H,

Px(u) = sgn(x)[u,x]x = sgn(x)[u,x]Px(x) = P 2
x (u).

It is easy to verify that R(Px) and N (Px) are orthogonal. Thus by Lemma 2.2, Px = P
[∗]
x . �

Lemma 2.9. If P is an orthogonal projection of rank 1, then there exists x ∈ H with [x, x] = ±1
such that P = Px .

Proof. If P is an orthogonal projection of rank 1, then there exists nonzero x ∈ H such that
R(P ) = span({x}). By Lemma 2.1, [x, x] �= 0. So x can be normalized. Let u ∈ H . Then
P(u) = αx where α = sgn(x)[P(u), x]. Thus

P(u) = sgn(x)
[
P(u), x

]
x = sgn(x)

[
u,P (x)

]
x = sgn(x)[u,x]x = Px(u).

Thus P = Px . This completes the proof. �
Lemma 2.10. Let [x, x] = ±1 and [y, y] = ±1. Then

x and y are orthogonal ⇔ PxPy = PyPx = 0.

Proof. Follows from Lemmas 2.3 and 2.8. �
Lemma 2.11.

(i) If [x, x] = ±1 then Tx,zTy,x = sgn(x)[y, z]Px .
(ii) If [z, z] = ±1 then Tx,zTz,y = sgn(z)Tx,y . If in addition [x, x] = ±1 then Tx,zTz,x =

sgn(x)sgn(z)Px .

Proof. Let u ∈ H . Then

Tx,zTy,x(u) = [u,x][y, z]x = [y, z]Tx,x(u) = sgn(x)[y, z]Px,

proving (i). Next, we have

Tx,zTz,y(u) = [u,y]Tx,z(z)

= [u,y][z, z]x
= sgn(z)[u,y]x
= sgn(z)Tx,y(u).

If in addition, [x, x] = ±1 then substituting y = x in the above, we get Tx,zTz,x = sgn(z)Tx,x =
sgn(x)sgn(z)Px . �
Lemma 2.12. Let T be a linear operator of rank 1. Then there exist nonzero x, y ∈ H such that
T = Tx,y .

Proof. Since T is a linear operator of rank 1, then R(T ) = span({x}) for some nonzero x. If
[x, x] = ±1, choose y = sgn(x)T [∗](x). Then for any u, T (u) = sgn(x)[T (u), x]x = [u,y]x =
Tx,y(u). Suppose [x, x] = 0. For any u, T (u) = αx for some scalar α. Choose y such that
[u,y] = α. Then T (u) = [u,y]x = Tx,y(u). �
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3. Main results

In this section we define a [∗]-isomorphism in an indefinite inner product space and prove
the main result (Corollary 3.5) which characterizes all [∗]-isomorphisms in an IIPS. Let L(H)

denote the space of all linear operators on the indefinite inner product space H .

Definition 3.1. Let H1,H2 be indefinite inner product spaces over R or C. A linear map Φ

between vector spaces L(H1) and L(H2) is called an isomorphism if it is one–one and Φ(T S) =
Φ(T )Φ(S) for all T ,S ∈ L(H1). An isomorphism Φ on L(H1) is called a [∗]-isomorphism if
Φ(T [∗]) = (Φ(T ))[∗] for all T ∈ L(H1).

Lemma 3.2. Let Φ be a [∗]-isomorphism from L(H1) onto L(H2) and x ∈ H1. If [x, x] = ±1
then Φ(Px) is an orthogonal projection of rank 1.

Proof. Since [x, x] = ±1, Px is an orthogonal projection, by Lemma 2.8. It is easy to prove that
Φ(Px) is an orthogonal projection. By Lemma 2.1, [x, x] �= 0 for all nonzero x ∈ R(Φ(Px)).
The rest of the proof is similar to the Euclidean case [2, Step 1]. �
Lemma 3.3. For each x ∈ H1 with [x, x] = ±1, there exists x̃ ∈ H2 with [x̃, x̃] = ±1 such that
Φ(Px) = Px̃ .

Proof. By Lemma 3.2, Φ(Px) is an orthogonal projection of rank 1. By Lemma 2.9, there exists
x̃ ∈ H2 with [x̃, x̃] = ±1 such that Φ(Px) = Px̃ . �
Theorem 3.4. Let H1 and H2 be indefinite inner product spaces. If Φ is a [∗]-isomorphism from
L(H1) onto L(H2) then there exists a linear operator U :H1 → H2 such that Φ(T ) = cUT U [∗]
for all rank 1 operators T ∈ L(H1), with UU [∗] = cI2 and U [∗]U = cI1, where c = ±1. Here
I1, I2 denote the identity maps on H1, H2, respectively.

Proof. Fix x0 ∈ H1 with [x0, x0] = ±1. Then by Lemma 3.3, there exists x̃0 ∈ H2 such that
Φ(Px0) = Px̃0 and [x̃0, x̃0] = ±1. Define U :H1 → H2 by

U(y) = Φ(Ty,x0)(x̃0).

It is easy to check that U is linear and

U(αx0) = αsgn(x0)x̃0, (3.1)

for every scalar α. Also,[
U(y),U(z)

] = [
Φ(Ty,x0)x̃0,Φ(Tz,x0)x̃0

]
= [(

Φ(Tz,x0)
)[∗]

Φ(Ty,x0)x̃0, x̃0
]

= [
Φ

(
T [∗]

z,x0

)
Φ(Ty,x0)x̃0, x̃0

]
= [

Φ(Tx0,zTy,x0)x̃0, x̃0
]

= sgn(x0)[y, z][Φ(Px0)x̃0, x̃0
]

= sgn(x0)[y, z][x̃0, x̃0]
= sgn(x0)sgn(x̃0)[y, z].
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Thus U [∗]U = cI1 and UU [∗] = cI2, where c = sgn(x0)sgn(x̃0). It follows that

U [∗]U
(
αsgn(x0)x0

) = cαsgn(x0)x0.

Substituting the expression for U(αx0) from Eq. (3.1), we obtain

U [∗](αx0) = cαsgn(x0)x0. (3.2)

Next we prove Φ(T ) = cUT U [∗] for all rank 1 linear operators T on H1. First we prove this for
T = Tx0,y for y ∈ H1. Let u,y ∈ H1. Then

Φ(Tx0,y)U(u) = Φ(Tx0,y)Φ(Tu,x0)x̃0

= Φ(Tx0,yTu,x0)x̃0

= sgn(x0)[u,y]Φ(Px0)(x̃0)

= sgn(x0)[u,y]x̃0.

Now, Tx0,y(u) = [u,y]x0 implies

U(Tx0,y)(u) = Φ
([u,y]Tx0,x0

)
x̃0

= [u,y]sgn(x0)Φ(Px0)(x̃0)

= sgn(x0)[u,y]x̃0.

Thus Φ(Tx0,y)U = UTx0,y . So we have

Φ(Tx0,y) = cUTx0,yU
[∗].

If T is a rank one linear operator, then by Lemma 2.12, there exist x and y such that T = Tx,y .
Then

Φ(T ) = Φ(Tx,y)

= Φ
(
sgn(x0)Tx,x0Tx0,y

)
= sgn(x0)Φ

(
T [∗]

x0,x

)
Φ(Tx0,y)

= sgn(x0)
{
Φ(Tx0,x)

}[∗]
Φ(Tx0,y)

= csgn(x0)
{
UTx0,xU

[∗]}[∗]{
UcTx0,yU

[∗]}
= csgn(x0)UT [∗]

x0,x
Tx0,yU

[∗]

= csgn(x0)UTx,x0Tx0,yU
[∗]

= cUTx,yU
[∗]

= cUT U [∗].
In the above, the second equation follows from Lemma 2.11. Thus

Φ(T ) = cUT U [∗]

for all rank one operators T . This completes the proof. �
Corollary 3.5. Let H1 and H2 be indefinite inner product spaces. If Φ is a [∗]-isomorphism from
L(H1) onto L(H2) then there exists a linear operator U :H1 → H2 such that Φ(T ) = cUT U [∗]
for all T ∈ L(H1) with UU [∗] = cI2 and U [∗]U = cI1, where c = ±1. Moreover, U is unique up
to a scalar multiple of absolute value 1.
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Proof. Let x0 ∈ H1 such that [x0, x0] = ±1. It is clear that T Tv,x0 is a rank 1 operator for any
v ∈ H1. Then by Theorem 3.4, there exists U such that UU [∗] = cI2, U [∗]U = cI1 and

Φ(T Tv,x0) = cUT Tv,x0U
[∗].

Then

Φ(T )U(v) = Φ(T )Φ(Tv,x0)x̃0

= Φ(T Tv,x0)(x̃0)

= cUT Tv,x0U
[∗](x̃0)

= cUT Tv,x0

(
csgn(x0)x0

)
= UT (v),

where the fourth equation follows from Eq. (3.2). Thus Φ(T ) = cUT U [∗] (for all T ∈ L(H1)).

Uniqueness is similar to the Euclidean case. �
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