
A bifurcation giving birth to order in an impulsively driven complex system

Akshay Seshadri and R. I. Sujith

Citation: Chaos 26, 083103 (2016); doi: 10.1063/1.4958925

View online: http://dx.doi.org/10.1063/1.4958925

View Table of Contents: http://aip.scitation.org/toc/cha/26/8

Published by the American Institute of Physics

Articles you may be interested in

Preface: Recent Advances in Fractional Dynamics
Chaos: An Interdisciplinary Journal of Nonlinear Science 26, 084101 (2016); 10.1063/1.4960960

 Change of criticality in a prototypical thermoacoustic system
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 023106 (2017); 10.1063/1.4975822



A bifurcation giving birth to order in an impulsively driven complex system

Akshay Seshadria) and R. I. Sujithb)

Indian Institute of Technology Madras, Chennai, India

(Received 5 March 2016; accepted 16 June 2016; published online 3 August 2016)

Nonlinear oscillations lie at the heart of numerous complex systems. Impulsive forcing arises

naturally in many scenarios, and we endeavour to study nonlinear oscillators subject to such

forcing. We model these kicked oscillatory systems as a piecewise smooth dynamical system,

whereby their dynamics can be investigated. We investigate the problem of pattern formation in a

turbulent combustion system and apply this formalism with the aim of explaining the observed

dynamics. We identify that the transition of this system from low amplitude chaotic oscillations

to large amplitude periodic oscillations is the result of a discontinuity induced bifurcation.

Further, we provide an explanation for the occurrence of intermittent oscillations in the system.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4958925]

Impulsive forcing of oscillatory systems can occur natural-
ly in various situations. Rich dynamics is observed in
kicked oscillatory systems, and we consider a turbulent
combustion system which can be modelled as a kicked os-
cillator. Such combustion systems are usually plagued by
the problem of large amplitude, self-sustaining periodic
oscillations, commonly known as thermoacoustic instabili-
ty. These oscillations are detrimental to the operation and
performance of combustion systems and sometimes have
serious consequences such as failure of space missions and
shutting down of gas turbines in power plants. Stable com-
bustion corresponds to low amplitude aperiodic fluctua-
tions, but a change in some parameter of the system can
cause the system to transition to thermoacoustic instabili-
ty. A recent discovery shows that intermittency, a dynami-
cal state composed of small amplitude aperiodic
fluctuations and large amplitude periodic oscillations, is
seen to portend thermoacoustic instability. The aim is to
study this transition; however, due to the discontinuities
endowed on the dynamics by kicked oscillatory modelling
of the system, we cannot readily inspect the model in the
parlance of smooth dynamical systems theory. For this
reason, we adopt a dynamical systems theory framework
that is capable of handling discontinuities, to explain the
dynamics seen in the considered system. We show that the
transition of this system from chaos to periodic oscillations
is because of a discontinuity induced bifurcation. We also
provide an explanation for the occurrence of intermittent
periodic oscillations in the system.

I. INTRODUCTION

Studying oscillatory phenomena is indispensable if one

has to understand the behaviour of a large number of com-

plex systems. Many physical,1–3 chemical,4,5 and biological

systems6,7 display oscillatory behaviour and these oscilla-

tions can be very complex. In many cases, a natural choice

to model systems involves forcing the oscillators by impulses

or kicks. Such kicked oscillators have been used in studying

various phenomena in science, a few examples being kicked

quantum rotors,8 kicked Bose-Einstein condensates,9 radiative

kicking of a charged particle,10 and combustion systems.11 It

is well known that such systems can display a wide variety of

dynamical features ranging from chaos to intermittency and

limit cycles.12–15 The majority of these studies deal, however,

with linear oscillators or integrable systems with periodic

forcing. A common technique employed to study their dy-

namics is to reduce them to a map.

Most oscillatory systems found in nature, however, are

nonlinear, and the times at which the oscillators are kicked

can display variation. In such situations, it is generally not

possible to reduce the oscillator to a map. With the intention

of studying the dynamics of such oscillations, we propose a

framework which deals with oscillatory systems that are

forced impulsively and where the kicking times can vary. To

this end, we resort to piecewise smooth (PWS) dynamical sys-

tems theory, which allows for possible discontinuities in the

system dynamics. A PWS dynamical system is one where the

domain of the flow in partitioned into a finite number of

regions and the flow in each of these partitions is smooth.16,17

However, the crossing over of the flow from one region to an-

other can occur in a discontinuous fashion.16,17 The vector

field that governs the flow in each of these partitions is also

usually different.16,17 The surface separating any two parti-

tions is termed a discontinuity boundary. di Bernardo et al.16

provide an excellent review of the subject and can be referred

for technical details.

II. KICKED OSCILLATORS

We consider an oscillator described by the equation _x ¼
f ðxÞ; x 2 Rn and subject this oscillator to impulsive forcing,

resulting in the following equation:

_x ¼ f ðxÞ þ
X

i2T�N

y j _giðxÞjdðgiðxÞÞ: (1)

This equation represents the kicking of the oscillator by

an amount y when the state vector x satisfies the condition
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giðxÞ ¼ 0. y can be a constant or can take a value that

depends on the state vector. It is easy to see that most kicked

oscillators can be cast in the above form. We give a few

examples to make this concrete.

Take the case of a simple harmonic oscillator that is

forced periodically with a period T

€x þ fx _x þ x2x ¼
X

n2N�N

sinðkxÞdðt� nTÞ:

The state vector for such a system is x ¼ ðx; _x; tÞ 2 R3, and

when the condition x:e3 � nT ¼ 0; n 2 N, is satisfied, the

system is forced impulsively. Here, ei is the standard unit

vector in the direction of the ith component. The system, in

this case, is kicked by an amount ð0; sinðkx:e1Þ; 0Þ. The
same can be done for, say, a Van der Pol oscillator with

kicking.

We now analyze Equation (1) in parlance of PWS

dynamical systems theory. We let the surfaces Ri ¼ fx 2
Rnj giðxÞ ¼ 0g be the discontinuity boundaries. When the

state vector is on one such surface, the oscillator satisfies the

condition for kicking. Corresponding to this, we introduce

the reset map KðxÞ ¼ xþ y to account for the kicking. In

regions between any two discontinuity boundaries, the flow

is simply given as _x ¼ f ðxÞ. PWS dynamical systems in

which a reset map is introduced at the discontinuity bound-

ary are termed PWS hybrid systems.17 The impact oscilla-

tor16 is a standard example of PWS hybrid system, which

has been extensively studied. The impact oscillator is con-

strained to lie on one region of the phase space due to the

presence of a rigid impacting surface. Let the impacting sur-

face be at x¼ 0; the impact changes the velocity of the oscil-

lator from _x to �e _x, where e is the coefficient of restitution.

Then the state vector is x ¼ ðx; _xÞ 2 R2 and the condition

for forcing to occur is gðxÞ � x:e1 ¼ 0 and correspondingly,

y ¼ ð0;�ð1þ eÞx:e2Þ.
Returning to the case of kicked simple harmonic oscilla-

tor, we see that the surface gnðxÞ � x:e3 � nT ¼ 0 is a dis-

continuity boundary, and when the state vector lies on

the discontinuity boundary, we apply the reset map RðxÞ ¼ x

þ sinðkx:e1Þe2. Between any two kicks, the system evolves

as per

_x ¼

0 1 0

�x2 �fx 0

0 0 0

0

B

@

1

C

A
xþ

0

0

1

0

B

@

1

C

A
:

A similar approach can be adopted for describing the impact

oscillator. More complicated nonlinear systems can be mod-

elled in the above form; however, properly defining the dis-

continuity boundaries and the reset maps might be specific to

the system and should be handled appropriately.

Armed with this formalism, we can now tackle a more

complicated problem: pattern formation in a turbulent com-

bustion system. We start with a reduced-order model15 that

describes this system and rewrite it as a PWS dynamical

system. The system turns out to be similar to the system de-

fined by Equation (1), but with a slightly more complex

structure.

III. PATTERN FORMATION IN TURBULENT
COMBUSTION SYSTEM

We consider a turbulent fluid undergoing combustion in

a confined environment in the presence of vortex shedding.

This system is known to go from a disordered state to an or-

ganized state with a change in some control parameter.18,19

In general, the disordered state of a thermoacoustic system

can be considered noisy;20,21 however, for the particular sys-

tem we consider,19 it has been shown that the disordered

state corresponds to chaotic oscillations.18,22 The system un-

der consideration transitions from a chaotic state, where the

oscillations are of low amplitude, to a state displaying large

amplitude limit cycle oscillations.18 This transition is marked

by the presence of intermittency, where low amplitude aperi-

odic fluctuations are found along with large amplitude peri-

odic oscillations.19

In this system, there is a three-way coupling between

the acoustic pressure oscillations in the duct, the unsteady

heat release rate oscillations, and hydrodynamics. The inter-

action between them results in large amplitude limit cycle

oscillations, known as thermoacoustic instability. There are

spatio-temporal patterns in the system during thermoacoustic

instability;23 however, we restrict ourselves to studying the

temporal patterns observed in the system. We investigate a

reduced-order model15 that describes this system.

A. Model

The model deals with the flow in a duct of length L,

where vortices are shed from a step at the inlet end (Figure 1).

These vortices carry unburnt fuel and convect with the flow.

The fuel in the vortices burn when the latter reach a distance

Lc from the inlet end, leading to an instantaneous heat release

rate. The acoustic pressure (p0) and velocity (u0) oscillations

in the duct are decomposed in terms of the natural modes of

the duct11,15

p0 x; tð Þ ¼ �p
X

N

n¼1

_gn tð Þ

xn

cos xnx=cð Þ and

u0 x; tð Þ ¼
�p

�qc

X

N

n¼1

gn tð Þ sin xnx=cð Þ:

(2)

FIG. 1. A schematic of a combustor with a bluff-body at a distance Lc from

the inlet. The combustor is a duct of length L, and vortices are shed from the

inlet. Vortices burn when they impinge on the bluff-body. �u is the mean ve-

locity of the flow. All horizontal distances are measured from the inlet end.
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Here, �p is the mean pressure, �q is the mean density, and c is

the speed of sound. gnðtÞ and _gnðtÞ are the time-varying com-

ponents of acoustic velocity and pressure and xn is the natu-

ral frequency of the nth acoustic mode.

Using the conservation equations, we obtain an oscilla-

tory equation for these modes11,15

€gn þ nn _gn þ x2
ngn ¼ Bn

X

j

dðt� tjÞ; n ¼ f1; 2; :::;Ng:

(3)

The kicking of these oscillators is due to the instantaneous

burning of a vortex when it reaches the combustion location

Lc. Bn is constant for a given mode and proportional to the

mean velocity �u.11,15 A vortex is shed at the inlet end

depending on the value of the circulation C at the step. The

circulation builds up at the step according to15

dC

dt
¼

�u2

2
þ
X

j

kp p
0 Lc; tjð Þ d t� tj � sð Þ; (4)

and a vortex is shed if this circulation exceeds a critical

value Ccr ¼ Co�u,
11,15 where Co is a constant. The second

term in Equation (4) describes the delayed feedback of

acoustics on circulation build-up, due to the burning of

vortices at time instants ftjg.
15 kp is an empirical constant

that decides the strength of the acoustic feedback.15 The

jth shed vortex convects with the flow as described by the

equation15

dxj

dt
¼ a�u þ u0 xj; tð Þ; (5)

where xj is the location of the jth vortex and a is a constant

that decides the mean convection speed of the vortices.

These vortices move downstream, and when they reach Lc,

they contribute to the kicking of the acoustic modes, thus

forming a closed-loop of interaction. Refer Seshadri et al.15

for a more detailed description. We assume here for

simplicity that the time delay s ¼ Lc=c is negligible and

this is true when Lc=c � 1 (which is the case in this study).

We also make a note that kp is in general a step function of

the mean velocity;15 however, because of the particular

choice of kp,
15 it is constant during the passage of the sys-

tem from chaos to limit cycle oscillations and we treat it as

such. The system transitions from low amplitude chaotic

oscillations to large amplitude limit cycle oscillations with

an increase in the mean velocity (�u), the control parameter,

as seen in Figure 2. We also see intermittency in the system

(Figure 2(b)), wherein low amplitude aperiodic fluctuations

are sandwiched between large amplitude periodic bursts.

Equations (3)–(5) are solved using Runge-Kutta method

of order 4 with a time-step of 10�5 s. The parameters used

for solving the equations are the same as those utilized in

Seshadri et al.,15 except that the time delay s is set to zero

here. All the plots related to the model that we have used in

this study have been obtained by solving the aforementioned

set of equations.

B. The model as a PWS dynamical system

We express the model described above as a PWS

dynamical system with the objective of investigating its dy-

namics. We form the vectors g ¼ ðg1; g2; :::; gNÞ
T 2 RN and

_g ¼ ð _g1; _g2; :::; _gNÞ
T 2 RN from the acoustic modes and de-

fine Cv 2 RM and xv 2 RM to be the vectors which, except

for their first component, hold information about the circula-

tion and position of all the vortices that will be shed. Strictly

speaking, the vectors Cv and xv must have countably infinite

components; however, to avoid the mathematical intricacies

associated with infinite dimensional vector spaces, we restrict

to a large but finite dimension M. We then define the phase

space of the complete system to be the direct sum of the

spaces associated with the vectors Cv; xv; g, and _g, i.e., the

state vector of the system is x ¼ ðCv; xv; g; _gÞ 2 R2Mþ2N .

We define the regions Rsb in the phase space, where flow

exists, as

Rsb ¼ fx 2 R2Mþ2N j xi > 0 8i ¼ 1; 2; ::; s and xMþj > Lc 8j ¼ 1; 2; :::; b;
xi < 0 8i ¼ sþ 1; ::;M and xMþj < Lc 8j ¼ bþ 1; :::;M;

1 � b � s � M � 1g;

(6)

where xi is the ith component of x. That is, in the region Rsb,

the first s components of Cv are positive and the first b com-

ponents of xv are greater than Lc. The presence of the state

vector in the region Rsb signifies that s� 1 vortices have

shed and b� 1 vortices have burnt. We require any initial

condition of the system to be of the form

xo¼ðCvo
;xvo ;go; _goÞ, where Cvo

¼ð�;�Ccr;�Ccr; :::;�CcrÞ
T

and xvo ¼ðLcþ�;0;0; :::; 0ÞT ; �>0. Such a choice for ini-

tial values of Cvo
and xvo resembles the situation where

the circulation build-up at the step has not started. Note

that we have translated the value of C by Ccr; this is

possible since such a translation does not affect the

overall dynamics (see Equation (4)). We chose �>0 and

Lcþ�>0 as the first component of Cvo
and xvo so that

xo2R11.

With the above definitions in place, the continuous part

of the equations of the model can be expressed in a compact

form as
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_x ¼

Axþ
�u2

2
sþ a�ubþ Ux if x 2 Rsb

0 if x 62
[

M�1

s;b¼1

Rsb;

8

>

>

>

<

>

>

>

:

(7)

A ¼

0M�M 0M�M 0M�N 0M�N

0M�M 0M�M 0M�N 0M�N

0N�M 0N�M 0N�N IN�N

0N�M 0N�M �xN�N �nN�N

0

B

B

B

B

B

@

1

C

C

C

C

C

A

;

U ¼

0M�M 0M�M 0M�N 0M�N

0M�M 0M�M SM�N 0M�N

0N�M 0N�M 0N�N 0N�N

0N�M 0N�M 0N�N 0N�N

0

B

B

B

B

B

@

1

C

C

C

C

C

A

: (8)

Here, 0 is a matrix with all elements zero, I is the identity ma-

trix, and x ¼ diagðx2
1;x

2
2; :::;x

2
NÞ; n ¼ diagðn1; n2; :::; nNÞ

are diagonal matrices. sij ¼ ð�p=�qcÞ sinðxjxMþi=cÞ for

sþ 1 � i � b, while sij¼ 0 for other i are the elements of S,

which is the matrix that accounts for the acoustic velocity

(u0). Further, s is a vector with the ðsþ 1Þth component 1

and the rest 0 and b is a vector with the components from

M þ bþ 1 up to and including Mþ s equal to 1 and the rest

zero. Therefore, discontinuity in the flow comes when some

component of Cv or xv becomes positive or exceeds Lc, re-

spectively. Associated with this event, we define the two dis-

continuity boundaries

Rs ¼ x 2 R2Mþ2N j xs ¼ 0
� �

; s 2 f1; :::;Mg; (9)

�Rb ¼ x 2 R2Mþ2N j xMþb ¼ Lc
� �

; b 2 f1; :::;Mg: (10)

One would have noticed by this point that the equations

of the model are more complex than that defined by

Equation (1). This is because the vector field itself changes

as we move from one region to another, apart from the dis-

continuity arising due to kicking. On the surfaces Rs and �Rb,

we can define the vector field to be the same as that in the re-

gion Rsb. Owing to our definition of the evolution of the

flow (Equation (7)), there will be no motion along the dis-

continuity boundaries.

When the state vector reaches Rs, it signifies the shed-

ding of ðs� 1Þth vortex. On the other hand, the state vector

crossing �Rb, from Rsb�1 to Rsb, indicates the burning of the

ðb� 1Þth vortex, i.e., the impingement of the vortex on the

bluff-body at a distance Lc from the inlet. Corresponding to

this impingement of the vortex, we need to add a kick to the

pressure oscillations as well as to the circulation building up

at the step (see Equations (3) and (4)). Hence we introduce a

reset map K : �Rb ! �Rb to account for these kicks

KðxÞ ¼ xþ PcsþHp; x 2 �Rb; (11)

Pc ¼ �p kp
X

N

j¼1

_gj þ Bj

� � cos xjLc=c
� �

xj

: (12)

As before, s is the vector with ðsþ 1Þth component 1

and the rest zero. Hp is a constant vector with Bn along the _g

coordinate directions, the rest of the components being zero,

i.e., Hp ¼ ð0; :::; 0;B1;B2; :::;BNÞ
T
. HP shows the effect of

heat release rate on the pressure oscillations upon the im-

pingement of a vortex, while Pcs shows the feedback of the

pressure on circulation building up at the step.

Having re-framed the original set of equations as a PWS

dynamical system, a few remarks are in order. We note that

the proposed PWS dynamical system representation is only

an approximate one. This is because we define the vectors

Cv and xv to hold information about all the vortices that will

ever be formed. Clearly then, these vectors must have count-

ably infinite components. However, we have restricted these

vectors to a finite (M) number of components, which makes

the description approximate. However, since the dimension

M can be chosen to be very large, we can satisfactorily

describe the dynamics for a finite time evolution of the sys-

tem. For obtaining the solutions numerically, the maximum

value ofM that one needs to choose is equal to the total num-

ber of time steps, since in the extreme scenario, one vortex

will be shed at every time instant. On the other hand, if we

have the constraint that only a finite number of vortices are

going to be shed, then M is surely finite. In any case, as long

FIG. 2. Plot of acoustic pressure varying with time for (a) �u ¼ 10:0m=s
showing chaos, (b) �u ¼ 10:5m=s showing intermittency, and (c) �u ¼
10:7m=s showing limit cycle oscillations. The system undergoes a bifurca-

tion from chaos to limit cycle via intermittent oscillations. Refer Seshadri

et al.15 for the list of parameter values used. The time delay (s) has been set

to zero. An initial condition of g1 ¼ 0:001, with the rest of the acoustic

modes set to zero, has been used.
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as the actual flow does not change its structure qualitatively

in the asymptotic limit, which is the expected behaviour, we

can resort to the current description.

IV. BIFURCATION

We can now investigate the transition to order that

occurs in the system. Note that we only provide a qualitative

description of the bifurcation and make no attempt to derive

the normal form. We restrict our study to the subspace

spanned by the vectors g and _g, since the dynamics of inter-

est occurs only in this region. All the parameters of the mod-

el are chosen such that we observe a transition from low

amplitude chaotic oscillations, to intermittency and then fi-

nally large amplitude limit cycle oscillations; we do not fo-

cus on any other form of transition here, even if it is

displayed by the system. We make a note that the contribu-

tion of the acoustic velocity u0 is negligible, at least for low

mean velocities, in affecting the motion of shed vortices

(Equation (5)). This is because all the vortices are confined

to a region close to the inlet end (as long as Lc=L � 1, which

is true in this study), resulting in a small value of the sine

component which appears in u0 (see Equation (2)). In this re-

gard, we discard, for most part of the discussion that follows,

the contribution of u0 in explaining the dynamics of the

system.

As mentioned earlier, the system starts off in a chaotic

state, where the pressure oscillations are of small amplitude

(Figure 2(a)). In this case, the burning times of the vortices,

ftjg, vary significantly and these are usually not close to the

time period of the acoustic oscillator (gn, _gn).
15 As a result,

the pressure oscillations behave in an aperiodic fashion (see

Equation (3)) and consequently affect the circulation in an ir-

regular manner (see Equation (4)). Since the value of circula-

tion dictates vortex shedding, the times of vortex shedding

are sporadic which is reflected in ftjg. This mutual interac-

tion between the aperiodic pressure oscillations and the times

of vortex burning is the reason for the chaotic oscillations

observed in the system.

With increasing mean velocity �u, intermittent oscilla-

tions are seen in the system (Figure 2(b)). Here, the pressure

oscillations display low amplitude aperiodic fluctuations in-

terspersed with bursts of large amplitude periodic oscilla-

tions. This is due to two main reasons: the increase in �u

changes Equation (7) such that Tv;n ¼ nLc=a�u, for some

n 2 Q, is closer to the acoustic time period Ta ¼ 2p=x1 and

it also increases the value of the components of Hp (note that

Bn / �u). We incorporate n in Tv;n to address the possibility

of modes other than the fundamental modes coming close to

each other. When we say, Tv;n and Ta are close, we mean

�i1 � jTv;n � Taj � �i2, where �i1 and �i2 are much smaller

than both Tv;n and Ta. However, the specific values of �i1; �i2
depend on the parameters we choose. Now, because the fre-

quency of impingement of vortices is close to the acoustic

frequency, the acoustic oscillator is excited at a frequency

close to its natural frequency. Consequently, the resultant

pressure oscillations are large in amplitude. The increase in

the value of Hp is such that when the state vector x is on the

discontinuity boundary �Rb, the magnitude of pressure

oscillations ( _g) is large enough for the reset map K to take x

from Rsb to Rðsþ1Þb. This physically corresponds to an in-

stantaneous shedding of a vortex at the step. This shed vortex

again impinges the bluff-body in a time Tv;n (this is also the

time for x to go from �Rb to �Rbþ1). However, if the difference

in Tv;n and Ta is not small enough (due to the restriction

placed by �i1), vortex impingements and acoustic oscillations

will eventually go out of phase; at a certain point, the magni-

tude of pressure oscillations will not be enough for K to take

x from Rsb to Rðsþ1Þb. At this point, the system will start dis-

playing aperiodic oscillations. The zoomed part of Figure

2(b) shows this gradual slipping of phase between vortex

impingements and pressure oscillations, leading to aperiodic

fluctuations. If at some later time, the impingement time is

close to Ta and the magnitude of pressure oscillations is ap-

propriate, large amplitude oscillations start again.

The presence of such dynamics during intermittency can

be easily verified. To this end, we define a quantity S as fol-

lows. If the value of the acoustic feedback, resulting from

the impingement of a vortex at Lc, can cause a vortex to shed

instantaneously at the step, we assign a value of 1 to S. If the

feedback is unable to shed a vortex instantaneously, we as-

sign S the value 0. So a value of S¼ 1 implies that the reset

map K takes the state vector x 2 �Rb from the region Rsb to

Rðsþ1Þb. The plot of S as a function of time can be seen in

Figure 3. We can see from Figure 3(a) that during the low

amplitude aperiodic oscillations, the feedback almost never

sheds a vortex instantaneously. Turning our attention to the

large amplitude periodic burst in Figure 3(a), we can see that

during the growth phase of burst, the value of S is 1. This

FIG. 3. Plot of S with time for (a) an intermittent signal at �u ¼ 10:5m=s and
for (b) limit cycle oscillations at �u ¼ 10:7m=s. A value of S¼ 1 implies the

acoustic feedback on circulation leads to instantaneous shedding of a vortex

at step, while a value of S¼ 0 shows that the feedback is unable to shed a

vortex instantaneously. We can see that during sustained periodic oscilla-

tions, the feedback is strong enough to instantaneously shed a vortex.
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continues till the pressure oscillations and the kicking go out

of phase. Then, as described above, the magnitude of feed-

back is not enough to shed a vortex instantaneously. Thus we

have a value of S¼ 0 in the decay phase of the burst, as can

be seen from Figure 3(a).

Finally, when the mean velocity is such that Tv;n is very

close or equal to Ta, limit cycle oscillations are observed

(see Figure 2(c)). By this, we mean jTv;n � Taj � �l, where
�l � �i1. This is where the bifurcation occurs—the state vec-

tor x moves from �Rb to �Rbþ1 in a time close to Tv;n ffi Ta and

when x is on �Rb, the reset map K always takes it from Rsb to

Rðsþ1Þb. Since the arrival of x at �Rb results in kicking of the

acoustic oscillator, the oscillator is forced nearly at its natu-

ral frequency and consequently large amplitude oscillations

are observed. In the preceding discussion, we have consid-

ered the case when a single vortex is present at a given time

between the step and point of combustion. A similar argu-

ment can likely be presented when more than one vortex is

present, but we do not enter into that discussion here. We

also mention here that the acoustic velocity u0 is not negligi-

ble during limit cycle oscillations; nevertheless, the above

description holds true even in this case.

Again, we can verify from Figure 3(b) that during large

amplitude limit cycle oscillations, x 2 �Rb \ �Rsb implies

KðxÞ 2 �Rb \ �Rðsþ1Þb, that is, the acoustic feedback always

succeeds in shedding a vortex instantaneously. This corre-

sponds to the quantity S always having a value 1, which is

evident from the figure. Further, to ascertain that when Tv;n is

close to Ta, we have intermittency and that, when they are

nearly equal, we have limit cycle oscillations, we plot the bi-

furcation diagram in Figure 4. The peaks of the pressure sig-

nal have been plotted against the mean convection frequency

(which we define as the inverse of Tv ¼ Tv;1) in this figure. A

black circle corresponds to the peak having an amplitude

greater than some threshold (800 Pa in this case), while a

hollow circle implies the peak has a value less than the de-

fined threshold. We choose the amplitude threshold such that

if, at some T
v
, almost all circles are hollow, it means that the

system exhibits low amplitude chaotic oscillations. If both

hollow and black circles are present, we have intermittency

and only a few black circles mean limit cycle oscillations.

Such a choice of threshold is possible due to the nature of

the transition in this system. We plot only a few peaks in the

figure for better clarity.

We see from Figure 4 that as T
v;1=2 approaches Ta, we

have intermittency and limit cycle oscillations. This demon-

strates that the mean vortex convection time (T
v
) is almost

twice the acoustic time period during limit cycle oscillations.

However, for our choice of model parameters, we observe

that there are two vortices present at a given time in between

the step and Lc. These vortices are equally spaced, and due

to this, the time difference between two consecutive im-

pingement of vortices is nearly equal to Ta. Hence, our ex-

planation of the bifurcation holds true here; the reason being,

we can imagine the scenario to be that of one vortex present

at a given time between step and Lc, but with Tv;1 (instead of

T
v;1=2) close to Ta. We also see that the amplitude of limit cy-

cle oscillations gradually decreases (Figure 4) and that maxi-

mum limit cycle oscillation amplitude is at ðTvÞ
�1 	 123Hz

(call this Tm). It may come as a surprise that we have the

maximum amplitude at Tm and not at T
v
¼Ta. This is, in ef-

fect, an artefact of u0 not being negligible during limit cycle

oscillations. It turns out that the time between two vortex

impingements is equal to Ta at Tv
¼Tm, which explains why

the amplitude is maximum here. This conveys that the time

between two consecutive vortex impingements is a more

faithful way of judging the system compared to Tv;n.

However, the time between two impingements varies with

time, and for this reason, we stick to a description that uti-

lizes Tv;n. It is necessary to recognize that the bifurcation dia-

gram we have plotted is not unique. The length and the

portion of the time series as well as the initial conditions we

use will affect its appearance. Nevertheless, it serves the pur-

pose of illustrating the remarks we mentioned above.

A nice analogy can be drawn between the bifurcation we

observe in this system and the saddle node bifurcation seen in

a logistic map. Recall that the third iterate of the logistic map

undergoes a saddle-node bifurcation (also called tangent bifur-

cation) prior to the onset of period-3 oscillations.24 The map,

just before periodic oscillations, shows intermittent behaviour

when there is a bottleneck region present in the system (see

Figure 5). When the trajectory enters this bottleneck region

(the zoomed part in Figure 5(a)), near-periodic oscillations are

seen but when it leaves this region, chaotic oscillations are ob-

served again. This can be seen from Figure 5, where the return

map of the third iterate of the logistic map and the correspond-

ing trajectory is shown. When the bifurcation occurs, period-3

orbits are formed as the fixed points correspond to the third it-

erate of the map. We compare this scenario with the bifurca-

tion seen in our system.

We can write the equations of our system, neglecting u0,

as follows:

_x ¼ Axþ
�u2

2
s

� �

þ a�ub if x 2 Rsb;

KðxÞ ¼ xþ PcsþHp if x 2 �Rb;

_x ¼ 0 otherwise:

Here, we have grouped the first two terms of _x and left

out the term r�u ¼ a�ub so as to compare it with the normal

form of the saddle node bifurcation, _x ¼ x2 þ r. In our case,

�u is the bifurcation parameter, while r is the bifurcation

FIG. 4. Plot of peaks of pressure (p̂) against the mean vortex convection fre-

quency (T�1
v

¼ a�u=Lc). Pressure time series of 1:4s duration has been con-

sidered, from which a transient of 0:05s has been subtracted. The acoustic

frequency is 250Hz or equivalently, Ta ¼ 0:004s. The set of peaks has been
undersampled to avoid cluttering the plot. Chaos, intermittency, and limit

cycle oscillations correspond to different segments in the plot.
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parameter for saddle node bifurcation. Note that although

ð�u2=2Þs depends on �u, during limit cycle oscillations, it does

not contribute to the dynamics since a vortex is shed as soon

as x reaches �Rb. As �u increases in our system, r�u and Hp are

directly affected. Increase in the magnitude of r�u results in

Tv;n approaching Ta. Tv;n, and Ta becoming close enough can

be thought of as entering a bottleneck region, where we ob-

serve intermittent oscillations. The closer Tv;n is to Ta, the

longer is the duration of the intermittent periodic bursts and

so is the growth in their amplitude. This corresponds to the

system spending more time in the bottleneck region. Hence,

increase in �u, which results in the growth of magnitude of r�u ,

is responsible for a longer duration of the intermittent bursts.

This is indeed observed in the model15 and the experi-

ments.25 Finally when Tv;n and Ta are almost equal, we ob-

serve limit cycle oscillations in the system.

We now take the liberty of listing a shortcoming of the

formulation. Take a note that though we have chaotic and

limit cycle oscillations in the g and _g subspaces, the same is

not true for the original phase space. This is because these do

not correspond to closed trajectories in the original phase

space - the flow just moves from one region to the next and

does not return to a previous region again. Despite this, we

have a qualitative change in how the flow behaves in the

original phase space during the bifurcation. Prior to the bi-

furcation, the flow moves haphazardly from one region to an-

other; however, after the bifurcation, it takes equal amounts

of time to move from one region to the next. Also note that

this system may be capable of showing dynamics other than

what has been discussed in this study. We, however, refrain

from exploring this prospect.

We wish to point out that previous studies relating to

this particular system have all been in the purview of smooth

dynamical systems theory. However, the bifurcation respon-

sible for the transition to combustion instability is essentially

a discontinuity induced bifurcation, at least in the considered

system. This prompts us to adopt the framework of PWS dy-

namical systems theory or some alternate framework that

can handle discontinuities, for future studies pertaining to

this system. Furthermore, though we have not derived the

normal form for the bifurcation, we believe that this could be

a previously uninvestigated bifurcation. This could also

mean that the intermittency observed in this system is not

one of the standard intermittencies that have been studied.

Nonetheless, this is mere speculation at this juncture.

As an end note, we summarize the above analysis of the

transition in an approximate, but simple, way.

(i) We have two main players: r�u and KðxÞ. r�u , the con-

tinuous part of the system, relates to the vortex con-

vection time scale Tv;n, while KðxÞ, the discontinuous
part of the system, decides if the state vector is taken

from the region Rsb to Rðsþ1Þb. Changing �u is equiva-

lent to changing the magnitude of r�u , and this directly

affects Tv;n.

(ii) When �u increases such that the Tv;n is close to the

acoustic time period Ta, we have intermittent oscilla-

tions in the system. This is because, under appropriate

conditions, KðxÞ acts after every Tv;n interval of time,

and takes x from the region Rsb to Rðsþ1Þb. But since

Tv;n is not equal to Ta, the kicking and oscillations

gradually slip out of phase and the periodic burst

comes to an end, paving way for aperiodic oscilla-

tions. When the conditions are right again, the burst

of periodic oscillations begins. Clearly, as Tv;n and Ta
come closer, the duration of the periodic bursts

increases.

(iii) As �u increases further and Tv;n is almost equal to Ta,

we have limit cycle oscillations in the system. Here,

the reset map KðxÞ always takes x from the region

Rsb to Rðsþ1Þb after a time period Tv;n which is nearly

equal to Ta. The result is periodic oscillations, and

since the kicking frequency almost matches the

acoustic frequency, the oscillations are large in

amplitude.

This shows how the interplay between the continuous

and discontinuous parts of the system results in the transition

to limit cycle oscillations through the formation of intermit-

tent periodic bursts.
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