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In a recent work, we had constructed a model consisting of two fields—a canonical scalar field
and a non-canonical ghost field—that had sourced a symmetric matter bounce scenario. The model
had involved only one parameter, viz. the scale associated with the bounce. For a suitable value of
the parameter, the model had led to strictly scale invariant power spectra with a COBE normalized
scalar amplitude and a rather small tensor-to-scalar ratio. In this work, we extend the model to
achieve near-matter bounces, which contain a second parameter apart from the bounce scale. As
the new model does not seem to permit analytical evaluation of the scalar modes near the bounce,
with the aid of techniques which we had used in our earlier work, we compute the scalar and the
tensor power spectra numerically. For appropriate values of the additional parameter, we find that
the model produces red spectra with a scalar spectral tilt and a small tensor-to-scalar ratio which
are consistent with the recent observations of the anisotropies in the cosmic microwave background
by Planck.

I. INTRODUCTION

The inflationary scenario is the most popular paradigm
to describe the origin of the perturbations in the early
universe [1–9]. Despite the fact that the recent obser-
vations of the Cosmic Microwave Background (CMB)
anisotropies by Planck has led to unprecedented con-
straints on the inflationary parameters [10, 11], there ex-
ist many models of inflation that remain consistent with
the data [12–15], even giving rise to the concern if infla-
tion can be falsified at all [16]. In such a situation, it
seems imperative to systematically explore alternatives
to inflation.
Classical bouncing scenarios provide an alternative to

the inflationary paradigm for the creation of the primor-
dial perturbations [17–23]. In these scenarios, the uni-
verse undergoes a period of contraction before it begins
to expand and, under certain conditions, it is possible to
impose well motivated initial conditions during the con-
tracting phase in a manner akin to inflation. The shape
of the primordial spectra generated in such scenarios is
largely determined by the form of the contraction dur-
ing the early stages. For instance, the so-called matter
bounces are known to generate scale invariant spectra, as
they are ‘dual’ to de Sitter inflation [24, 25]. Due to this
reason, near-matter bounces can be expected to lead to
nearly scale invariant primordial spectra, as is required
by the CMB observations.
While it is rather easy to build inflationary models that

are consistent with the observations, it proves to be quite
involved to construct viable bouncing models. The diffi-
culties largely arise due to the fact that the null energy
condition has to be violated near the bounce, which leads
to certain pathologies at the level of the background as
well as the perturbations (for a discussion on the various
issues one encounters, see, for example, the introductory
section of Ref. [26]). The simplest of the bouncing mod-
els are those whose scale factors are symmetric about the
bounce. However, it has been found that such models can
lead to a large tensor-to-scalar ratio beyond the current

constraints [27]. Recently, we had constructed a model
consisting of a canonical and a non-canonical (as well as
ghost) field to drive a symmetric matter bounce [26]. We
had shown (both analytically and numerically) that the
model leads to strictly scale invariant primordial spec-
tra and a viable tensor-to-scalar ratio as well as insignif-
icant isocurvature perturbations. We had found that
the amplitude of the scalar perturbations are consider-
ably enhanced during the null energy condition violating
phase resulting in a small tensor-to-scalar ratio after the
bounce. In this work, we extend our earlier model so that
it also leads to a scalar spectral tilt that is consistent with
the observations.
This paper is organized as follows. In the following

section, we shall describe the scale factor of our interest
and the sources that can drive such a background. In
Sec. III, we shall discuss the simpler case of the evolution
of the tensor perturbations and evaluate the tensor power
spectra prior to the bounce. In Sec. IV, we shall arrive
at the equations governing the scalar perturbations. In
Sec. V, we shall solve the equations governing the scalar
and tensor perturbations numerically to determine their
evolution across the bounce. We shall also present the
essential results, viz. the scalar and tensor power spectra
(evaluated after the bounce) that we obtain in the model.
In Sec. VI, we shall conclude with a brief summary.
Let us now make a few clarifying remarks on our con-

ventions and notations. We shall adopt natural units
such that ~ = c = 1, and set the Planck mass to be

M
Pl

= (8 πG)
−1/2

. We shall work with the metric sig-
nature of (−,+,+,+). Note that the Greek indices shall
denote the spacetime coordinates, whereas the Latin in-
dices shall represent the spatial coordinates, except for
k which we shall reserve for denoting the wavenumber.
Also, as usual, an overdot and an overprime shall denote
differentiation with respect to the cosmic and the confor-
mal time coordinates, respectively. Moreover, we shall
also work with a new time variable that we have intro-
duced in an earlier work on bouncing scenarios, viz. e-N-
folds, which we shall denote as N [28, 29].

http://arxiv.org/abs/1812.06803v2
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II. BACKGROUND AND SOURCES

In this section, we shall construct sources involving two
scalar fields to drive near-matter bounces. We shall con-
sider the background to be the spatially flat, Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric that is de-
scribed by the line element

ds2 = −dt2 + a2(t) δij dx
i dxj

= a2(η)
(

−dη2 + δij dx
i dxj

)

, (1)

where a(t) is the scale factor and η =
∫

dt/a(t) denotes
the conformal time coordinate. We shall assume that the
scale factor describing the bounce is given in terms of the
conformal time as follows:

a(η) = a0
(

1 + k20 η
2
)1+λ

= a0

(

1 +
η2

η20

)1+λ

, (2)

where a0 is the value of the scale factor at the bounce
(i.e. at η = 0), k0 = 1/η0 is the scale associated with the
bounce1, while λ ≥ 0. Note that λ = 0 corresponds to
the specific case of matter bounce we had considered in
our earlier work [26]. As we shall see later, a non-zero but
small λ (such that 0 < λ ≪ 1) leads to a scalar spectral
tilt suggested by the CMB observations.
We find that the Hubble parameter associated with the

scale factor (2) can be expressed as

H2 =

[

2 k0 (1 + λ)

a0

]2 [
1

(a/a0)γ
− 1

(a/a0)δ

]

, (3)

where γ = (3 + 2λ)/(1 + λ) and δ = 2 (2 + λ)/(1 + λ).
Recall that, according to the first Friedmann equation,
H2 = ρ/(3M2

Pl
), with ρ being the total energy den-

sity of the sources driving the background. Therefore,
the right hand side of the expression (3) suggests that
the scale factor (2) can be driven by two sources de-
scribed by the equations of state w1 = −λ/[3 (1 + λ)]
and w2 = (1−λ)/[3 (1+λ)]. Moreover, the second source
has to have negative energy density, a property which en-
sures that the Hubble parameter vanishes at the bounce
(i.e. when a = a0). Before we proceed further to model
the two sources in terms of scalar fields, a couple of points
require clarification to ally possible concerns related to
the fact that we are working with a spatially flat FLRW
universe. Note that, if a non-zero spatial curvature is
present, at very early times, the corresponding contribu-
tion to the first Friedmann equation (3) (which behaves
as a−2) can dominate the dynamics of the background.
However, at later times during the contracting phase,
these effects will quickly become sub-dominant and the

1 To be precise, the energy scale associated with the bounce is ac-
tually given by k0/a0. For instance, the amplitudes of the scalar
and tensor power spectra are determined only by this combina-
tion (in this context, see the discussion in Ref. [26]).

dynamics will be essentially governed by the first source
(whose energy density behaves as a−3) we have described
above. More importantly, in our discussion below, we
shall assume that the perturbations originated during
the phase wherein the spatial curvature is sub-dominant.
Further, it can be shown that the presence of spatial cur-
vature does not affect the evolution of the perturbations
around the bounce (in this context, see Ref. [30]). Due
to these reasons, we believe that it is consistent to work
with a spatially flat FLRW universe.
The two sources discussed above can be modeled in

terms of two scalar fields—a canonical scalar field, say, φ,
characterized by the potential V (φ) and a non-canonical
ghost field, say, χ—that are described by the action

S[φ, χ] = −
∫

d4x
√−g

[

−Xφφ

+ V (φ) + U0

(

X
χχ
)b
]

(4)
with U0 and b being positive constants. The quantities

X
φφ

and X
χχ

are the kinetic terms defined as

X
φφ

= −1

2
∂µφ∂

µφ, (5a)

X
χχ

= −1

2
∂µχ∂

µχ. (5b)

The stress-energy tensor associated with these fields can
be obtained to be

T µ
ν (φ) = ∂µφ∂νφ− δµν

[

−Xφφ

+ V (φ)
]

, (6a)

T µ
ν (χ) = −b U0

(

X
χχ
)b−1

∂µχ∂νχ− δµν U0

(

X
χχ
)b

.

(6b)

It should be evident that we have invoked the ghost
field χ in order to achieve the violation of the null en-
ergy condition around the bounce. While this is the sim-
plest method possible, ghost fields are considered to be
undesirable because of the fact that they do not permit a
stable quantum vacuum. In this work, our primary aim
will be to study the evolution of the curvature and isocur-
vature perturbations across the bounce. As we shall see,
we are able to circumvent challenges that arise (due to
the presence of the ghost field) in the evolution of these
perturbations through the bounce.
Let us first consider the behavior of the ghost field χ.

For a homogeneous field, it is straightforward to show
that

T 0
0 (χ) = −ρχ = (2 b− 1)U0

(

X
χχ
)b

, (7a)

T i
j (χ) = pχ δ

i
j = −U0

(

X
χχ
)b

δij , (7b)

where, evidently, ρχ and pχ are the energy density and
pressure associated with the χ field. Note that ρχ is
negative for b > 1/2 and pχ = ρχ/(2 b−1), corresponding
to wχ = pχ/ρχ = 1/(2 b − 1). If we set wχ = w2 =
(1−λ)/[3 (1+λ)], which corresponds to b = (2+λ)/(1−λ),
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then the energy density of the field χ can be expressed
as

ρχ = −3M2
Pl

[

2 k0 (1 + λ)

a0

]2
1

(a/a0)δ
. (8)

In this expression for ρχ, we have chosen the overall con-
stant such that it corresponds to the second term in the
expression (3) for H2 through the first Friedmann equa-
tion.
Let us now turn to the behavior of the canonical scalar

field φ. The non-zero components of the stress-energy
tensor associated with the homogeneous field φ are given
by

T 0
0 (φ) = −ρφ = − φ̇

2

2
− V (φ), (9a)

T i
j (φ) = pφ δ

i
j =

[

φ̇2

2
− V (φ)

]

δij . (9b)

In order to lead to the first term in the expression (3)
forH2 (through the first Friedmann equation), we require
ρφ to behave as

ρφ = 3M2
Pl

[

2 k0 (1 + λ)

a0

]2
1

(a/a0)γ
, (10)

which implies that wφ = pφ/ρφ = w1 = −λ/[3 (1 + λ)].
These results and Eqs. (9) lead to

φ̇2 = 2

(

3 + 2λ

3 + 4λ

)

V (φ). (11)

Using Eqs. (9a), (10), (11) and the scale factor (2), it is
straightforward to show that the evolution of the field φ
can be expressed in terms of the scale factor a(η) as

φ(a)− φ0 = 2
√

(1 + λ) (3 + 2λ)M
Pl

× cosh−1
{

[a(η)/a0]
1/[2 (1+λ)]

}

, (12)

where φ0 is the value of φ at the bounce, i.e. when a = a0.
From the above expression for φ(a) and Eq. (11), the
corresponding potential V (φ) can be obtained to be

V (φ) = 2 (3 + 4λ) (1 + λ)

(

M
Pl
k0

a0

)2

× cosh−2 (3+2 λ)

[

(φ− φ0)/MPl

2
√

(1 + λ) (3 + 2λ)

]

. (13)

Two points need to be stressed regarding the model we
have constructed. Firstly, note that the potential V (φ)
above as well as the complete system involving the two
scalar fields φ and χ described by the action (4) depend
only on the two parameters k0/a0 and λ, as φ0 and U0 do
not play any non-trivial role in the dynamics. Secondly,
when λ = 0, the action reduces to the model that leads
to the matter bounce scenario that we have considered
earlier [26].

III. THE TENSOR MODES AND THE

RESULTING POWER SPECTRUM

The tensor perturbations are always simpler to study
because the equations governing their evolution depends
only on the scale factor that describes the FLRW uni-
verse and not on the nature of the source that drives the
background. In this section, we shall discuss the tensor
power spectrum arising in the near-matter bounces of our
interest. As the scale factor (2) reduces to a power law
form at early times, i.e. when η ≪ −η0, the modes and
power spectrum well before the bounce are straightfor-
ward to arrive at. In a later section, we shall numerically
evolve the tensor perturbations across the bounce and
evaluate the power spectrum after the bounce. We shall
see that, while the bounce alters the amplitude of the
tensor power spectrum, it does not change its shape.
Let us quickly summarize a few essential points con-

cerning the tensor perturbations. If the tensor pertur-
bations are characterized by γij , then the spatially flat
FLRW metric containing the perturbations can be ex-
pressed as [31]

ds2 = a2(η)
{

−dη2 + [δij + γij(η,x)] dx
i dxj

}

. (14)

The Fourier modes hk corresponding to the tensor per-
turbations are governed by the differential equation

h′′k + 2
a′

a
h′k + k2 hk = 0 (15)

and, if we write hk =
(√

2/M
Pl

)

uk/a, then the
Mukhanov-Sasaki variable uk satisfies the differential
equation

u′′k +

(

k2 − a′′

a

)

uk = 0. (16)

The tensor power spectrum evaluated at a specific time
is defined as

P
T
(k) = 4

k3

2 π2
|hk(η)|2 (17)

and the corresponding tensor spectral index n
T
is given

by

n
T
=

d lnP
T
(k)

d ln k
. (18)

During the early contracting phase, i.e. when η ≪ −η0,
the scale factor (2) behaves as a(η) ∝ η2 (1+λ). Due to
this reason, the equation (16) describing the Mukhanov-
Sasaki variable uk reduces to

u′′k +

[

k2 − 2 (1 + λ) (1 + 2λ)

η2

]

uk ≃ 0. (19)

For modes of cosmological interest, we can impose the
standard Bunch-Davies initial conditions at early times
when k η ≪ −[2 (1 + λ) (1 + 2λ)]1/2. In such a case,
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the solution to above equation which satisfies the Bunch-
Davies initial condition is found to be

uk(η) ≃
(−π k η

4

)1/2

ei (ν+1/2) π/2H(1)
ν (−k η), (20)

where H
(1)
ν (x) denotes Hankel function of the first kind,

while ν = 3/2 + 2λ. The tensor power spectrum evalu-

ated as one approaches the bounce can be expressed as

P
T
(k) =

1

2 π2M2
Pl

∣

∣

∣

∣

Γ(ν)

Γ(3/2)

∣

∣

∣

∣

2 [
k

a(η)

]2 (−k η
2

)1−2 ν

.

(21)
The corresponding spectral index n

T
is evidently given

by

n
T
= −4λ, (22)

which clearly reduces to zero when λ = 0 corresponding
to the case of the matter bounce. We shall later evolve
the tensor perturbations numerically and compute the
power spectra before as well as after the bounce. We
shall find that the above analytical spectrum matches the
numerical results prior to the bounce and the spectral
shape is retained as the modes are evolved across the
bounce.

IV. ARRIVING AT THE EQUATIONS GOVERNING THE SCALAR PERTURBATIONS

Since we are working with two scalar fields, as is well known, there will arise two independent scalar degrees of
freedom. In fact, amongst the four scalar quantities that describe the perturbations in the metric and the two that
describe the perturbations in the scalar fields, we can choose to work with any two of them to evolve the perturbations.
The usual choices are the curvature and the isocurvature perturbations, which are actually a linear combination of the
perturbations in the scalar fields [32–34]. In this section, we shall derive the equations governing the evolution of the
perturbations in the two scalar fields, say, δφ and δχ. Thereafter, we shall construct the curvature and isocurvature
perturbations for our model and arrive at the equations describing them. As in our earlier model [26], we find that
some of the coefficients in the equations governing the curvature and the isocurvature perturbations diverge as one
approaches the bounce. To circumvent this difficulty, we shall choose two other independent scalar quantities to
evolve the perturbations across the bounce and reconstruct the curvature and isocurvature perturbations from these
quantities.

A. The Einstein’s equations and the equations describing the perturbations in the scalar fields

In linear perturbation theory, the scalar and tensor perturbations evolve independently. When the scalar pertur-
bations are taken into account, the FLRW line element, in general, can be written as

ds2 = − (1 + 2A) dt2 + 2 a(t) (∂iB) dt dxi + a2(t) [(1 − 2ψ) δij + 2 (∂i ∂jE)] dxi dxj , (23)

where A, B, ψ and E are four scalar functions that describe the perturbations, which depend on time as well as
space. At the first order in the perturbations, the Einstein’s equations describing the system of our interest are given
by [1, 3–6]

3H
(

H A+ ψ̇
)

− 1

a2
∇2
[

ψ − aH
(

B − a Ė
)]

= − 1

2M2
Pl

(δρφ + δρχ) , (24a)

∂i

(

H A+ ψ̇
)

=
1

2M2
Pl

∂i (δqφ + δqχ) , (24b)

ψ̈ +H
(

Ȧ+ 3 ψ̇
)

+
(

2 Ḣ + 3H2
)

A =
1

2M2
Pl

(δpφ + δpχ) , (24c)

A− ψ +
1

a

[

a2
(

B − a Ė
)]·

= 0 (24d)

where δρI and δpI , with I = (φ, χ), are the perturbations in the energy densities and pressure associated with the two
fields φ and χ. Moreover, the quantities δqI are related to the time-space components of the perturbed stress-energy
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tensor through the condition δT 0
i (I) = −∂i(δqI). The final equation arises due to the fact that the scalar fields do not

possess any anisotropic stress. The components of the perturbed stress-energy tensor associated with the two fields φ
and χ can be obtained to be

δT 0
0 (φ) = −δρφ = −φ̇ ˙δφ+A φ̇2 − Vφ δφ, (25a)

δT 0
i (φ) = −∂i δqφ = −∂i

(

φ̇ δφ
)

, (25b)

δT i
j (φ) = δpφ δ

i
j =

(

φ̇ ˙δφ−A φ̇2 − Vφ δφ
)

δij , (25c)

and

δT 0
0 (χ) = −δρχ = −(2 b− 1) b U0 (X

χχ)
b−1

χ̇
(

˙δχ− χ̇ A
)

, (26a)

δT 0
i (χ) = −∂i δqχ = b U0 (X

χχ)
b−1

χ̇ δχ, (26b)

δT i
j (χ) = δpχ δ

i
j =

δρχ
2 b− 1

δij , (26c)

respectively.
A straightforward way to arrive at the equations of motion describing the perturbations in the scalar fields would be

to utilize the conservation equation governing the perturbation in the stress-energy tensor of the fields. The equation
describing the conservation of the perturbation in the energy density of a particular component is given by (see, for
instance, Refs. [33, 34]):

δ̇ρI + 3H (δρI + δpI)− 3 (ρI + pI) ψ̇ −∇2

[(

ρI + pI
a

)

B +
δqI
a2

− (ρI + pI) Ė

]

= 0. (27)

On substituting the expressions for the components of the perturbed stress-energy tensor we have obtained in the
above equation, we find that the equations of motion governing the Fourier modes, say, δφk and δχk, associated with
the perturbations in the two scalar fields can be expressed as

δ̈φk + 3H ˙δφk + Vφφ δφk + 2VφAk − φ̇
(

Ȧk + 3 ψ̇k

)

+
k2

a2

[

δφk + a φ̇
(

Bk − a Ėk

)]

= 0, (28a)

δ̈χk +
3H

2 b− 1
˙δχk − χ̇

(

Ȧk +
3 ψ̇k

2 b− 1

)

+
k2

(2 b− 1) a2

[

δχk + a χ̇
(

Bk − a Ėk

)]

= 0. (28b)

In these equations, the quantities Ak, Bk, ψk and Ek are the Fourier modes associated with the corresponding metric
perturbations. Note that, when b = 2, these equations reduce to the matter bounce model we had considered in our
earlier work [26].
In the following subsection, we shall first construct the gauge invariant curvature and isocurvature perturbations.

Thereafter, with the aid of the above equations for δφk and δχk, we shall arrive at the equations governing them. As
in the case of the matter bounce scenario [26], we shall find that some of the coefficients in the equations governing the
curvature and the isocurvature perturbations diverge in the domain where the null energy condition is violated around
the bounce. Lastly, we shall discuss the method by which we can circumvent these difficulties before proceeding to
solve the equations numerically.

B. Equations governing the scalar perturbations, and circumventing the diverging coefficients

Recall that the curvature perturbations are the fluctuations along the direction of the background trajectory in the
field space. Whereas, the isocurvature perturbations correspond to fluctuations in a direction perpendicular to the
background trajectory [32–34]. Using the arguments we had presented in our earlier work [26, 35], we can construct
the curvature and the isocurvature perturbations for the model of our interest here to be

R =
H

φ̇2 − 2 b U0 (X
χχ)b

(

φ̇ δφ− b U0 (X
χχ

)b−1 χ̇ δχ
)

, (29a)

S =
H
√

b U0 (X
χχ)b−1

φ̇2 − 2 b U0 (X
χχ)b

(

χ̇ δφ− φ̇ δχ
)

, (29b)
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where δφ = δφ + (φ̇/H)ψ and δχ = δχ + (χ̇/H)ψ are the gauge invariant versions of the perturbations associated
with the two scalar fields. Upon using the equations of motion (28) governing the perturbations δφk and δχk and the
first order Einstein’s equations (24), we can arrive at the following equations governing the Fourier modes Rk and Sk

of the curvature and the isocurvature perturbations:

R′′
k +

{

2

3 (1 + λ) [1− (3 + 2λ) k20 η
2]

}

[Crr R′
k +Drr Rk + Crs S ′

k +Drs Sk] = 0, (30a)

S ′′
k +

{

2

3 (1 + λ) [1− (3 + 2λ) k20 η
2]

}

[Css S ′
k +Dss Sk + Csr R′

k +Dsr Rk] = 0, (30b)

where the quantities (Crr, Drr, Crs, Drs) are given by

Crr =
1

(1 − λ) (1 + k20 η
2) η

[

21 + 124λ+ 219λ2 + 144λ3 + 32λ4

+(1 + 2λ) (27 + 76λ+ 61λ2 + 16λ3) k20 η
2 − 6 (1 + λ)2 (1 − λ) (3 + 2λ) k40 η

4

]

, (31a)

Drr = −k
2

2

[

5 + 17λ+ 8λ2 + 3 (1 + λ) (3 + 2λ) k20 η
2

]

, (31b)

Crs = −
√

2 (2 + λ) (3 + 2λ)

(1− λ)
√

1 + k20 η
2 η

[

(1 + 2λ) (5 + 17λ+ 8λ2) + 3 (1 + λ)
(

4 + 7λ+ 4λ2
)

k20 η
2

]

, (31c)

Drs =

√

2 (2 + λ) (3 + 2λ)

(1 − λ) (1 + k20 η
2)

3/2
η2

[

(1 + 2λ) (5 + 17λ+ 8λ2) + (1− λ) (1 + 2λ)
(

1 + k20 η
2
)2
k2 η2

− 6 (1 + λ) (1 + 2λ) (4 + 7λ+ 4λ2) k40 η
4 − (1 + λ)

(

22 + 87λ+ 84λ2 + 32λ3
)

k20 η
2

]

, (31d)

while the quantities (Css, Dsr, Csr , Dss) are given by

Css = − 1

(1− λ) (1 + k20 η
2) η

[

27 + 124λ+ 213λ2 + 144λ3 + 32λ4

+(1 + 2λ) (21 + 76λ+ 67λ2 + 16λ3) k20 η
2 + 6 (1 + λ)2 (1− λ) (3 + 2λ) k40 η

4

]

, (32a)

Dss =
1

2 (1− λ) (1 + k20 η
2)

2
η2

{

2 (27 + 124λ+ 213λ2 + 144λ3 + 32λ4)

− (255 + 1076λ+ 1753λ2 + 1500λ3 + 688λ4 + 128λ5) k20 η
2

− (1 + λ) (75 + 691λ+ 1314λ2 + 936λ3 + 224λ4) k40 η
4 − 6 (1− λ) (1 + λ) (1 + 2λ) (3 + 2λ) k60 η

6

+(1− λ)
[

9 + 19λ+ 8λ2 − (1− λ) (3 + 2λ) k20 η
2
] (

1 + k20 η
2
)2
k2 η2

}

, (32b)

Csr =

√

2 (2 + λ) (3 + 2λ)

(1− λ)
√

1 + k20 η
2 η

[

(1 + 2λ) (9 + 19λ+ 8λ2)− (1− λ) (2 + λ) (3 + 4λ) k20 η
2
]

,

(32c)

Dsr = −
√

2 (2 + λ) (3 + 2λ) (1 + 2λ) k2
√

1 + k20 η
2. (32d)

We find that some of these coefficients diverge either at the time when Ḣ = 0 or at the bounce. This poses a
difficulty in evolving the curvature and the isocurvature perturbations across these instances. As we had done in our
earlier work [26], around the bounce, we shall work in a specific gauge wherein the two scalar quantities describing
the perturbations behave well at such points. We shall evolve these two scalar quantities across these domains and
eventually reconstruct the curvature and the isocurvature perturbations from these quantities. Note that Ḣ = 0
when η∗ = ∓1/[

√

(3 + 2λ) k0]. As we shall illustrate later, the curvature and the isocurvature perturbations indeed
diverge at this point (in this context, see our discussion in App. A). Also, we shall find that, while the isocurvature
perturbations vanish exactly at the bounce, the curvature perturbations go to zero a little time later.
As we had mentioned, we shall overcome the problem of diverging coefficients by working in a specific gauge. It

has been observed that the difficulties of evolving the curvature and the isocurvature perturbations across the bounce
can be avoided if we choose to work in the uniform-χ gauge, i.e. the gauge wherein δχk = 0 [26, 27]. In this gauge,
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we can use A and ψ as the two independent scalar functions and these quantities can be smoothly evolved across the
bounce. The curvature and the isocurvature perturbations can then be suitably constructed from these two scalar
perturbations. In uniform χ-gauge, Eq. (28b) reduces to

k2

a

(

Bk − a Ėk

)

= (2 b− 1) Ȧk + 3 ψ̇k. (33)

Upon using this relation, the first order Einstein equations (24) and the background equations, we obtain the following
equations governing Ak and ψk:

A′′
k +

4 (2 + 3λ) k20 η

1 + k20 η
2

A′
k +

k2 (1 + k20 η
2)2 (1− λ)− 12 k20 (1 + λ)2 (5 + 4λ)

3 (1 + λ) (1 + k20 η
2)2

Ak

= − 2 (1− λ) (3 + 4λ) k20 η

(1 + λ) (1 + k20 η
2)

ψ′
k +

4 (1− λ)

3 (1 + λ)
k2 ψk, (34a)

ψ′′
k − 2 (1 + 2λ) k20 η

1 + k20 η
2

ψ′
k + k2 ψk =

4 (1 + λ) (1 + 2λ) k20 η

(1− λ) (1 + k20 η
2)

A′
k − 4 (1 + λ)2 (5 + 4λ)

(1− λ) (1 + k20 η
2)2

k20 Ak. (34b)

Note that, in the uniform χ-gauge, the curvature and the isocurvature perturbations are given by

Rk = ψk +
2HM2

Pl

φ̇2 − 2 b U0 (X
χχ)b

(

ψ̇k +H Ak

)

, (35a)

Sk =
2HM2

Pl

√

b U0 (X
χχ)b−1 χ̇

[

φ̇2 − 2 b U0 (X
χχ)b

]

φ̇

(

ψ̇k +H Ak

)

. (35b)

Later, we shall make use of these relations to construct Rk and Sk from Ak and ψk around the bounce.

V. EVOLUTION OF THE PERTURBATIONS

AND POWER SPECTRA

In our earlier work on the matter bounce scenario [26],
we had constructed analytical as well as numerical so-
lutions for the perturbations at early times (i.e. when
η ≪ −η0) as well across the bounce. For the case of near-
matter bounces of our interest here, we do not seem to be
able to analytically solve the equations (34) governingAk

and ψk across the bounce. Therefore, we evolve the per-
turbations numerically. In the case of bounces driven by
two fields, one of the concerns that has been raised is
whether the fields will be decoupled at early times al-
lowing one to impose the required Bunch-Davies initial
conditions (in this context, see Ref. [36]). Note that, in
the model governed by the action (4), the two fields φ
and χ do not interact directly and are coupled only grav-
itationally. It should be clear from the first Friedmann
equation (3) that the energy densities of the two fields
are equal only at the bounce. Clearly, at very early times,
the background universe is effectively driven by a single
field, with the field φ dominating the evolution. This be-
havior ensures that the curvature and the iso-curvature
perturbations are completely decoupled during the early
contracting phase permitting us to impose the standard
initial conditions on the modes.

As we can construct the background quantities analyt-
ically, we shall require the numerical procedure only for
the evolution of the perturbations. The tensor perturba-
tions can be evolved across the bounce without any diffi-

culty. In the case of scalars, we evolve the curvature and
the isocurvature perturbations until close to the bounce
and thereafter we shall choose to evolve the metric per-
turbations Ak and ψk across the bounce (for reasons dis-
cussed in the last section). We shall evaluate the final
perturbation spectra at a suitable time after the bounce.

A. Analytical solutions at early times

Since the scale factor (2) reduces to a power law form
for η ≪ −η0, the scalar modes can be obtained ana-
lytically during the contracting phase as in the case of
tensors. Also, as we mentioned, during these early times,
it is the energy density of the scalar field φ that domi-
nates the background evolution. Due to this reason, as we
discussed, when η ≪ −η0, the curvature and the isocur-
vature perturbations decouple so that the equations (30)
governing Rk and Sk simplify to

R′′
k + 2

z′

z
R′

k + k2 Rk ≃ 0, (36a)

S ′′
k + 2

z′

z
S ′
k +

[

wχ k
2 +

2 (1 + 2λ)

η2

]

Sk ≃ 0, (36b)

where z ≃ a φ̇/H ≃
√

3 (1 + wφ)MPl
a and, recall that,

while wφ = −λ/[3 (1 + λ)], wχ = (1 − λ)/[3 (1 + λ)].
We find that the equations describing the Mukhanov-
Sasaki variables corresponding to the curvature and the
isocurvature perturbations, viz. Uk = zRk and Vk =
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z Sk, reduce to

U ′′
k +

[

k2 − 2 (1 + λ) (1 + 2λ)

η2

]

Uk ≃ 0, (37a)

V ′′
k +

[

wχ k
2 − 2λ (1 + 2λ)

η2

]

Vk ≃ 0. (37b)

At very early times during the contracting phase,
i.e. when η ≪ −η0, we can impose the following Bunch-
Davies initial conditions on the scalar Mukhanov-Sasaki
variables Uk and Vk:

Uk(η) =
1√
2 k

e−i k η, (38a)

Vk(η) =
1

√

2w
1

2

χk

e−i
√
wχ k η. (38b)

For convenience, let us simply define the scalar power
spectra to be (in this context, see the following sub-
section where we discuss the numerical evolution of the
perturbations)

P
R
(k) =

k3

2 π2
|Rk|2 , (39a)

P
S
(k) =

k3

2 π2
|Sk|2 . (39b)

The spectral index n
R

of the curvature perturbation is
given by

n
R
= 1 +

d lnP
R

d ln k
. (40)

Note that the equation governing the tensor and scalar
Mukhanov-Sasaki variables uk and Uk [cf. Eqs. (19)
and (37a)] at early times during the contracting phase
have the same form, as is expected in a power law back-
ground. Therefore, the spectrum of curvature perturba-
tions evaluated prior to the bounce has the same shape
as the tensor power spectrum. As a result, we find that,
we can write

P
T
(k) = rP

R
(k), (41)

where the tensor-to-scalar ratio r is a constant and is
given by

r =
8 (3 + 2λ)

1 + λ
. (42)

Evidently, r = 24 when λ = 0, a well known result in the
matter bounce scenarios (see, for instance, Ref. [27]). It
should also be mentioned that the spectral index n

R
is

given by

n
R
= 1− 4λ. (43)

B. Numerical evolution across the bounce

We evolve the perturbations numerically just as we
had done in our earlier work [26]. To begin with, we use

e-N-folds N—defined as a(N ) = a0 exp (N 2/2)—to be
our independent variable. The e-N-fold proves to be very
convenient to describe symmetric bounces and it replaces
the more conventional e-fold to evolve the perturbations
over a wide domain in time efficiently [26, 28, 29]. We
express the equations (15) and (30) governing the tensor
and scalar perturbations hk, Rk and Sk in terms of the
new variable N and integrate the equations using a fifth
order Runge-Kutta algorithm. In the case of the scalar
perturbations, as is often done in the case of two field
models, we shall numerically integrate the equations (30)
using two sets of initial conditions (in this context, see,
for instance, Refs. [35, 37]). We first integrate the equa-
tions by imposing the Bunch-Davies initial condition cor-
responding to (38a) on Rk and setting the initial value
of Sk to be zero. We then impose the initial condition
corresponding to (38b) on Sk and set the initial value of
Rk to be zero. If the perturbations Rk and Sk evolved
according to these two sets of initial conditions are de-
noted as (RI

k, SI
k) and (RII

k , SII
k ), then the power spectra

associated with the curvature and the isocurvature per-
turbations can be defined as [35, 37]

P
R
(k) =

k3

2 π2

(

∣

∣RI
k

∣

∣

2
+
∣

∣RII
k

∣

∣

2
)

, (44a)

P
S
(k) =

k3

2 π2

(

∣

∣SI
k

∣

∣

2
+
∣

∣SII
k

∣

∣

2
)

. (44b)

We had discussed earlier as to how the model of our in-
terest depends only on two parameters, viz. k0/a0 and λ.
If we multiply the modes Rk, Sk and hk by the quantity√
k0 a0MPl

, we find that k0 or a0 need not be specified in-
dependently in order to evolve them from the given initial
conditions. In fact, the resulting scalar and tensor power
spectra depend only on k0/a0 and λ. We shall choose
to work with k0/(a0MPl

) = 9.61 × 10−9 and λ = 0.01.
This value of k0/a0 ensures that the curvature perturba-
tion spectrum P

R
(k) evaluated after the bounce is COBE

normalized corresponding to the value of 2.31× 10−9 at
a suitable pivot scale. Also, the value of λ we shall work
with leads to the scalar spectral index of n

R
≃ 0.96, as

required by the Planck data.
We impose the initial conditions on the perturbations

when k2 = 104 (a′′/a). In the case of tensors, we evolve
the equation (15) across the bounce (with N as the in-
dependent variable) until η = β η0, with β = 102, after
the bounce. We evolve the scalar perturbations using the
equations (30) until η = −αη0 and we shall assume that
α = 105. Since the equations (30) contain coefficients
which diverge close to the bounce, as we had discussed,
we instead use equations (34) to evolve the scalar pertur-
bations Ak and ψk across the bounce from η = −αη0 to
η = β η0. Evidently, the quantities Rk and Sk evolved
during the early contracting phase can provide us the
initial conditions for Ak and ψk at η = −αη0 through
the relations (35). Once we have Ak and ψk in hand,
we shall reconstruct Rk and Sk using the same relations.
It is useful to mention here that, for the values of k0/a0
and λ that we are working with, η = −αη0 with α = 105
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FIG. 1. Evolution of the amplitudes of the curvature perturbation Rk (in blue), the isocurvature perturbation Sk (in green)
and the tensor mode hk (in red) corresponding to the wavenumber k/k0 = 10−20 has been plotted as a function of e-N-folds N .
We have chosen the background parameters to be k0/(a0 MPl

) = 9.6 × 10−9 and λ = 0.01 in plotting this figure. We should
clarify that we have, in fact, multiplied Rk, Sk and hk by the quantity

√
k0 a0 MPl

to ensure that they depend only on the
parameters k0/a0 and λ. We have plotted the numerical results from the initial e-N-fold when k2 = 104 (a′′/a) corresponding to
the mode. The behavior of the modes is essentially similar to their behavior in the matter bounce scenario we had considered
in our earlier work [26]. The sharp rise in the amplitude of the curvature perturbation close to the bounce ensures that the
tensor-to-scalar ratio is strongly suppressed after the bounce leading to levels of r that are consistent with the upper bounds
from Planck. Moreover, note that the isocurvature perturbation decays after the bounce, which leads to a strongly adiabatic
spectrum, as is also required by the observations.

corresponds to N ≃ −6.78, while η = β η0 with β = 102 corresponds to N = 4.29.

C. Behavior of the perturbations and the power spectra

In Fig. 1, we have plotted the evolution of the perturbations Rk and Sk and hk for a typical cosmological scale
as a function of e-N-folds N . As we had expected, the curvature and the isocurvature perturbations diverge at the
points where Ḣ = 0, i.e. at η∓∗ = ∓1/[

√

(3 + 2λ) k0], corresponding to N = ∓0.76 (in this context, see App. A).
Moreover, as expected, the isocurvature perturbations vanish at the bounce. We find that, in fact, the curvature
perturbation also vanishes at a point soon after the bounce. Further, while the amplitude of the curvature and the
tensor perturbations freeze after η = η+∗ , the isocurvature perturbations decay soon after2. Such a decay leads to a
strongly adiabatic spectrum of scalar perturbations, as is required by the observations. All these points should be
evident from Fig. 1. Essentially, the scalar and tensor perturbations behave just as in the matter bounce scenario we
had considered earlier [26].
Having obtained the solutions for the modes, we can now evaluate the resulting power spectra. We compute

the scalar and tensor power spectra after the bounce at η = β η0, with β = 102 (corresponding to N = 4.29). In

2 In fact, in the case of the tensor perturbations, it is possible to
construct analytical solutions across the bounce as well (in this

context, see Ref. [38]). We find that our numerical solutions
match the analytical solutions quite well.
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FIG. 2. The numerically evaluated scalar (the curvature perturbation spectrum in blue and the isocurvature perturbation
spectrum in green) and tensor power spectra (in red) have been plotted as a function of k/k0 for a range of wavenumbers that
correspond to cosmological scales today. We have worked with the same set of values for the parameters k0/a0 and λ as in the
previous figure. The power spectra have been plotted both before the bounce (as dotted lines) and after (as solid lines). The
power spectra have been evaluated at η = −αη0 (with α = 105) before the bounce and at η = β η0 (with β = 102) after the
bounce. The values for the parameters we have worked with lead to the COBE normalized value of 2.31×10−9 for the curvature
perturbation spectrum at the scale of k/k0 = 10−23. Also, the value of λ we have chosen leads to a curvature perturbation
spectrum with a red tilt corresponding to n

R
≃ 0.96, as required by the CMB observations. Moreover, the tensor-to-scalar

ratio evaluated after the bounce proves to be rather small (r ≃ 10−6), which is consistent with the current upper limits from
Planck on the quantity [10].

Fig. 2, we have plotted the power spectra prior to the bounce (evaluated at η = −αη0, with α = 105, corresponding to
N = −6.78) as well as after the bounce. It is evident from the figure that the shape of the power spectra are preserved
as the perturbations evolve across the bounce. We find that the value of k0/(a0MPl

) = 9.61×10−9 leads to the COBE
normalized value of 2.31 × 10−9 for the curvature perturbation spectrum at the scale of k/k0 = 10−23. Recall that,
our main goal here is introduce a suitable tilt to the curvature perturbation spectrum so as to be consistent with the
observations. As we had mentioned, for λ = 0.01, we find that n

R
= 0.96, perfectly consistent with the observations.

Lastly, we find that, as the perturbations evolve across the bounce, the tensor-to-scalar ratio drops from the value
of r = 23.92 prior to the bounce to r = 1.46 × 10−6 after the bounce. Needless to add, this value of the r is much
smaller than the current upper bound of r . 0.07 from Planck [10].

VI. DISCUSSION

In this work, extending our earlier effort, we have con-
structed a two field model consisting of a canonical scalar
field and a non-canonical ghost field to drive near-matter
bounces. Near-matter bounces are in some sense similar
to slow roll inflation as they lead to nearly scale invari-
ant spectra. The model we have constructed consisted
of two parameters k0/a0 and λ. While k0/a0 determines

the amplitudes of the scalar and tensor power spectra,
a non-zero value for λ leads to a tilt in the power spec-
tra. We have been able to numerically evaluate the scalar
and tensor power spectra in the model and show that, for
suitable values of the parameters, the resulting spectra
are consistent with the current constraints from the CMB
observations.

It is interesting to have extended our original matter
bounce scenario and have achieved a red tilt in the scalar
power spectrum in order to be consistent with the ob-
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servations. The next obvious challenge is to examine
if the scalar non-Gaussianities generated in the model
are indeed consistent with the current constraints from
Planck [11]. We are presently investigating this issue.
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Appendix A: Is a diverging curvature perturbation

acceptable?

We have seen that, in the model driving near-matter
bounces we have constructed here as well as the earlier
model leading to the matter bounce scenario [26], the cur-
vature and the isocurvature perturbations diverge when
Ḣ = 0. This may cause concern as to whether the per-
turbation theory breaks down around such instances. We
believe that this behavior should not be of any concern.
The reason being that the curvature and the isocurvature
perturbations diverge due to the fact that a background
quantity that appears in the denominator of their def-
initions vanish. As we have discussed, it is possible to
overcome such hurdles by working with perturbed quan-
tities that behave well at these points.
In fact, such a behavior also occurs during the reheat-

ing phase that succeeds inflation. To illustrate this point,
let us consider the often studied case of inflation driven
by a single, canonical scalar field, say, ϕ. As is well
known, once inflation has terminated, the scalar field is
expected to oscillate at the bottom of the potential be-
tween the turning points where the velocity of the field
vanishes. Let us focus on the domain where the energy
density of the scalar field is still dominant soon after in-
flation (i.e. when reheating is yet to set in, a period that
is referred to as preheating). In such a situation, for
the case of inflation and preheating driven by the con-
ventional quadratic potential, the behavior of the back-
ground as well as the curvature perturbation associated
with a typical large scale mode of cosmological interest
can be solved for analytically (in this context, see, for
instance, Ref. [39]). In Fig. A, we have plotted the evo-
lution of the velocity ϕ̇ of the background scalar field
and the curvature perturbation, say, Rk, associated with
a small scale mode obtained numerically, as a function
of e-fold N during the epoch of preheating. In plotting
the figure, for convenience, we have chosen to work with
a small range of e-folds of inflation. Also, we have re-
stricted ourselves to the behavior of the velocity of the
scalar field and the curvature perturbation during the
epoch of preheating. It is clear from the figure that the
curvature perturbation diverges exactly at the turning
points when the scalar field oscillates at the bottom of

29.0 29.5 30.0 30.5 31.0

N

−2× 10−6
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1× 10−6

2× 10−6
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1.0× 10−14

1.1× 10−14
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FIG. 3. The behavior of the velocity ϕ̇ of the scalar field
driving the background (on top) and the amplitude of the
curvature perturbation Rk (at the bottom), obtained numer-
ically, have been plotted as a function of e-fold N during the
epoch of preheating that succeeds inflation. For purposes of
illustration, we have considered the simple case of the conven-
tional quadratic potential to drive inflation and preheating.
Also, for convenience, we have chosen to work with a small
period of inflation and have highlighted the behavior of the
velocity of the field and the amplitude of the curvature pertur-
bation during the epoch of preheating (in this context, also
see Ref. [39]). For our choice of the parameters and initial
conditions, inflation ends at N ≃ 28.3 and the mode of in-
terest leaves the Hubble scale during inflation at N ≃ 26.2.
It is evident from the figures that the curvature perturbation
diverges exactly at the points where ϕ̇ and, hence, Ḣ vanish.

the inflationary potential. The situation encountered in
the cases of the bouncing scenarios we have considered
here is exactly similar to the behavior during preheat-
ing. In fact, in both the situations, the divergences occur
whenever Ḣ = 0. Due to this reason, we believe that
the divergent curvature and isocurvature perturbations
which we encounter in the bouncing models of our inter-
est pose no cause for concern (for a discussion on this
issue, also see Ref. [40]). There are two points which we
wish to stress before we conclude. Note that the back-
ground is well behaved (say, no divergences in the cur-
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vature invariants arise) at the points where Ḣ vanishes.
Moreover, we should clarify that we have made no ef-

fort to regularize the perturbations. We have chosen to
work in suitably convenient gauges in order to evolve the
perturbations across the points where Ḣ vanishes.
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