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Uncertainty Quantification
of a Nonlinear Aeroelastic
System Using Polynomial
Chaos Expansion With
Constant Phase Interpolation
The present study focuses on the uncertainty quantification of an aeroelastic instability sys-
tem. This is a classical dynamical system often used to model the flow induced oscillation
of flexible structures such as turbine blades. It is relevant as a preliminary fluid-structure
interaction model, successfully demonstrating the oscillation modes in blade rotor struc-
tures in attached flow conditions. The potential flow model used here is also significant
because the modern turbine rotors are, in general, regulated in stall and pitch in order to
avoid dynamic stall induced vibrations. Geometric nonlinearities are added to this model
in order to consider the possibilities of large twisting of the blades. The resulting system
shows Hopf and period-doubling bifurcations. Parametric uncertainties have been taken
into account in order to consider modeling and measurement inaccuracies. A quadrature
based spectral uncertainty tool called polynomial chaos expansion is used to quantify the
propagation of uncertainty through the dynamical system of concern. The method is able to
capture the bifurcations in the stochastic system with multiple uncertainties quite success-
fully. However, the periodic response realizations are prone to time degeneracy due to an
increasing phase shifting between the realizations. In order to tackle the issue of degener-
acy, a corrective algorithm using constant phase interpolation, which was developed ear-
lier by one of the authors, is applied to the present aeroelastic problem. An interpolation of
the oscillatory response is done at constant phases instead of constant time and that results
in time independent accuracy levels. [DOI: 10.1115/1.4024794]

1 Introduction

Aeroelastic instability remains an important concern for the
design of wind turbine rotors, more so with the use of increasingly
flexible blades. This increased flexibility brings in complex oscil-
lation modes which could be a potential threat to the safety of the
blades. Moreover, it is becoming increasingly recognized that for
the design of a complex engineering system, such as a wind tur-
bine, it is crucial to consider the effect of system uncertainties [1];
uncertainties considered in the computational models would
enhance the reliability of the design predictions. Uncertainty is an
integral part of any system. Uncertainties could arise due to insuf-
ficient knowledge of system parameters, modeling assumptions,
human error in measurement, or inherent noise present in the sys-
tem [2]. Traditionally aeroelastic design relies on deterministic
models. However, due to the aforementioned reasons and the criti-
cal speed being sensitive to the system uncertainties, one should
include the input uncertainties in the design in a proper stochastic
framework. However, considering the effect of input uncertainties
could pose a significant challenge to the designer since the com-
putational framework needed to accommodate the uncertainty
quantification analysis could be quite tedious. It is also sometimes
necessary to look for the right and most appropriate uncertainty

quantification algorithm suitable for various complex design
processes.

The most common method used to quantify the effect of uncer-
tainty in a system is the Monte Carlo simulation (MCS). However,
it involves generating an ensemble of realizations of the random
parameters and repeated deterministic analysis corresponding to
each of these realizations. Since the accuracy of the MCS proce-
dure depends on the ensemble size N and the convergence rate is
only O(N0.5), the MCS can be extremely time consuming and
computationally expensive; more so if a large order high fidelity
system is involved. Hence, there is a need to look for alternate
techniques that are computationally more efficient than the direct
MCS procedure. Polynomial chaos expansion (PCE) is such an
approach, pioneered by Ghanem and Spanos [3] as a stochastic fi-
nite element method in the field of structural mechanics. This is
often called a spectral technique since it uses a spectral represen-
tation of the uncertainty in terms of orthogonal polynomials. In
the original form, is uses Hermite polynomials as the basis along
the random dimension and involves Gaussian random variables
[4]. A standard Galerkin projection is applied along the random
dimensions in order to obtain the governing equations in their
weak form. The resulting systems are solved for the coefficients
of the random modes [5]. Convergence behavior has been investi-
gated for various Gaussian and non-Gaussian random inputs using
Hermite polynomials as compared to other families of orthogonal
polynomials from the Askey family [6].

Although the polynomial chaos method was initially general-
ized to polynomials of the Askey scheme only, the extension to ar-
bitrary random distributions soon followed. By employing the
correspondence between the probability density function (PDF)
and the weighting function in the orthogonality relation, we can
generate optimal expansion polynomials for an arbitrary random
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distribution. The resulting expansion polynomials need not neces-
sarily come from the Askey scheme. There exist various ways to
calculate these optimal expansion polynomials; see, for instance,
Refs. [7–9].

The Galerkin projection step modifies the governing equations
to a coupled form, which is very complex at times (depending on
the uncertainties present and also the nonlinearities in the system)
and arriving at them can also be a tedious task. This PCE
approach is often referred to as the intrusive approach. For high fi-
delity and complex systems this could be prohibitively costly. As
a result, uncoupled alternatives in the PCE family have been
developed. The most important one among the various nonintru-
sive approaches is the probabilistic collocation method. This
chooses some specific optimal points along the random dimension
(collocation points) and runs the system at these points. This is
similar to the MCS but the number of deterministic runs required
is very small. The complete stochastic response can be reproduced
using the collocation data and an interpolation polynomial. It is
standard practice to use the Gauss quadrature points as the collo-
cation nodes [10,11]. Another nonintrusive alternative is the spec-
tral projection method [12]. This approach projects the response
against each basis function using inner products and employs the
polynomial orthogonality properties to extract each coefficient.
Each inner product involves a multidimensional integral over the
support range of the weighting function, which can be numerically
evaluated using a sampling approach, a numerical quadrature, or a
sparse grid [13]. The system has to be run deterministically at spe-
cific integration node points, which is similar to the collocation
approach. However, the time taken is a very small fraction of the
full order MCS, thus making it computationally lucrative. Pettit
and his coworkers [14,15] have applied this approach for an
aeroelastic model with bending torsion flutter. In a recent study,
Chassaing et al. [16] have used a stochastic projection based
piecewise polynomial chaos approach in a bending-torsion flutter
system subject to supersonic loads. A hard spring nonlinearity
was considered in the model. The piecewise spectral approach
was able to capture the sharp changes in the stochastic bifurcation
behavior. In a separate series of work on aeroelastic instabilities,
Poirel and Price [17,18] have studied a nonlinear classical flutter
problem with random gusts. They have used a Monte Carlo based
approach to follow the stochastic bifurcation behavior.

In our earlier work on an uncertain aeroelastic system, we have
used a Gauss–Hermite quadrature scheme to evaluate the chaos
coefficient in a one-dimensional approach [19,20]. Since Gaussian
random variables and Hermite polynomials were involved, the
Gauss–Hermite quadrature gives an optimal converges with mini-
mal nodes. In the present study, we use the approach for a multi-
random variable model. This is performed on a multidimensional
random domain in which the quadrature locations are the tensor
products of the single dimensional quadrature nodes. Addition-
ally, in the present study, parameter variations have been tracked
for both single and multiple bifurcations in a series. The perform-
ance of the multidimensional PCE in capturing the series of sto-
chastic bifurcations is investigated.

The second aspect of the study is the investigation of the long
term degeneracy problem. Generalized polynomial chaos (gPC) has
nonuniform convergence and tends to break down for long time
integration. The reason is the increased nonlinearity of the response
surface with increased time. This is a problem in systems with an
oscillatory response in which the response frequency becomes ran-
dom. As a result, the probability density function (PDF) of the solu-
tion evolves as a function of time. The set of orthogonal
polynomials associated with the initial distribution will, therefore,
not be optimal at later times, thus reducing the efficiency of the
method for long-term simulation. This is discussed in Refs.
[15,21–25] and is also observed in our flutter periodic solutions.
This is, at the moment, an active area of research and several adapt-
ive approaches are being proposed to tackle the problem.

Pettit and Beran [14] have applied a Wiener–Haar expansion to
overcome the long time degeneracy problem. Wan and Karniadakis

[25,26] have developed an adaptive multi-element generalized
polynomial chaos method (ME-gPC) as a robust scheme to alleviate
the problem of long term degeneracy and discontinuity in the ran-
dom space. The main idea of the ME-gPC is to adaptively decom-
pose the space of random inputs into multiple elements and
subsequently employ polynomial chaos expansions at the element
level. Lucor and his coworkers [16,27] have applied a similar tech-
nique, but a nonintrusive multi-element polynomial chaos formula-
tion, to aeroelastic systems in order to predict the stochastic
response in the presence of discontinuities in the random space.
Millman et al. [22,24] have developed a stochastic projection
method based on the Fourier chaos expansion and the nonintrusive
B-spline stochastic projection in order to capture the sharp disconti-
nuities in the subcritical bifurcation behavior along with the long
term periodic behavior. In another approach, Gerritsma et al. [28]
have defined new stochastic variables and corresponding orthogo-
nal polynomials are constructed as time progresses. With the new
stochastic variables the solution can be represented exactly by lin-
ear functions. This allows the method to use very low order polyno-
mial approximations with high accuracies. An algorithm based on
constant phase interpolation [20,29,30] was also developed to deal
with the long time degeneracy problems. Le Maitre et al. [31] used
a similar principle in their work on the PCE with asynchronous
time integration. The constant phase interpolation method is
described in more detail later in the paper. In the present work, we
apply this technique to a two-random variable model and investi-
gate the approach in terms of computational effort and possible
applicability to even higher order cases.

We consider a classical aeroelastic model with system nonli-
nearity and a potential flow model. Although modern flexible
rotors can encounter the dynamic stall regime during their opera-
tion, the chances of stall induced vibration is minimized by stall
and pitch regulation. The idea is to use the classical model to
check how the multiparameter PCE works with 2D quadrature in
capturing the series of bifurcations and also to investigate the
cause and propagation of degeneracy. The second bifurcation
point is important because even if the structure survives the onset
of oscillation (first bifurcation point), it may encounter a cata-
strophic situation following the second bifurcation. It is, therefore,
crucial to accurately predict both bifurcations in the presence of
uncertainty, which is the primary focus area of this study.

In the next section, we discuss the nonlinear aeroelastic model
and present the governing equations. In Sec. 3, a brief overview of
the PCE approach and the present formulation for a two-random
variable quadrature scheme is given. Section 4 discusses the
results for two-random variable cases. The long term degeneracy
problem and the constant phase algorithm are discussed in Sec. 5.
In Sec. 6, this algorithm is applied for the present multirandom
variable cases and the last section summarizes the conclusions
from the study.

2 Nonlinear Aeroelastic System

Figure 1 shows a schematic plot of the two degree-of-freedom
pitch-plunge aeroelastic system along with the notations used in
the analysis. The aeroelastic equations of motion for the linear

Fig. 1 The schematic of a symmetric airfoil with pitch and
plunge degrees-of-freedom
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system have been derived by Fung [32]. For nonlinear restoring
forces such as with cubic springs in both pitch and plunge, the
mathematical formulation is given by Lee et al. [33] in the nondi-
mensional form as follows:

e00 þ xaa
00 þ 2fe

x
U

e0 þ x
U

� �2

ðeþ bee
3Þ ¼ � 1

pl
CLðsÞ

xa

r2
a

e00 þ a00 þ 2
fa

U
a0 þ 1

U2
ðaþ baa

3Þ ¼ 2

plr2
a

CMðsÞ
(1)

where e denotes the nondimensional displacement of the elastic
axis point, a is the pitch angle about the elastic axis. Let us also
use v as the wind velocity and b as the half chord. Here, s ¼ vt=b
is the nondimensional time, U ¼ v=ðbxÞ is the nondimensional
velocity (also called the reduced velocity), and x ¼ xe=xa, xe,
and xa are the natural frequencies of the uncoupled plunging and
pitching modes, respectively. In the structural part fa and fe are
the damping ratios in the pitch and plunge, respectively, The mass
ratio l is defined as m=pqv, with m being the airfoil mass and q
being the air density. Here, ra is the radius of gyration about the
elastic axis and xa is the nondimensional distance from the elastic
axis to the center of mass. Additionally, ba and be denote the coef-
ficients of the cubic spring in the pitch and plunge, respectively.
For the incompressible inviscid flow, Fung [32] gives the expres-
sions for the unsteady lift and pitching moment coefficients CLðsÞ
and CMðsÞ.

Using the Wagner function and introducing a vector of new var-
iables fw1;w2;w3;w4g, the original integrodifferential equations
for the aeroelastic system given by Eq. (1) are reformulated into a
set of first order autonomous differential equations of the form

x0 ¼ f ðX; system parametersÞ (2)

where X is an array of eight variables given as

x1; x2; x3; x4; x5; x6; x7; x8f g ¼ a; a0; e; e0;w1;w2;w3;w4f g

For more details, refer to Lee et al. [33].

3 Polynomial Chaos Expansion

The polynomial chaos expansion is a spectral uncertainty quan-
tification tool which offers a means of calculating high-order in-
formation such as the mean, variance, and successive moments if
the probability density function (PDF) of the input variable is well
defined. The original homogeneous polynomial chaos expansion
[4] is based on the homogeneous chaos theory of Wiener [34].
This is based on a spectral representation of the uncertainty in
terms of orthogonal polynomials. In its original form, it employs
Hermite polynomials as a basis from the generalized Askey
scheme and Gaussian random variables. Karniadakis et al.
[6,35,36] demonstrated that an exponential convergence rate can
be achieved in this case for a number of test problems.

In the Galerkin-PCE (also called the intrusive PCE) a standard
Galerkin projection is applied along the random dimensions in
order to modify the governing equations to a coupled form in
terms of the chaos coefficients. Then the resulting deterministic
systems are solved using standard techniques to obtain the chaos
coefficients [5]. However, these equations are usually more com-
plex and arriving at them is quite often a tedious task for some
choices of the uncertain parameters. With an increasing order of
expansion, it is required to solve higher order inner products
which increases the computational time required to obtain the
chaos coefficients and, in some cases, it takes almost the same
computational time as the MCS [19].

In order to avoid this, several uncoupled alternatives have
been developed based on the observation that the coefficients of
the different modes can be obtained by projecting deterministic

computations onto the PCE basis. These are collectively called
nonintrusive approaches. In the nonintrusive PCE approach, simu-
lations are used as black boxes and the calculation of chaos expan-
sion coefficients for the response is based on a set of simulation
response evaluations. The probabilistic collocation method is such
a nonintrusive polynomial chaos method in which the problem is
collocated at Gauss quadrature points in the probability space
[10,11]. The deterministic solutions are performed at these collo-
cation points. The nonintrusive polynomial chaos method pro-
posed by Walters and coworkers [37–39] is based on
approximating the polynomial chaos coefficients. A similar
approach called nonintrusive spectral projection has been used by
Reagan et al. [12,13,40]. Pettit and Beran [14,15] have also used a
stochastic projection technique to compute the chaos expansion
coefficients in an aeroelastic system. When multiple uncertain pa-
rameters are involved, the collocation grids are constructed using
tensor products of one-dimensional grids [21,40]. Thus, the num-
ber of collocation points and, therefore, the number of required
deterministic solutions rapidly increases. As an alternative, sparse
grid collocation approaches can be implemented [41–43].

In the present study, a spectral projection based nonintrusive
approach [3,44] is used to evaluate the chaos coefficients using
the Gauss–Hermite quadrature. Here, the chaos expansions are not
substituted in the governing equations; instead, samples of the sol-
utions deterministically evaluated at certain collocation points as
in the MCS (we call this step the pseudo-Monte Carlo method)
are used to evaluate the coefficients directly using a projection
formula. As a result, this approach can utilize the existing deter-
ministic code. Another advantage of this method is that the chaos
coefficients are independent of each other.

As per the Cameron–Martin theorem [45], a random process
Xðt; hÞ (as function of random event h), which is second order sta-
tionary, can be written as

X t;hð Þ ¼ ba0W0þ
X1
i1¼1

bai1 W1 ni1 hð Þ
� �

þ
X1
i1¼1

Xi1

i2¼1

bai1i2W2 ni1 hð Þ;ni2
hð Þ

� �

þ
X1
i1¼1

Xi1

i2¼1

Xi2

i3¼1

bai1i2i3
ð ÞW3 ni1 hð Þ;ni2 hð Þ;ni3 hð Þ

� �
þ� � � (3)

where Wnðni1 ; ni2
;…; nin ) denotes the Hermite polynomial in

terms of the n-dimensional independent standard Gaussian ran-
dom variable vector n ¼ ðni1

; ni2 ;…; ninÞ with zero mean and unit
variance.

In the original form, the chaos expansion uses Hermite polyno-
mials (Wns); here, wns are the one-dimensional Hermite polyno-
mials as given below

wn nð Þ ¼ nwn�1 � n� 1ð Þwn�2 (4)

One can also use the most appropriate orthogonal polynomials
from the generalized Askey scheme for some standard non-
Gaussian input uncertainty distributions such as c and b [5,6]. For
any arbitrary input distribution, a Gram–Schmidt orthogonaliza-
tion can be employed to generate the orthogonal family of polyno-
mials [8].

Any stochastic process aðt; nðhÞÞ, governed by Gaussian ran-
dom variables n (n can always be normalized as a standard Gaus-
sian one) can be approximated by the following truncated series

a t; n hð Þð Þ ¼
Xp

j¼0

âj tð ÞUj n hð Þð Þ (5)

Using the Galerkin projection on Eq. (5) by taking the inner prod-
uct h:;Uki, for k ¼ 0; 1; ::::; p, since the Hermite polynomials are
statistically orthogonal, that is, hWj;Wki ¼ 0 for j 6¼ k, the expan-
sion coefficients can directly be evaluated as
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bak tð Þ ¼ a t; n hð Þð Þ;Ukh i
U2

k

� � (6)

The denominator in Eq. (6) can be shown to satisfy hU2
ki ¼ k! for

non-normalized Hermite polynomials [14]. Thus, the key step in
projecting aðt; nðhÞÞ along the polynomial chaos basis is the eval-
uation of haðt; nðhÞÞ;Uji. This involves multidimensional integrals
which are mainly solved by tensor product quadrature.

In the quadrature based approach, the simplest general tech-
nique for approximating a multidimensional integral, as in Eq.
(6), is to employ a tensor product of the one-dimensional quadra-
ture rule. There are several choices of quadrature rules which
depend upon the weighting function of the integral (the weighting
function depends on the choice of the orthogonal polynomials
used), e.g., the Gauss–Hermite quadrature, the Gauss–Legendre
quadrature, the Gauss–Laguerre quadrature, etc.

Consider a two-random variable case for demonstration. The
inner product in the numerator of Eq. (6) is then given by the fol-
lowing integral

a t; n hð Þð Þ;Ukh i ¼
ð1
�1

ð1
�1

a t; n1; n2ð ÞUkx n1; n2ð Þ dn1dn2 (7)

where the weighting function xðn1; n2Þ is the Gaussian probability
density function and is given as follows:

xðn1; n2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ2

q
0
B@

1
CAe�ð1=2Þðn2

1þn2
2Þ (8)

A Gauss–Hermite quadrature will be suitable for evaluating the
preceding integral as the domain is ð�1;1Þ and the weight func-
tion is a Gaussian PDF. Equation (7) is then rewritten as

a t; n hð Þð Þ;Ukh i ¼ 1

2p

XN0

i¼1

XN0

j¼1

aðt; n1i
; n2j
ÞUkðn1i

; n2j
Þ

h i
W1i

W2j

(9)

where the couples ðnnk
;WkÞ represent the one-dimensional

Gauss–Hermite quadrature points and weights. The accuracy of
the method is clearly a function of the number of quadrature
points N0 [40]. The quadrature points are the zeros of the Hermite
polynomials of the chosen order. A number of deterministic runs
are performed at the quadrature points, called the pseudo-MCS,
which is much lower than the full MCS. The realizations of the
system response aðt; nÞ are then used to estimate the deterministic
coefficients bajðtÞ in Eq. (6) using the Gauss–Hermite quadrature
rule as given in Eq. (9). The advantage of quadrature is that it is
nonintrusive and the sparse grid approach [42] can be used instead
of tensor products to reduce the number of samples in higher
dimensions. The accuracy is exponential and it has the flexibility
to choose different quadrature rules (Gauss, Clenshaw–Curtis).

4 Results for Two-Random Variable Models

The main focus of the present study is quantifying the effect of
parametric uncertainties on the bifurcation behavior and the flutter
boundary of the nonlinear aeroelastic system. A fourth order vari-
able step Runge–Kutta method is employed for the time integra-
tion. The system parameters that are assumed to be uncertain are
different combinations of the following parameters ba, �x, and fa.
In the first case, we will consider ba and �x as independent random
variables and in the second case, ba and fa are considered as inde-
pendent random variables. The rest of the parameters are deter-
ministic and are taken from Ref. [33].

4.1 Uncertain Structural Nonlinearity and Natural
Frequency. First, we model parametric uncertainties in the cubic
spring coefficient (ba) and the ratio of the natural frequencies in
plunge and pitch ( �x). These parameters are assumed to be inde-
pendent Gaussian random variables with a mean of 3.0 and 0.2,
respectively; each is assumed to have a coefficient of variation of
0.10. Figure 2 shows the stochastic bifurcation behavior as a func-
tion of reduced velocity U. Three bifurcation behaviors are plotted.
The minimum and maximum branches are obtained by constraining
the random domain to (�4 to 4) since 99.99% of the realizations of
the random variables fall into this domain [46]. The mean branch is
obtained by taking the mean values of the input random variables.
The first bifurcation (around 6.28 for the mean branch) is a super-
critical Hopf bifurcation or a flutter point by which a stable limit
cycle oscillation (LCO) emerges and a damped response becomes
unstable. The second bifurcation point (around 12.4 for the mean
branch) corresponds to a flip bifurcation or a period doubling bifur-
cation by which the period-1 LCO response becomes unstable and
a stable period-2 response emerges. Both the bifurcation points
(points of critical U) are shifted due to the randomness in the input
parameters and the LCO amplitude varies along U. However, there
are no qualitative changes in the bifurcation behavior due to para-
metric uncertainties.

In order to show the convergence of the PCE behavior,
response PDFs are plotted for various low order PCEs in Fig. 3 at
a nondimensional time level of 2000. After the tenth order the
convergence is slow. A 25th order expansion is finally chosen to
obtain a good match with the MCS, even beyond the chosen time
level of 2000. A typical realization time history obtained with the

Fig. 2 Uncertain ba and �x: stochastic bifurcation plot

Fig. 3 Uncertain ba and �x: convergence behavior of the PCE at
U 5 6.8 at nondimensional time t 5 2000
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25th order expansion along with its deterministic counterpart at
U¼ 6.8 is shown in Fig. 4. The deterministic solution shown here
is the result of numerically solving Eq. (1) for the values of the
random parameters corresponding to the PCE realization. The
chosen U value is close to the first bifurcation point. To maintain
time accuracy for large time we have chosen a 25th order expan-
sion, which is quite high. Convergence of the PCE with an
increasing order of PC expansion is given in our earlier work
[19,47]. Note that in the present section, we use a 25th order of
PC expansion for all the cases. This provides a good long-time ac-
curacy, so that the bifurcation can be studied in detail.

In Fig. 4, the PCE solution matches well with that of the actual
solution at the beginning. At around t¼ 4000, the PCE solution
starts to degenerate and, as time proceeds, this degeneracy
increases. The reason for this mismatch is better understood from
Fig. 5, which presents a number of typical realization time histor-
ies. Figure 5 shows significant phase shifting, which is more
prominent as time proceeds, along with variations in the LCO am-
plitude. The random variation in the frequency ratio �x affects the
frequency of the response, which leads to the phase difference
increasing with time. The growing phase difference makes the
PDF time dependent and the PCE fails to achieve the same level
of accuracy for all time. It is also to be noted that at this U, the
bifurcation branches are very close to each other, as is also clear
from Fig. 2. Possibly both the random variables are canceling the
effect of each other around this U.

A number of representative PDFs are plotted for the same U in
Fig. 6 at different time levels. At t¼ 2000, which is before the
degeneracy shows up, there is a good match between the MCS
and PCE; a bimodal behavior in the PDF is just seen to be emerg-

ing. This bimodal behavior is due to the phase shifting between
the realizations and should become more prominent with time.
This is shown in Figs. 6(c) and 6(d), where PDFs are plotted at
higher time levels. The bimodal behavior is significant here and
the PCE fails to match the reference MCS. It should be noted that
with a high order PC expansion (as considered in the present
study) an accurate stochastic bifurcation behavior can be predicted
since the high order PCE can maintain the accuracy beyond the
initial time transients. However, the PDF behavior is accurate
only up to a limited time level.

To investigate this long term degeneracy, the time evolution of
the chaos expansion coefficients is followed. The corresponding
time histories for each ba are shown in Figs. 7–10. It can be seen
that the spectral distribution of the energy in the random dimen-
sion shifts to higher chaos modes as time progresses. This is
caused by the almost linear response at the beginning and the
increasingly oscillatory response surface at later times. Figure 7
shows the first random mode (mean) which contributes mostly at
the initial part of the solution and probably contributes very little
at higher times. Figure 8(a) shows the next two random modes.
The Hermite polynomials used to get these two random modes are
constructed using the first two 1-D Hermite polynomials. The
maximum amplitude of the chaos coefficients shifts to higher time
levels and the contribution of the third mode ( ba3) is comparatively
less than the second ( ba2). Figure 8(b) shows the next three random
modes plotted together because the 2-D Hermite polynomials
used for getting these three random modes are obtained using the
first three 1-D Hermite polynomials. Again, in this group of PCE
coefficients, the contribution of the first one is dominating and the
other two contribute less. Similarly, in Figs. 9 and 10, the groups
of higher random modes are plotted. These groups are formed
according to the 1-D Hermite polynomials used for their construc-
tion. The contribution of the first PCE coefficient in each group is
larger compared to the other modes and the energy in the random
dimension shifts by each group and not by mode. This shows that
the two-random variable case requires an even higher order
expansion compared to the single-random variable case, where
each random mode contributes to the shifting of the energy to
higher PCE modes as time progresses [14]. At time levels above
t¼ 5000, the PCE coefficients of the chosen order do not contrib-
ute much; hence, the solution starts to degenerate.

Figure 11 shows the LCO amplitude response PDFs as a func-
tion of the reduced velocity around the first and second determin-
istic bifurcation points (U¼ 6.285 and 12.45). Note that these
PDFs are obtained before the degeneracy started. As seen from
Figs. 11(a) and 11(b), around U¼ 6.27, the PDF is bimodal but
shows a larger peak around a¼ 0 as most realizations give a
damped response (a¼ 0). At U¼ 6.37, the response PDF is more
equally distributed between a¼ 0 and a finite amplitude LCO. As
U increases, the number of realizations entering into the LCO
increases and, hence, the peak towards the positive a becomes
more dominant. Eventually for U above 6.59, single-peak PDFs
emerge, indicating a monotonic behavior with all realizations
entering the LCO behavior. Thus, the PDFs have clearly gone
through a qualitative change, or in other words, a bifurcation. At
U¼ 12 (see Figs. 11(c) and 11(d)), single-peak monotonic behav-
ior is observed since all of the response realizations are gathered
towards a single value of a. From U¼ 12.5 to U¼ 12.7, the
response realizations are scattered around more than one value of
a. Hence, multimodal behavior of the PDFs can be seen. At all of
the velocities above U¼ 12.7, the response realizations are scat-
tered around two different a amplitudes. Again, a similar qualita-
tive change, or bifurcation, of the PDFs is observed.

Qualitatively, there is not much difference between the first and
the second bifurcation points in terms of the PCE performance.
The phase shifting between the realizations is seen to be stronger
around the second bifurcation point than the first one and, as a
result, the degeneracy rate is faster. The degeneracy experience
with the PCE response is quite similar at other velocities and,
hence, are not discussed in detail.

Fig. 4 Uncertain ba and �x: a typical time history with a 25th
order PCE at U 5 6.8

Fig. 5 Uncertain ba and �x: five different realizations of the time
history with a 25th order PCE at U 5 6.8
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4.2 Uncertain Structural Nonlinearity and Viscous
Damping. Next, we consider the cubic spring coefficient (ba)
and viscous damping ratio (fa) as the independent random varia-
bles. These parameters are again assumed to be Gaussian random

variables with a mean of 3.0 and 0.1, respectively; each is
assumed to have a coefficient of variation of 0.10. The remaining
parameters are the same as in the earlier case. Figure 12 shows the
stochastic bifurcation plot as a function of the reduced velocity.
The minimum and maximum bifurcation branches are plotted by
constraining the random domain to (�4 to 4), as in the previous
case. The mean branch is plotted at the mean values of the input
random variables. Once again, the first bifurcation is a supercriti-
cal Hopf bifurcation point, by which a stable LCO emerges and a
damped response becomes unstable and the second one is a flip or
period doubling bifurcation, by which the period-1 LCO response
becomes unstable and a stable period-2 response emerges. Unlike
the earlier case, the first critical point remains unaffected and only
the second bifurcation point shifts due to the randomness. Fluctua-
tions in structural damping do not affect the oscillation (flutter)
onset, unlike the structural natural frequency which had a direct
bearing on the critical point. As a result, in this case, there is no
shift in the first critical point but only in the oscillation amplitude.
In the previous case, both were affected and, as a result, the three
branches crossed each other at a velocity beyond the flutter onset
(first critical point). The flip bifurcation point is mainly governed
by the nonlinearity and behaves in a similar fashion in both cases.

A representative velocity around the first bifurcation point is
chosen to discuss the degeneracy behavior. A typical realization

Fig. 6 Uncertain ba and �x: comparison of the PDFs obtained by the PCE (25th order) and the MCS with U 5 6.8 at the nondi-
mensional time (a) t 5 2000, (b) t 5 4000, (c) t 5 6000, and (d) t 5 8000

Fig. 7 Uncertain ba and �x: PCE coefficients at U 5 6.8
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time history obtained with the 25th order PCE along with its
deterministic counterpart at U¼ 6.8 (taken the same as in the ear-
lier case) is compared in Fig. 13. The match is perfect at the start
and, as time proceeds, again, the PCE solution starts degenerating.

This time degeneracy is much slower and the match is good for a
large amount of time. Here we have less phase difference between
the response realizations compared to the previous cases. This is
presented in Fig. 14, where the time histories for a few typical

Fig. 8 Uncertain ba and �x: PCE coefficients at U 5 6.8

Fig. 9 Uncertain ba and �x: PCE coefficients at U 5 6.8

Fig. 10 Uncertain ba and �x: PCE coefficients at U 5 6.8
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samples are plotted. A few representative PDFs at different time
levels t¼ 4000, 6000, and 8000 are plotted in Fig. 15 for the same
U. In Fig. 15(b), the degeneracy has just started and there is a
slight mismatch between the PCE and MCS. Figure 15(c) shows
PDFs at time t¼ 8000. The bimodal behavior has clearly emerged
here and, once again, the PCE shows a slight mismatch with the
MCS. Thus, in this case, the effect of degeneracy is much less

prominent than in the first case because of the smaller impact of
fa on the system frequency. The behavior around the second criti-
cal point is also quite similar and is not shown here. The LCO am-
plitude response PDFs as a function of the reduced velocity are
plotted in Fig. 16, around the second bifurcation point. At
U¼ 10.5, as all of the realizations are concentrated towards a sin-
gle value of a, single peak monotonic behavior is observed. In the

Fig. 11 Uncertain ba and �x: LCO amplitude response PDF as a function of reduced velocity (a),(b) around the first determin-
istic bifurcation point, and (c),(d) around the second deterministic bifurcation point

Fig. 12 Uncertain ba and fa: stochastic bifurcation plot
Fig. 13 Uncertain ba and fa: a typical time history with the 25th
PCE at U 5 6.8
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critical range from U¼ 10.9 to U¼ 11.5, the PDFs are bifurcated
from single-peak behavior to bimodal behavior due to the occur-
rence of the higher period LCO after the second bifurcation point.
Hence, a bifurcation of PDFs is observed.

5 Long Term Degeneracy

The increasing nonlinearity of the response surface with
increasing integration times causes the PCE approach to suffer
from a lack of robustness in the modeling of stochastic oscillating
systems involving long-term integration. This effect is especially
profound in problems with oscillatory solutions in which the fre-
quency of the response is affected by the random parameters. As a
countermeasure, one can increase the order of the chaos expan-
sion. However, this can only push the degeneracy to a later time
but cannot solve it entirely [23]. In the previous two examples, the
effect of degeneracy up to a certain time level is different for dif-
ferent random variable combinations. The higher the phase shift-
ing, the less the time accuracy is for the long time. Below we
review the constant phase interpolation algorithm and apply it to
the two-random variable cases previously considered.

Polynomial chaos methods usually require a rapidly increasing
number of samples with time to maintain a constant accuracy. In
Ref. [20], the required number of samples is reduced by applying
a one-dimensional collocation rule to a time-independent parame-
terization for periodic responses. Because of the parameterization,
the accuracy of this method is independent of time. The approach

Fig. 14 Uncertain ba and fa: five different realizations of the
time history with a 25th order PCE at U 5 6.8

Fig. 15 Uncertain ba and fa: comparison of the PDFs obtained by the PCE (25th order) and the MCS with U 5 6.8 at the nondi-
mensional time (a) t 5 4000, (b) t 5 6000, and (c) t 5 8000
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was extended in Ref. [29] to further improve the accuracy and the
applicability using an adaptive stochastic finite elements frame-
work with interpolation at constant phase. Here, we combine, for
the first time, multidimensional quadrature rules with constant
phase interpolation to resolve multiple uncertainties in long-term
integration problems with spectral accuracy. The technique is
described in detail in the following text.

Performing the uncertainty quantification interpolation of oscilla-
tory samples at constant phase instead of at constant time results in
a constant accuracy with a constant number of samples [29].
Assume; therefore, that solving Eq. (1) for the output of interest
uðt; nÞ at realizations of the random parameters nk results in oscilla-
tory samples vkðtÞ ¼ uðt; nkÞ, of which the phase v/k

ðtÞ ¼ /ðt; nkÞ
is a well-defined monotonically increasing function of time t for
k ¼ 1; ::; ns, with ns being the number of samples.

In order to interpolate the samples vðtÞ ¼ fv1ðtÞ;…; vnðtÞg at
constant phase, first, their phase as a function of time
v/ðtÞ ¼ fv/1

ðtÞ;…; v/n
ðtÞg is extracted from the deterministic sol-

utions vðtÞ. The phases v/ðtÞ are extracted from the samples based
on the local extrema of the time series vðtÞ. A trial and error pro-
cedure identifies a cycle of oscillation based on two or more suc-
cessive local maxima. The selected cycle is accepted if the
maximal error of its extrapolation in time with respect to the
actual sample is smaller than a threshold value �ek for at least one
additional cycle length. The functions for the phases v/ðtÞ in the
whole time domain T are constructed by identifying all successive
cycles of vðtÞ and linear extrapolation to t¼ 0 and t¼ tmax before
and after the first and last complete cycle, respectively. The phase
is normalized to zero at the start of the first cycle and a user-
defined parameter determines whether the sample is assumed to
attain a local maximum at t¼ 0. Second, the time series for the
phase v/ðtÞ are used to transform the samples vðtÞ into functions
of their phase v̂ðv/ðtÞÞ according to

v̂k v/k
tð Þ

� �
¼ vk tð Þ (10)

for k ¼ 1;…; ns, see Fig. 17. Third, the sampled phases v/ðtÞ are
interpolated to the function w/ðt; nÞ using the interpolation
method h

w/ t; nð Þ ¼ h v/ tð Þ
� �

(11)

as an approximation of the uncertain phase /ðt; nÞ. Finally, the
transformed samples v̂ðv/ðtÞÞ are interpolated at a constant phase
u 2 w/ðt; nÞ to

ŵ u; nð Þ ¼ h v̂ uð Þð Þ (12)

Repeating the latter interpolation for all phases u 2 w/ðt; nÞ
results in the function ŵðw/ðt; nÞ; nÞ. The interpolation
ŵðw/ðt; nÞ; nÞ is then transformed back to an approximation in the
time domain wðt; nÞ as follows:

w t; nð Þ ¼ ŵ w/ t; nð Þ; n
� �

(13)

The resulting function wðt; nÞ is an approximation of the unknown
response surface uðt; nÞ as a function of time t and the random
parameters nðhÞ. This uncertainty quantification formulation for
oscillatory responses is proven to achieve a bounded error
êðu; nÞ ¼ jŵðu; nÞ � ûðu; nÞj as a function of phase u for the
periodic responses. The error eðt; nÞ ¼ jwðt; nÞ � uðt; nÞj is also
bounded in time under certain conditions; see Ref. [48].

6 Results for Constant Phase Interpolation

We apply the preceding algorithm to the two-random variable
cases considered earlier. To investigate the constant phase

Fig. 16 Uncertain ba and fa: LCO amplitude response PDF as a function of the reduced velocity about the second bifurcation
point (a) 3D, and (b) 2D

Fig. 17 Oscillatory samples as a function of time and phase (a)
samples vk(t), and (b) samples v̂ k ð/Þ
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algorithm in these cases, in most situations the number of sam-
pling nodes is kept at five with a piecewise linear interpolation
from the nodes to 1000 random interpolation points. In this sec-
tion, the PCE results are also plotted along with the order of the

PCE expansion, which is chosen in order to use the same number
of deterministic solutions as the constant phase case. This is to
highlight the superior accuracy level of the constant phase algo-
rithm with the same number of deterministic solutions.

6.1 Uncertain Structural Nonlinearity and Natural Fre-
quency. In the first case of random ba and �x, the time degeneracy
was quite significant. The constant phase results are shown here
for the same cases presented earlier. Figure 18 compares the evo-
lution of the response (pitch angle a) mean by a constant phase
interpolation algorithm with that of the MCS and PCE near the
first critical point U¼ 6.8. The result shows a good match between
the constant phase algorithm and the MCS. The mean response is
equal to the zeroth order term in the PCE expansion. The time
evolution plots for different chaos coefficients showed that the
mean is significant at small time levels and decreases to zero at
large time levels. Thus, the time degeneracy effect on the mean is
insignificant. The standard deviation results by the constant phase
algorithm gives a close match to that of the MCS in Fig. 19. These
results have also been compared with a fourth order PCE which,
quite expectedly, is inaccurate. A fourth order PCE would require
a minimum of five quadrature point runs which is equivalent to a
five-sample constant phase. Although the number of deterministic
runs are the same, the constant phase is able to show an excellent
match with that of the reference MCS, whereas the PCE is grossly

Fig. 18 Uncertain ba and �x: comparison of the time histories of
the mean of the pitch angle (a) by the MCS, PCE, and constant
phase at U 5 6.8

Fig. 19 Uncertain ba and �x: comparison of the time histories of
the standard deviation of the pitch angle (a) by the MCS, PCE,
and constant phase at U 5 6.8

Fig. 20 Uncertain ba and �x: comparison of the response PDF by the MCS, PCE, and constant phase for U 5 6.8 at time level
(a) 6000, and (b) 8000

Fig. 21 Uncertain ba and �x: Comparison of the time histories
of the pitch angle (a) by the MCS, PCE (25th order), and con-
stant phase at U 5 6.8
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inadequate. In the subsequent analysis, in each case, we will pres-
ent the constant phase results along with its equivalent order PCE
to highlight the advantage of the constant phase algorithm.

In Sec. 4, the PDFs were seen to differ from that of the MCS
with increasing time levels. The PDFs at time levels 6000 and
8000 are plotted in Fig. 20 for U¼ 6.8. The effect of time degen-
eracy was quite prominent for the PCE at these levels and the
PDFs at these time levels showed a significant mismatch with the
MCS in Fig. 6. On the contrary, with the constant phase algo-
rithm, there is no effect of time degeneracy on the good match
with the MCS results, even for the low number of five samples. A
comparison of a typical time history is presented in Fig. 21. A full
order (25th order) PCE is used here for comparison (as in Sec. 4)
to mark the absence of degeneracy, unlike the earlier results.

6.2 Uncertain Structural Nonlinearity and Viscous
Damping. Once again, the constant phase results are in good
agreement with the MCS. The time evolution of the mean and
standard deviation match very well with that of the MCS (not
shown here) for all times. The response PDF at two representative
time levels are shown in Fig. 22 around the first critical point, as
was done in Sec. 4. In this case, there has been lesser phase shift-
ing between the response realizations compared to the previous
case. The PDFs plotted by using a 5-sample constant phase
approach show a very good match with that of the MCS and is an
improvement over the PCE predictions of Fig. 15.

The constant phase algorithm uses only a few deterministic
runs compared to the 4000 runs of the reference MCS. However,
the postprocessing part involving the interpolation requires con-
siderably more time. Hence, for the present low order system, the
overall computational effort becomes comparable. However, the
present study is only a preliminary step in applying the algorithm
eventually to a large order high-fidelity system in which minimiz-
ing the number of deterministic solutions is crucial. These results
demonstrate that the novel multidimensional PCE with constant
phase interpolation is also able to match the MCS results after
long time integration for multivariant stochastic inputs. This leads
to a significantly more accurate solution than the standard PCE
with the same number of samples, especially for the standard
deviation and the PDFs.

7 Conclusions

In the present study, we have performed a Gauss–Hermite quad-
rature based polynomial chaos expansion for two-random variable
cases. The Gauss–Hermite quadrature ensures that a minimal num-
ber of deterministic runs are used as Gaussian probability density

functions (PDFs) and Hermite polynomials are involved. For the
nonlinear aeroelastic system considered here, the bifurcation behav-
ior has been investigated. The system is damped below the first crit-
ical point and is higher periodic oscillatory beyond the second
critical point. A supercritical Hopf bifurcation (flutter) gives way to
a period doubling bifurcation and no further bifurcations were seen
in the chosen range of velocity. The evolution of the response PDF
near these critical points show qualitative changes in their behavior.
Tracking the changes in the response PDF and identifying the sto-
chastic onset of the periodic response is, in general, important from
a fatigue point of view. The PDFs are estimated after the initial
time transients die down. However, it is also observed that the
PDFs become increasingly degenerate with time. This behavior is
well documented in the literature and is commonly referred to as a
time degeneracy problem of uncertain oscillatory response. This is
attributed to the increasing phase shifting of the realizations with
time. The uncertain input parameters considered in the present
problem also lead to a similar phase shifting of the realizations and,
as a result, the time accuracy of the polynomial chaos scheme is
lost. The extent of the degeneracy is seen to be different for differ-
ent input uncertainties. To remedy this situation an earlier devel-
oped algorithm, called the constant phase interpolation, has been
applied here for the present two-random variable cases. This tech-
nique significantly improves the time accuracy of the PDFs with a
minimal number of deterministic solutions and, thus, also maintains
the computational advantage of a nonintrusive scheme. However, it
is expected that the number of required samples in the algorithm
would increase if the degeneracy becomes severe and a larger num-
ber of deterministic solutions would be required. Even then, the
total number of deterministic runs are significantly lower than the
quadrature-based algorithm. The postprocessing step, however,
would require some extra computational effort. Overall, this algo-
rithm shows promise to be applicable to a higher number of random
parameters.
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