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ABSTRACT 
The speed of site-specific binding of transcription factor (TFs) proteins with genomic DNA 
seems to be strongly retarded by the randomly occurring sequence traps. Traps are those 
DNA sequences sharing significant similarity with the original specific binding sites. It is an 
intriguing question how the naturally occurring TFs and their specific binding sites are 
designed to manage the retarding effects of such randomly occurring traps. We develop a 
simple random walk model on the site-specific binding of TFs with genomic DNA in the 
presence of sequence traps. Our dynamical model predicts that (a) the retarding effects of 
traps will be minimum when the traps are arranged around the specific binding site such that 
there is a negative correlation between the binding strength of TFs with traps and the distance 
of traps from the specific binding site and (b) the retarding effects of sequence traps can be 
appeased by the condensed conformational state of DNA. Our computational analysis results 
on the distribution of sequence traps around the putative binding sites of various TFs in 
mouse and human genome clearly agree well the theoretical predictions. We propose that the 
distribution of traps can be used as an additional metric to efficiently identify the specific 
binding sites of TFs on genomic DNA. 
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1. Introduction 
Binding of transcription factor proteins (TFs) at specific cis-regulatory modules (CRMs) on 
the genomic DNA in the presence of enormous amount non-specific sites is critical for the 
expression and regulation of various genes inside the living cell [1-5]. In earlier studies, the 
site-specific binding of TFs was modelled as one-step Smolochowski type three-dimensional 
diffusion (3Dd) controlled collision process [6]. Later in vitro experiments on the site-
specific binding of lac repressor protein with its Operator site showed a bimolecular collision 
rate in the order of 1010-1011 M-1s-1 which was 10-102 times higher than the Smolochowski 
type 3Dd controlled rate limit [6-8]. These experimental observations clearly ruled out the 
possibility of 3Dd only (3Ddo) model and suggested a two-step mechanism i.e. a 3D1Dd 
model. According to this, TFs first non-specifically bind with DNA via 3Dd and then search 
for their specific sites via one-dimensional diffusion (1Dd) [7, 8]. 
 
The nonspecific binding of TFs is mainly driven by the electrostatic attractive forces present 
in between the positively charged DNA binding domains (DBDs) of DNA binding proteins 
(DBPs) and negatively charged phosphate backbone of DNA. Various symbols and 
abbreviations used in this paper are summarized in Table 1. The site-specific binding of TFs 
via a combination of 3Dd and 1Dd seems (3D1Dd model) to be facilitated by sliding, 
hopping and inter-segmental transfer type dynamics [7-12]. The non-specifically bound TFs 
diffuse along DNA with a step size of unit base-pair (bps) in sliding, few bps in hopping and 
few hundred to thousand bps in intersegmental transfers. Intersegmental transfers occur when 
two distal segments of the same DNA polymer come into contact through ring-closure events 
over 3D space (Fig. 1A). The conformational state of DNA seems to play critical role in 
modulating various facilitating processes. Sliding and hopping will be the dominating modes 
of dynamics on a relaxed conformational state of DNA (rcsDNA).  Intersegmental transfers 
predominantly occur on a condensed conformational state of DNA (ccsDNA).  
 
In general, both the nonspecific and site-specific binding of TFs are influenced by several 
factors viz. conformational state of DNA [13-15], electrostatic attractive forces acting at the 
DNA-protein interface [16, 17] and the counteracting shielding effects of solvent ions [10], 
presence of semi-stationary [18] and dynamic roadblocks on DNA [19-21], conformational 
fluctuations in the DBDs of TFs [22, 23] (Fig. 1B), and randomly occurring kinetic traps 
along the DNA sequence [24-26]. Apart from these factors, the spatial organization of the 
genome structure also play important roles in accelerating the search process of TFs for their 
cognate sites on DNA [27, 28]. The electrostatic interactions along with the counteracting 
shielding effects of solvent ions creates a fluidic type environment for the 1Dd of DBDs of 
TFs at the DNA-protein interface.  
 
Presence of roadblocks increases the dissociation of TFs and subsequently drive the mode of 
dynamics towards 3Dd mediated excursions [25, 26]. Switching between 1Dd and 3Dd will 
be enhanced by the conformational fluctuations at the DBDs of TFs across stationary and 
mobile states [22]. Here the stationary state is more sensitive to the sequence information 
than mobile one but moves slowly along DNA. Whereas mobile state is less sensitive to the 
sequence information but moves quickly along DNA. The conformational fluctuations in the 
DBDs of DBPs seem to be purely thermal driven. The free energy barrier that separates the 
stationary and mobile states seems to be close to the thermal energy which resembles the 
dynamics of downhill folding proteins at their mid-point denaturation temperatures [29]. 
Detailed calculations showed that the extent of thermodynamic coupling between the search 
dynamics and the rate of conformational fluctuations in the DBDs of TFs will be an optimum 
at the barrier of ~kBTln2 [29] . 
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Presence of sequence mediated kinetic traps retards the rate of site-specific binding of TFs in 
several ways. First of all there is a nonzero probability of occurrence of trap sites similar to 
the specific binding site (SBS) of TFs for sufficiently large genomes. Sequence traps slow 
down the 1Dd dynamics of TFs and also increase the overall dissociation time compared to 
that of other nonspecific binding sites (NSBS). In other words, kinetic traps increases the 
overall ruggedness or frustration of the binding energy landscape of the DNA sequence. It is 
still not clear how exactly the effects of kinetics traps are handled by various TFs under in 
vivo conditions. Recent experimental studies suggested that the presence of similar binding 
site adjacent to the specific binding site significantly influences the site-specific association 
rate [14, 24, 30]. Especially the extent of such influences seems to be directly proportional to 
the distance between the SBSs and the kinetic traps. In this context it is still not clear about 
(a) how the relative position of traps with respect to the position of initial nonspecific contact 
of TFs with DNA influences the site-specific association rate and (b) how the distribution of 
the distances between traps and SBSs in the real genomes (whether it is randomly distributed 
or correlated) affects the overall site-specific binding of TFs. Using a combination of 
theoretical and computational tools we will address these issues in detail. 
 
2. Theory 
Presence of sequence traps influences the binding of TFs with DNA in two different ways 
viz. (a) they compete with other NSBSs for the available pool of TFs and TFs bound at traps 
will be temporarily immobilized and (b) they retard the 1Dd dynamics of TFs on DNA. One 
can approximately ignore the competing effects of traps since the number of traps in a 
genome will be much lesser than the number of NSBSs. The overall search time or mean first 
passage time (MFPT) ,S Uτ  associated with TFs to find their SBSs on DNA can be written as 
follows [7, 8, 30, 31]. 
 

[ ] ( )( ) 1 2
, 1 ;  ;  12S U BTF fa fX d U U oP k k k N U U Dτ λη λ η

−
 + + = =                                       [1] 

 
In this equation PBTF (M, mols/lit) is the concentration of TFs of interest in cytoplasm, kfa (M-

1 s-1) is the bimolecular rate constant associated with the direct site-specific binding of TFs 
via 3Ddo mode, kfX is the overall non-specific binding rate and kd (s-1) is the dissociation rate 
of nonspecifically bound TFs. Further λ is the number of association-scan-dissociation (ASD) 
cycles required by TFs to scan the entire DNA and Uη is the overall average time that is 
required by TFs to scan U bps of DNA before dissociation where U is a random variable that 
will take different values in each ASD cycle. The probability density function associated with 
the 1Dd lengths U can be written as follows [31]. 
 

( ) ( )2 2
02 ;  12AU

U A A dp U Ue D k− Π Π Π =                                                                            [2] 
 
Here ΠA is the maximum possible 1Dd length of nonspecifically bound TFs on DNA that is 
measured in bps where 1bps ~ 3.4 x 10-10 m and Do (bps2s-1) is the diffusion coefficient 
associated with the 1Dd of TFs on DNA. Clearly presence of sequence traps increases the 
1Dd time Uη which in turn increases the overall search time. In the following section we will 
try to understand the effects of sequence mediated kinetic traps on 1Dd dynamics of TFs 
within the framework of random walks with random hop size. 
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2.1. Random walks with random hop size and traps 
Let us consider the DNA as a linear lattice confined within (xL, xR). Inside this lattice we 
consider DBP as an unbiased 1D random walker (1Drw) that is searching for the absorbing 
point at x = xA and (xL, xR) are the reflecting boundaries (Fig. 2A). Here the absorbing point is 
the CRMs (SBS) associated with the TFs which means that whenever TFs hit these points 
then transcription initiation starts approximately with a probability of one. The Langevin type 
stochastic differential equation that describes the dynamics of such 1Drw can be written as 
follows [32-35]. 
 

( )0 ';  ;  ;  0;  'o t Z t t tdx dt d t t x x t tδ= Γ = = Γ = Γ Γ = −                     [3] 
 
Here x is the position of 1Drw at time t with the condition that it was at x = xZ at t = t0 
and tΓ is the Gaussian white noise whose mean and covariance properties are defined as in 
Eq. 3. From Eq. 3 one can conclude about the mean and variance of the position of an 
unbiased 1Drw performing normal diffusion as follows. 
 

22
00

;  ;  
t

Z o s Zx x d ds x x x x d t= + Γ = − =∫                                    [4] 

 
Here d0 is the phenomenological 1Dd coefficient. The probability density function associated 
with the dynamics of the 1Drw on a linear lattice obeys the Fokker-Planck equation (FPE) 
which can be written along with the boundary conditions as follows. 
 

( ) ( ) ( ) ( ) ( )2
0 0 0 0, | , 2 , | , ;  , | , 0;  , | , 0

L
t Z o x Z x Z A Zx x
P x t x t d P x t x t P x t x t P x t x t

=
∂ = ∂ ∂ = =             [5] 

 
Here ( )0, | ,ZP x t x t is the probability of observing 1Drw at position x at time t with the 
condition that it was at x = xZ at t = t0. Apart from the boundary conditions given in Eq. 5 we 
also set the initial condition as ( ) ( )0 0, | ,Z ZP x t x t x xδ= − . When the 1Drw of interest moves 

with unit step size then the 1Dd coefficient can be defined as 2d

d

l
o i ii l

d p w i
=−

= ∑ where w±i are 

the microscopic transition rates associated with the forward and reverse movements of 1Drw 
and p±i are the corresponding microscopic transition probabilities [10, 32]. In case of site-
specific DNA protein interactions, the step length i is measured in terms of base-pairs (bps). 
We have defined ld = 1bps. Since the dynamics at the DNA-protein interface involves 
segmental motion of DBDs of TFs one can assume protein folding rate limit [36] for the 
transition rates as w±i ~ 106 s-1. Noting that p±i ~ ½ for an unbiased 1Drw one finds that do ~ 
106 bps2s-1. Approximately this is the value of 1Dd coefficient associated with the sliding 
dynamics [19, 31, 37]. To simplify our analysis and other computations we use the following 
scaling transformations so that the dynamical variables in Eq. 5 become dimensionless. 
 

2;  ;  ;  i d o o dw t X x l D d lφ τ φ φ± = = = =                                      [6] 
 
When iw φ± = and p±i ~ ½ then Do = 1. Upon rescaling the variables in Eq. 5 as in Eq. 6 we 
obtain the following Fokker-Planck equation (FPE) in dimensionless form. 
 

( ) ( ) ( )2
0 0, | , 2 , | ,Z o X ZP X X D P X Xτ τ τ τ τ∂ = ∂                                                                          [7] 
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The corresponding initial and boundary conditions are as follows. 
 

( ) ( ) ( ) ( )0 0 0 0, | , ;  , | , 0;  , | , 0
L

Z Z X Z A ZX X
P X X X X P X X P X Xτ τ δ τ τ τ τ

=
= − ∂ = =             [8] 

 
The mean first passage time (MFPT) that is measured in terms of dimensionless number of 
steps associated with the escape of the 1Drw from the interval (XL, XR) through the absorbing 
point XA = XR starting from XZ will obey the following backward type FPE with appropriate 
boundary conditions.  
 

[ ] [ ] ( )( )2 2 22;  0;  0;  2
L R

o X S X S S S R Z L R Z oX X X X
D d d X X X X X D

= =
Π = − Π = Π = Π = − − −            [9] 

 
The results presented in Eqs. 3-9 are standard and well known [9, 32, 38, 39]. Now we 
introduce traps at random locations inside the interval (XL, XR). Traps are different from the 
absorbing boundaries in the sense that the free energy associated with the binding of TFs at 
traps will be much lower than SBSs but much higher than NSBSs. When traps act as sinks 
(absorbing boundaries) for the inflowing TFs then the overall probability (psp) associated with 
the nonspecifically bound TFs to specifically bind with their targets will be psp < 1 [24, 30, 
40] which is mainly due to the partitioning of trajectories of inflowing TFs between SBSs and 
traps. In our realistic model, binding of TFs at traps cannot initiate transcription i.e. traps are 
neither sources nor sinks for the probability influx associated with TFs towards their SBSs.  
 
However traps can significantly slowdown the site specific binding rate and hence the overall 
transcription rate will be reduced. In this background we assume that when 1Drw visits a 
trap, it will get stuck there for a fixed average amount of time (dwell time) and then escapes 
back into the original lattice interval. We denote the position of rth trap on linear lattice as Xr 
where the subscript r ranges from 1 to m and the corresponding average dwell times of 1Drws 
at these traps are denoted as rρ . We denote the microscopic rate constant associated with the 
dissociation of TFs from a trap at position Xr in a dimensionless form as kr/φ . The probability 
density function associated with the distribution of dwell times of 1Drw at the particular trap 
will be ( ) ( ) ( )expr r rp k kρ φ ρ φ−  [41, 42]. So that the mean dwell time associated with the 
1Drw that was stuck at the respective trap that is present at the lattice position Xr can be 
defined as ( )

0r rp dρ ρ ρ ρ
∞

= ∫ . This can be explicitly written as r rkρ φ= . Here kr and φ  are 

measured in s-1 so that ρr will be measured in dimensionless number of simulation steps since 
the average time required for each forward or reverse movement of 1Drw will be 1/φ. 
 
There are n number of traps in (XL, XZ) and m-n number of traps in (XZ, XR) and there are 
totally m number of traps inside the entire interval (XL, XR). Here trap positions act a partial 
absorbing boundaries for the backward FPE defined in Eq. 9. The backward FPE given in 
Eq. 9 cannot be solved analytically with so many number of boundary conditions. However 
one can derive an approximate formula for the overall MFPT in the presence of traps using 
the following arguments. First of all one should note that the MFPT in the presence of traps 
will be always higher than the MFPT in the absence of traps i.e. traps always retard the 1Dd 
of 1Drw. When XL = 0 and XZ = 0, then all the traps will be located inside (XZ, XR) and from 
Eq. 9 one finds that the random walker visits each and every site of the interval on an average 
XR number of times under such conditions. This means that the total dwell time of 1Drw at 
those m number of traps that is added up to the original MFPT associated with the case of no 
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traps in Eq. 9 will be directly proportional to
1

m
T R rr

Xρ ρ
=

∝ ∑ . This result follows from the 

fact that when XZ = 0, XL = 0 and k = 1, then Do = 1 and one obtains 2
S RXΠ =  from which one 

can conclude that 1Drw visits each site of the interval (XL = 0, XR) on an average XR number 
of times before reaching the absorbing point XR. 
 
Now let us assume that XZ is located well inside (XL, XR) such that XL < XZ < XR and XL = 0. 
Depending on the relative position of the trap, the corresponding dwell time will vary. When 
there are n number of traps with positions Xr where r = 1 to n located inside (XL, XZ) such that 
XL < Xr < XZ < XR then the total dwell time (ρΤ) will be directly proportional to the splitting 
probability  associated with 1Drw to reach XL starting from XZ i.e.

1

n
T R r LZr

X pρ ρ
=

∝ ∑ where 
we have defined the splitting probability associated with the 1Drw to reach XL (assuming that 
XL is a probability sink) from XZ as ( )1LZ Z Rp X X= − [32]. This is because there is a 
nonzero probability for 1Drw to reach the absorbing point XA = XR that is located right side of 
XZ without visiting the traps located in the left side of XZ. On the other hand when there are 
m-n number of traps located inside (XZ, XR) such that XL < XZ < Xr < XR, then the total dwell 
time will be directly proportional to the splitting probabilities associated with 1Drw to reach 
XL starting from the respective trap positions Xr as

1

m
T R r Lrr n

X pρ ρ
= +

∝ ∑ which decides the 
number of times 1Drw revisits the corresponding traps located in (XZ, XR). Here the splitting 
probability associated with the 1Drw to reach XL starting from Xr (assuming that XL is a 
probability sink) can be defined as ( )1Lr r Rp X X= − . When XL = 0, XA = XR and noting the 
fact that Do = 1 for the hop size of k = 1 then one can summarize these results using the 
following approximate formula. 
 

( )
( )

( )1 2 2

1

1  |  
2 ;  

1 |  

n
r Z R L r Zr

S S R S R Zm
r r R Z r Rr n

X X X X X
X X X

X X X X X

ρ

ρ
=

= +

 − < ≤ Π Π + Π = − 
− ≤ <  

∑
∑



                       [10] 

 
Here the factor 2 appears in the expression for dwell time since the flux of those trajectories 
flowing towards XL will be again reflected back towards the absorbing boundary XR. Now we 
drop the idea of unit step size movement of 1Drw and assume that the random walker can 
hop for k steps at a time. Suppose the current position of 1Drw is X. Then in the next step it 
can move anywhere in [X-k, X+k] with equal probabilities i.e. 1/2k and one finds 
that 2d

d

kl
o i ii kl

d p w i
=−

= ∑ . Though we have 2
od i∝ , 1Dd coefficient cannot be higher than 3Dd 

coefficient (dt) since there is a strong negative correlation between p±i and i. In general do ≤ dt 
[31]. In the context of site-specific DNA-protein interactions, the hop size is directly 
proportional to the degree of condensation or supercoiling of the DNA polymer. This means 
that ccsDNA favors higher hop sizes than rcsDNA. Following the detailed theory of random 
walks with random step size [38, 39] one can derive the following expression for the MFPT 
for 1Drw with random hop size of k. 
 

( )( )1
1

1

 |  2 +2 1 1  
|  

n
r LZ L r Z mrR

S S R L rtm
o r Lr Z r Rr n

p X X XX X X k
D p X X X

ρ
ρ

ρ
=

=

= +

 < ≤ Π Π + − + − 
≤ <  

∑ ∑
∑



              [11] 
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For L Z A RX X X X≤ < = , when transition rates are iw φ± =  and the transition probabilities are 
1 2ip k±  then one finds that ( )( )1 2 1 6oD k k+ + . Clearly for the hop size of k = 1, we find 

that Do = 1 and Eq. 11 reduces to Eq. 10. When 1;  0; L A Rk X X X> = =  and L t ZX X X< ≤ or 

Z t RX X X≤ < then one can derive the following explicit expression for the overall MFPT 
associated with the escape of 1Drw through XR starting from XZ in the presence of m traps. 
 

( ) ( )( )12 2
1

1

 |  2 +2 1 1  
|  

n
r LZ L r Z mrR

S R Z o R rtm
o r Lr Z r Rr n

p X X XXX X D X k
D p X X X

ρ
ρ

ρ
=

=

= +

 < ≤ Π − + + − 
≤ <  

∑ ∑
∑



    [12] 

 
Here one can define the initial position as well as trap position averaged MFPT associated 

with 1Drw to reach XR starting from XZ as follows i.e. ( )0 0

R RX X

S S Z S r RdX dX XΠ = Π + Π∫ ∫  . 

 

( ) ( )( ) ( )( )2
1 1

6 2 3 1 2 1 2 1 1m m
S R R r R rr r

X X k k X kρ ρ
= =

Π = + + + + + −∑ ∑                            [13] 

 
For k = 1 and sufficiently large values of hop size k, Eq. 13 suggests the following limiting 
conditions. 
 

( )2
1 1 1

lim 2 3 ;  lim 2m m
k S R R r k S R rr r

X X Xρ ρ→ →∞= =
Π = + Π = +∑ ∑                                        [14] 

 
Eq. 14 suggests that at sufficiently large values of hop size 1Drw visits each sites of the 
linear lattice for only once. One needs to multiply SΠ by φ to transform it back into time units 
in seconds where XR will be still a dimensionless count as in Eq. 6.  Eqs. 10-14 are the central 
results of this paper which clearly suggest that in the presence of sequence traps the 1Dd time 

Uη will transform as U U ρη η + Η where ρΗ is the sum of contributions from the dwell times 
of TFs at sequence traps.  
 
3. Results and Discussion 
3.1. Effects of sequence traps on 1Dd time of TFs 
From Eq. 10 one can conclude that the overall delay in the search time Uη due to the presence 
of traps will be (a) directly proportional to the distance of the initial position of TFs from the 
absorbing boundary located at SBSs (XR-XZ) when the traps are not located in between (XZ, 
XR), (b) directly proportional to the distances of the traps from the SBSs (XR-Xr) when the 
traps are located in between XZ and XR. Further (c) relatively less delay in the search time due 
to the traps will be possible only when there is a negative correlation between the dwell times 

rρ  and the corresponding distances of traps (XR-Xr) from the SBSs which ensure that the 
second sum in Eq. 10 will be at minimum. Here observation (c) is an important one which 
tell us about the principles associated with the design of CRMs. That is to say the efficiency 
of CRMs in the gene regulation can be fine-tuned by suitably arranging a set of traps around 
them. In other words a set of identical CRMs can be well differentiated by appropriately 
arranging the kinetic traps around them. In the following sections we will first check the 
validity of the approximate expressions given by Eq. 10 and 12 by detailed random walk 
simulations. Then we will analyze the distribution of naturally occurring SBSs of various TFs 
and the associated sequence traps to check the validity of our propositions a – c. 
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3.2. Stochastic simulations on random walks with random hop size and traps 
To check the validity of Eqs. 11-12 we performed stochastic random walk simulations. We 
considered an unbiased 1Drw on a linear lattice of length with XR = 25 and XL = 0. We first 
simulated with hop size of k = 1. Here XL is a reflecting boundary and XA = XR is the 
absorbing boundary. This means that when 1Drw whose current position is X = 0 tries to visit 
X = -1 then it will be put pack to X = 1. With these settings when XZ = 0 then from Eq. 10 one 
obtains SΠ = 625 since Do = 1. When XZ > 0, then the MFPT associated with the escape of 
1Drw into XR starting from XZ will be given by 2625S ZXΠ = − which is a well-known result. 
We measure MFPT in terms of dimensionless number of simulation steps taken by 1Drw to 
reach XA starting from XZ.  
 
Now we introduce a single trap at Xr and fix the initial position arbitrarily at XZ = 13. The trap 
at Xr is characterized by a dwell time of rρ = 25 simulation steps. This means that whenever 
1Drw visits X = Xr then it will get stuck there for 25 simulation steps. With this settings we 
iterated Xr from 1 to 24 and the results are shown in Fig. 2B. Clearly when Xr < XZ = 13 then 
using Eq. 11 one can compute the MFPT as ( )456 2S r R ZX XρΠ = + −  = 1056. When Xr > 

XZ then one finds that SΠ  = ( )456 50 25 rX+ − . With these settings we increase the hop size 

from 1 to 2, 3 and 4. Under such conditions one finds that ( )( )1 2 1 6oD k k= + + . When Xr < 
13 then using Eq. 12 one can compute the MFPT for k = 2 as 472SΠ  . For k = 3 one finds 
that 293SΠ   and for k = 4 we find that 216SΠ  . The simulation results depicted in Fig. 
2C are consistent with these theoretical predictions by Eq. 10 for m = 1.  
 
To check the validity of Eq. 10 for many number of traps i.e. m > 1 we introduced traps at 
arbitrary locations Xr = [3, 5, 8, 11, 15, 18, 21, 24] i.e. m = 8. The corresponding dwell times 
for these traps were set at rρ = [5, 15, 25, 35, 45, 55, 65, 75] and iterated XZ from 1 to 24. 
This means that n will vary depending on XZ. For XZ = 1 one finds that n = 0, for XZ = 12 one 
finds that n = 4 and so on. The simulation results for XL = 0, XA = XR = 25 are shown in Fig. 
2C which agree well with the theoretical predictions by Eq. 10. The effects of various types 
of correlation between the variables ( ),R r rX X ρ−  are shown in Figs. 2C, D and E. Here 
minimum value of MFPT can occur only when there is a negative correlation between these 
variables as shown in Fig. 2C. The MFPT will be a maximum when there is a positive 
correlation between these variables (Fig. 2D). The MFPT corresponding to the case of 
random arrangement of dwell times will be somewhere in between these two extreme cases 
(Fig. 2E). Figs. 2F-G shows the effects of variation in XR and XZ over the MFPT associated 
with 1Drw to escape into XR starting from XZ in the presence of m number of traps and 
various hop sizes k >1. These stochastic random walk simulation results are consistent with 
the theoretical predictions by Eqs. 10-11 which suggest that the overall MFPT will be 
insensitive to the variations of XZ at higher hop sizes. 
 
3.3. Naturally occurring TF binding sites and their traps 
Let us consider a genomic DNA of size N bps containing a SBS (CRM) on it for a TF protein 
of interest. We denote the binding stretch of TFs as q bps and assume that the probability 
associated with the occurrence of each base A, T, G and C in the genome is ¼.With this 
setting one can calculate the minimum required value of q = qC to ensure that there is only 
one copy of the SBS in the entire genome by chance as follows. 
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( )( ) ( )( )2 11 4 ;  1 0;  2 LambertW 2 ln 2 2ln 2q N
Cs N q s q N += − − = = −                                [15] 

 
In this equation s is the number of similar binding sites with size of q bps which can occur by 
chance and y = LambertW(x) is the solution of y exp(y) = x. When q < qC for a transcription 
factor binding site then there is a definite chance of random occurrence of similar binding 
sites on the genome. One should also note the asymptotic result for a sufficiently large value 
of genome size N as ln 2ln 2Cq N . Size of haploid human and mouse genomes seem to be 
~3.3 x 109 and ~2.8 x 109 bps respectively [2, 43, 44]. The corresponding critical length of 
binding stretch qC calculated from Eq. 16 for human and mouse genomes will be ~15.8 and 
~15.7 bps respectively (Figs. 3A-B). Statistical analysis of the binding stretches of TFs in 
human and mouse obtained from JASPAR database [45] suggested the mean values of q as 
~13 ± 0.43 and ~12.77 ± 0.43 bps respectively at a confidence level of 0.95. The median of 
the length of binding stretch of TFs in human seems to slightly higher (~13 bps) than the case 
of TFs in mouse (~12 bps). These results clearly suggest that q < qC for the genomes of 
human and mouse.  This means that there is a nonzero probability of random occurrence of 
binding sites similar to that of SBSs corresponding to TFs on the same genomic sequence. 
 
Using Eq. 11 we have already shown that the delay in the overall search time due to the 
presence of traps will be minimum when there is a negative correlation between the dwell 
times rρ  and the corresponding distances of traps (XR-Xr) from SBSs. This in turn predicts 
that an efficient configuration of the SBSs with traps should be such that those traps with 
high affinity for TFs should be closer to the original SBS than those traps with low affinity 
towards TFs. To check the validity of this prediction in natural system we computed the 
distribution of distances of traps with various binding affinities from the putative SBSs for 
various TFs in the upstream sequences of various genes of mouse and human.  
 
The upstream 5000 bps sequences of various genes of human and mouse genomes were 
obtained from UCSC genome database (February 2009 assembly, hg19 version for human 
genome and December 2011 assembly, mm10 version of mouse genome) and position weight 
matrices (PWMs) [46, 47] of various TFs of mouse and human were obtained from publicly 
available JASPAR database [45, 48]. There were 28365 sequences from mouse genome and 
28824 sequences from human genome. Using the PWMs of various TFs we generated the 
score table for various upstream sequences based on the following equation [46]. 
 

( )( ) { }, , ,1
log ;  , , ,q T

v i b w e b w bw i b A
S f f f b A C G T

= + =
= − =∑ ∑                                                     [16] 

 
In this equation Sv,i is the score value of PWM at ith position on vth sequence, q is the length of 
binding stretch of the corresponding TF, fb is the background probability of observing base b 
in the corresponding genome, and fb,w is the probability of observing base b at position w of 
the TF binding site. Here fb can be calculated from the random sequences corresponding to 
the given genome. There is a strong positive correlation between the score value and the 
binding free energy of TFs [46]. In parallel we also generated score table for random 
sequences using the same PWM from which we obtained the score distribution and the cutoff 
score value for the given matrix corresponding to a given p-value. In our calculations we 
have set the p-value < 10-6 for putative SBSs. Sample score table associated with the 
upstream sequence of mouse Fibin gene is depicted in Fig. 3C and the corresponding score 
distribution is shown in Fig. 3D. Here we have used the PWM corresponding to the mouse 
TF protein POU2F1a. We defined those lattice positions with score values higher than the 
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cutoff score value with respect to p-value < 10-6 as putative SBSs of the corresponding TFs. 
We further defined those sites whose score values corresponding to the p-values ranging from 
10-4 to 10-6 as kinetic traps associated with the SBSs.  
 
Based on these definitions we computed the probable distances of traps from the putative 
SBSs of various TFs. We combined these distances for various TFs and generated the overall 
histograms for the entire genome with a bin size of ~200 bps. We used the random sequences 
associated with each genome that is available at UCSC database to compute the probability of 
occurrence of putative binding sites by chance. We considered random sequences of size 5 x 
106 bps and fragmented it into 103 number of sequences with length of 5000 bps. Then we 
scanned each random sequence with same PWM and obtained the number of putative SBSs 
(false positives). The probability of observing a SBS by chance will be calculated as pNF = 
number of false positives / 1000. 
 
Figs. 4A and B shows the distribution of distances of traps from the putative SBSs where trap 
is defined by p-value < 10-3 for human and mouse respectively. Figs. 4C-D shows the 
distribution of the distances of traps from SBSs where the trap is defined by p-value < 10-4 
and Figs. 4E-F correspond to those traps which are defined by p-value < 10-5. We have 
defined those sites with p-values < 10-6 as the putative SBSs. These results clearly suggest 
that those traps with strong affinity for TFs are located close to the transcription factor 
binding sites (TBS) in line with the prediction by Eq. 11. 
 
Here one should note from Fig. 3C that apart from the putative SBSs and traps there are 
background fluctuations in the score values. Since score values are positively correlated with 
the binding energy, these background fluctuations form an integral part of the sequence 
dependent binding energy landscape for the TFs and upstream sequence of interest. A strong 
frustration in the free energy profile of a sequence significantly influences the 1Dd dynamics 
of TFs since the microscopic transition rates w±i in the definition of 1Dd are strongly 
dependent on the ruggedness of the binding energy landscape. Earlier studies suggested that 

( )0 2expo oD D ε− [49-51] where 0
oD is the 1Dd coefficient corresponding to a smooth free 

energy landscape and ε is the degree of frustration or ruggedness (measured in kBT) in the 
free energy profile of the DNA sequence. In this context one should note that the presence of 
traps further increases the degree of frustration in the binding free energy profiles of DNA 
sequence. From Eqs. 10-11 we found that the retarding effects of such rough sequence 
potentials can be well handled by increasing the hop size associated with the 1Dd dynamics 
of TFs that in turn requires a ccsDNA [31]. 
 
3.4. Effects of traps which are identical to SBSs 
In this section we consider a situation where there are two identical SBSs viz. CRM1 and 
CRM2 corresponding to the same TF (1Drw) present on the DNA polymer with a distance of 
u bps from each other as shown in Fig. 5 [30, 40]. When the mode of site-specific binding of 
corresponding TFs is via pure 3Dd route then the overall specific binding rate will be 
independent of the distance between those SBSs. Experimental results clearly corroborated 
the strong dependency of the overall site-specific binding rate on u [30]. Since both are SBSs 
for the same TFs, the dwell time of TFs at these binding sites will be significantly high. 
Therefore each site can also generate a potential roadblock for the 1Dd movement of TFs 
towards the other site rather than merely acting as kinetic traps. This will clearly decreases 
the degrees of freedom associated with the approach of TFs towards the SBSs from left and 
right sides of CRMs via 1Dd from 2 to 1. As a consequence the influx of TFs especially from 
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the right side of CRM1 as well as left side of CRM2 will be blocked by the TFs which are 
already bound on the respective CRMs. This will in turn decreases the effective number of 
SBSs from 2 to 1 especially when u = 0. This is because the probability of TFs visiting 
CRM1 from left side (pL) will be ½ and the probability of TFs entering into CRM2 from the 
right side (pR) will be ½ so that the total probability flux will be 1 since the probability flux 
through the interconnecting region is zero i.e. p(0) = 0. 
 
Now we consider the influx of TFs through the interconnecting region between CRM1 and 
CRM2. Let us denote the average 1Dd length of TFs on DNA as u0. One can compute the 
splitting probabilities associated with the TFs landing at the interconnecting region to reach 
any of the CRMs only when u is comparable or less than that of u0. When u is much higher 
than u0 then there is always a nonzero probability of TFs to dissociate from interconnecting 
region without meeting any of the CRMs. Alternatively the extent of roadblock will decrease 
as u increases towards infinity which clearly uncouples these SBSs. In other words the 
incremental change in the probability of a TF which landed at the interconnecting region p(u) 
to reach any one of the SBS with respect to u will be (a) inversely proportional to u and (b) 
directly proportional to the product of probabilities ( ) ( )( )1p u p u− . This is because when u 
increases, then the extent of dynamic coupling of these CRMs via 1Dd of TFs decreases. 
When u = u0 then the average (over the landing or initial position) splitting probabilities 
associated with the TFs landing at the interconnecting region to reach any one of the SBSs 
will be p(u0) = ½. From these observations one can derive the following result. 
 

( ) ( ) ( )( ) ( ) ( ) ( )0 01 ;  1 2;   dp u du p u p u u p u p u u u u= − = ∴ = +                                 [17] 
 
From Eq. 17 one can conclude that the total number of effective binding sites as seen by TFs 
from bulk will be ( ) ( )L Rb u p p u p= + + . Clearly ( )0 1b = ,  ( )0 3 2b u =  and ( ) 2b ∞ = . These 
results are consistent with the experimental observations [30, 40]. These results suggest that 
the presence of similar binding sites adjacent to SBSs significantly retards the 1Dd dynamics 
of TFs mainly via introducing stationary roadblocks rather than transiently trapping TFs.   
 
4. Conclusions 
In this paper we have investigated the effects of sequence traps on the site-specific binding of 
TFs at their respective cis-regulatory modules. We have shown that the speed of site-specific 
binding of TFs with DNA seems to be strongly retarded by the randomly occurring sequence 
traps. We developed a simple random walk model on the site-specific binding of TFs with 
genomic DNA in the presence of sequence traps. Our dynamical model predicted that (a) the 
retarding effects of traps will be minimum when the traps are arranged around the specific 
binding site such that there is a negative correlation between the binding strength of TFs with 
traps and the distance of traps from the specific binding site and (b) the retarding effects of 
sequence traps can be soothed by the condensed conformational state of genomic DNA. Our 
computational analysis results on the distribution of sequence traps around the putative 
binding sites of various TFs in mouse and human genome clearly agree well the theoretical 
predictions. We proposed that the distribution of traps can be used as an additional metric to 
efficiently identify the specific binding sites of TFs. It seems that the presence of similar 
binding sites adjacent to specific binding sites significantly retards the 1Dd dynamics of TFs 
mainly via introducing stationary roadblocks rather than transiently trapping TFs.   
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FIGURE 1. A. Various 1D facilitating processes involved in the site-specific binding of TFs 
with DNA. Here kfX (M-1s-1) is the bimolecular rate constant associated with the non-specific 
binding and kd (s-1) is the rate constant associated with the dissociation of non-specific 
complex. Sliding is characterized by unit base-pair step size. Hopping involves few bps and 
intersegmental occurs when two distal segments of the same DNA polymer come close over 
3D space via ring closure events. In all these sliding, hooping and intersegmental transfers 
TFs moves well within the Onsager radius (κ, measured in bps). Onsager radius is defined as 
the distance between the positively charged DNA binding domains of DBPs and negatively 
charged phosphate backbone of DNA at which the magnitude of the overall electrostatic 
attractive forces along with the counteracting shielding effects of solvent ions is equal to the 
background thermal energy. When TFs escape out the Onsager radius then we consider that 
as dissociation and subsequent 3D excursion. B. While searching for the cognate site, the 
DNA binding domains of TFs fluctuates between stationary and mobile conformations. Upon 
finding the specific site these fluctuations damps out to form a tight stationary state site-
specific complex. This conformational flipping dynamics resembles as that of the downhill 
folding proteins at their mid-point denaturation temperatures. 
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FIGURE 2: A. Random walk model with random hop size and traps. We consider a linear 
lattice confined in (XL, XR) which are reflecting boundaries i.e. the random walker cannot 
escape over these boundaries. Inside this interval there is a 1Drw (TFs) searching for the 
absorbing point XA starting from XZ. When 1Drw hits XA (SBS) then it will be removed from 
the system. With this setting, we introduce a trap at Xr. When 1Drw hits this trap then it will 
get stuck there for an average dwell time of rρ and then escapes back into the original lattice. 
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In the context of site-specific DNA-protein interactions 1Drw will resemble TFs and 
absorbing point is the corresponding TF binding site (TBS). Here κ is the Onsager radius. B. 
Here the settings are XL = 0, XR = XA = 25, rρ =15, XZ = 13 and Xr was iterated from 1 to 24. 
MFPT was computed over 105 trajectories (red filled circles) and blue solid line is the 
prediction by Eqs. 10-11 in all the simulations. C. Settings are XL = 0, XR = XA = 25 and traps 
were arbitrarily kept at Xr = [3, 5, 8, 11, 15, 18, 21, 24] and the corresponding rρ = [5, 15, 25, 
35, 45, 55, 65, 75] and XZ was iterated from 1 to 24.  D. Settings are XL = 0, XR = XA = 25 and 
traps were arbitrarily kept at Xr = [3, 5, 8, 11, 15, 18, 21, 24] and the corresponding rρ = [75, 
65, 55, 45, 35, 25, 15, 5] and XZ was iterated from 1 to 24. E. Settings are XL = 0, XR = XA = 
25 and traps were arbitrarily kept at Xr = [3, 5, 8, 11, 15, 18, 21, 24] and the corresponding 

rρ = [25, 15, 45, 35, 5, 75, 65, 55] and XZ was iterated from 1 to 24. F. Settings are XL = 0, XZ 
= 13 and traps were arbitrarily kept at Xr = [3, 5, 8, 11, 15, 18, 21, 24] and the corresponding 

rρ = [5, 15, 25, 35, 45, 55, 65, 75] and the hop size k was iterated from 1 to 15 and XR was 
iterated in [25, 35, 45, 55] along the dotted arrow. G. Settings are XL = 0, XR = XA = 25, XZ 
was iterated in [14, 19, 23] along the dotted arrow and traps were at Xr = [3, 5, 8, 11, 15, 18, 
21, 24] with corresponding rρ = [5, 15, 25, 35, 45, 55, 65, 75] and the hop size k was iterated 
from 1 to 15. 
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FIGURE 3: Distribution of binding stretch length (q) of TFs in mouse (A) and human (B). 
Computational analysis of PWMs from JASPAR database reveals that the mean values of q 
as ~13±0.43 and ~12.77±0.43 bps respectively at a confidence level of 0.95. The median of 
the length of binding stretch of TFs in human seems to slightly higher (~13 bps) than the case 
of TFs in mouse (~12 bps). These results clearly suggest that q < qC for the genomes of 
human and mouse. C. Score table for the PWM corresponding to the mouse TF protein 
POU2F1a (NM_011137) that is scanned over Mus musculus fin bud initiation factor homolog 
gene (NM_026271). Here binding stretch length is q = 18 bps. The cutoff score for the 
definition of putative specific binding site with p-value < 10-6 seems to be 10.16. Cutoff score 
for the definition of trap with p-value < 10-5 seems to be 7.71 for 10-5. Here the mark 1 is 
with specific binding site score of 10.58 which is 4570 bps away from transcription start site 
(TSS) and mark 2 is the trap with score 8.19 which is 602 bps away from TSS and 3968 bps 
away from specific binding site. D. Distribution of score values obtained in C as defined by 
Eq. 16. The probability of observing a specific binding site by chance was pNF < 0.005. 
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FIGURE 4. Distribution of distances between traps and putative specific binding sites in 
human (B, D, F) and mouse (A, C, E). These distances were obtained by scanning the 
upstream 5000 bps sequences of various genes of human and mouse with PWMs available for 
various human and mouse TFs in JASPAR database. For each combination of PWM and 
upstream sequence a score table was constructed and the cutoff scores for specific and trap 
sites were computed. In all these cases the specific binding site was defined by the p-value < 
10-6. In A and B, the traps were defined by p-value < 10-3. In C and D, the traps were defined 
by p-value < 10-4. In E and F the traps were defined by p-value < 10-5. These results clearly 
suggest that traps with strong affinity towards TFs are preferably located near the specific 
binding site which is in line with the prediction of Eqs. 10-11. 
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FIGURE 5: Effects of identical binding sites. In this model two identical specific binding 
sites CRM1 and CRM2 for the same TF was constructed with varying u bps distance between 
them [30, 40]. Depending on u, the influence of CRM1 on CRM2 will vary. Clearly as u 
tends towards infinity, both these binding sites behaves independently and the number of 
effective binding sites will be 2. When u = 0, then the number of effective binding sites will 
be 1 since pL = pR = ½ and p(0) = 0. Here pL is the probability of TFs entering from left side 
of CRM1 and pR is the probability of TFs entering from right side of CRM2 and p(u) = 
u/(u0+u) is the probability of TFs entering from the interconnecting region which can bind 
with any one of the CRMs as defined in Eq. 17. When u = u0 where u0 in the average 1Dd 
length of TFs, then the probability of TFs to reach any one of the CRMs via interconnecting 
region will be p(u0) = ½ so that the number of effective binding sites will be 3/2.  
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Table 1. Various symbols and parameters used in the main text 
 
Symbol Definition Remarks 
SBS Specific binding site  
NSBS Nonspecific binding site  
DBD DNA binding domain  
DBP DNA binding protein  
TBS Transcription factor binding site  
TSS Transcription start site  
TF Transcription factor  
nDd n-dimensional diffusion  
CRM cis-regulatory module  
rcsDNA Relaxed conformational state of DNA  
ccsDNA Condensed conformational state of DNA  
3Ddo 
model 

3Dd only model on site-specific DNA-protein 
interactions in which the protein molecule will be 
assumed to bind at specific site on DNA via one-step 
3Dd mediated routes. 

 

3D1D 
model 

In this two-step model, the protein binds at the 
specific site on DNA via a combination of 3Dd and 
1Dd mediated routes. 

 

1Drw 1D random walker whose position on the linear lattice 
is x that is confined in (xL, xR). 

 

xL Left side boundary of linear lattice for 1Drw bps 
xR Right side boundary of linear lattice for 1Drw bps 
xA Absorbing boundary of linear lattice for 1Drw bps 
xZ Initial position of 1Drw on linear lattice bps 
xr Position of rth trap on linear lattice  
ld base-pair, bps (1 bps = 3.4 x 10-10m)  
XL = xL/ld dimensionless 
XR = xR/ld dimensionless 
XA = xA/ld dimensionless 
XZ = xZ/ld dimensionless 
Xr = xr/ld dimensionless 
φ Average value of microscopic transition rates <w±i > 

over various hop sizes. 
s-1 

kr Dissociation rate constant associated with the 1Drw 
that got stuck at rth trap. 

s-1 

ρr (= φ/kr) dimensionless dwell time of 1Drw at rth trap  simulation steps 
kfX Rate constant associated with nonspecific contact 

formation between DNA and TFs 
M-1s-1 

kd Dissociation rate constant associated with the 
nonspecific DNA-protein complex. 

s-1 

κ Onsager radius which is defined as the distance 
between the DBDs of TFs and the phosphate 
backbone of DNA at which the overall electrostatic 
attractive forces will be comparable with that of the 
background thermal energy (~1kBT). 

bps 

k Hop size associated with 1Drw or the DBPs which are dimensionless 
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performing 1Dd along DNA lattice. 
do 1Dd coefficient associated with the DBPs. In case of 

1Drw we can define it as 2d

d

l
o i ii l

d p w i
=−

= ∑ . Here p±i 

is the microscopic transition probabilities associated 
with the forward and reverse movements of 1Drw 
along with the corresponding microscopic transition 
rates w±i and i is the step length measured in bps. For 
unbiased sliding movement p±i ~ ½ and w±i ~ 106 s-1 
so that do ~ 106 bps2 s-1. 

bps2 s-1 

Do = do/φld2.  
When the hop size k > 1, then Do = (k+1) (2k+1)/6. 

dimensionless 

u0 Average 1Dd length associated with the dynamics of 
TFs on DNA. 

bps 

pL Probability associated with the entry of TFs from left 
side of the SBS. 

 

pR Probability associated with the entry of TFs from right 
side of the SBS. 

 

u Distance between the adjacently located CRMs. bps 
p(u) Probability associated with the TFs which landed at 

the interconnecting region between two adjacently 
located CRMs to reach any of them without 
dissociation. 

 

q Length of genomic DNA spanned upon binding of 
TFs of interest.  

bps 

qC (Solution of (N-q) (1/4) q = 1 for q) critical length of 
binding stretch of TFs at which only one of the SBS 
can be found on the genome of size N bps. 

bps 

pLZ (=1-XZ/XR) splitting probability associated with the 
1Drw to reach XL = 0 starting from XZ when XA = XR. 

 

pLr (=1-Xr/XR) splitting probability associated with the 
1Drw to reach XL = 0 starting from Xr when XA = XR. 
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