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THE SIMPLEX OF TRACIAL QUANTUM SYMMETRIC

STATES

YOANN DABROWSKI∗, KENNETH J. DYKEMA†, AND KUNAL MUKHERJEE‡

Abstract. We show that the space of tracial quantum symmetric states
of an arbitrary unital C∗-algebra is a Choquet simplex and is a face of
the tracial state space of the universal unital C∗-algebra free product
of A with itself infinitely many times. We also show that the extreme
points of this simplex are dense, making it the Poulsen simplex when A

is separable and nontrivial. In the course of the proof we characterize
the centers of certain tracial amalgamated free product C∗-algebras.

1. Introduction and description of results

Quantum exchangeable random variables (namely, random variables whose
distributions are invariant for the natural co-actions of S. Wang’s quantum
permtuation groups [11]) were characterized by Köstler and Speicher [6] to
be those sequences of identically distributed random variables that are free
with respect to the conditional expectation onto their tail algebra (that is,
free with amalgamation over the tail algebra).

In [4], Dykema, Köstler and Williams considered, for any unital C∗-
algebra A, the analogous notion of quantum symmetric states on the uni-
versal unital free product C∗-algebra A = ∗∞1 A. The symbols QSS(A)
denote the compact convex set of all quantum symmetric states on A. The
paper [4] contains a convenient characterization of the extreme points of
QSS(A). Also the compact convex set TQSS(A) ⊆ QSS(A) of all tracial
quantum symmetric states on A was considered, and the extreme points
of TQSS(A) were described. Question 8.8 of [4] asks whether TQSS(A) is
a Choquet simplex (when A has a tracial state, for otherwise TQSS(A) is
empty).

The main result of this note is that TQSS(A) is a Choquet simplex
whose extreme points are dense. Thus, when A is separable and nontrivial,
TQSS(A) is the Poulsen simplex [7], which is the unique metrizable simplex
whose extreme points are dense. In showing this, we also see that TQSS(A)
is a face of the simplex TS(A) of all tracial states on A and we obtain a
better description of the extreme points of TQSS(A).
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Along the way, we prove some technical results that we neeed and that
may be useful in other contexts. In Section 2, we provide a proof (not
readily found in the literature) of a well known fact that natural condi-
tions are sufficient for an amalgamted free product to have a trace. In
Section 3, we characterize the centers of certain tracial von Neumann alge-
bra free products with amalgamation and we use this to characterize the
set of conditional-expectation-preserving traces of von Neumann algebras.
Section 4 is short and consists of a technical result about conditional ex-
pectations. Finally, in Section 5, we prove the main result.

Acknowledgements. K. Mukherjee gratefully acknowledges the hos-
pitality and support of the Mathematics Department at Texas A&M Uni-
veristy during the Workshop in Analysis and Probability in summer 2013
(funded by a grant from the NSF); Y. Dabrowski and K. Dykema are grate-
ful to the Fields Institute for its support during the Focus Program on Non-
commutative Distributions in Free Probability Theory and to the Mathema-
tisches Forschungsinstitut Oberwolfach for its support during a workshop on
C∗-algebras; much of this research was conducted at these three meetings.

2. Amalgamated free products and tracial amalgamated

free products

Let D be a von Neumann algebra, let I be a nonempty set and for every
i ∈ I let Bi be a von Neumann algebra containing D by a unital inclusion
of von Neumann algebras, and suppose Ei : Bi → D is a normal conditional
expectation with faithful GNS representation. Let

(M, F ) = (∗D)i∈I(Bi, Ei)
be the von Neumann algebra amalgamated free product. In the case that
the Ei are all faithful, details of this construction were given by Ueda [9],
and he showed that then F is faithful (see p. 364 of [9]). Alternatively, and
also when the conditional expectations Ei fail to be faithful but do have
faithful GNS constructions, the free product construction may be performed
by (a) taking the C∗-algebra free product (M0, F0) of the (Bi, Ei) acting
on the free product Hilbert C*-module V , (b) taking any normal, faithful
∗-representation π of D on a Hilbert space Hπ, (c) letting M be the strong-
operator-topology closure of the image of the resulting representation ofM0

on the Hilbert space V ⊗π Hπ and (d) letting F : M → D be compression
by the projection from V ⊗π Hπ onto the Hilbert subspace D ⊗π Hπ. The
fact that M is independent of the representation π follows from that fact
that any two normal faithful representations of D are related by dilation
and compression by a projection in the commutant.

The following result is well known, but since we rely on it, this seems like
a good place to give a brief proof.

Proposition 2.1. Suppose τ is a normal trace on D such that for all i ∈ I,
τ ◦ Ei is a trace on Bi. Then τ ◦ F is a trace on M and is faithful if and
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only if τ is faithful. Furthermore, every normal tracial state on M that is
preserved by F arises in this fashion.

Proof. Since every tracial state τ on M that is preserved by F must equal
τ↾D ◦ F , the last assertion of the proposition is clearly true. Moreover,
suppose we know that τ ◦ F is a trace; if we assume also that τ is faithful,
then the GNS representation of τ ◦ F will be faithful; since it is a trace, if
follows that τ ◦ F is itself faithful. Thus, we need only show that τ ◦ F is a
trace.

Let Bo
i = Bi ∩ kerEi. Let m,n ∈ N and let bj ∈ Bo

i(j) for 1 ≤ j ≤ m and

cj ∈ Bo
k(j) for all 1 ≤ j ≤ n, with i(j) 6= i(j + 1) and k(j) 6= k(j + 1). If

d ∈ D, then by freeness, we have

F (d(c1c2 · · · cn)) = 0 = F ((c1 · · · cn)d), (1)

so the composition with τ is also zero. We will show by induction on
min(m,n) that

τ ◦ F
(
(bm · · · b2b1)(c1c2 · · · cn)

)
= τ ◦ F

(
(c1c2 · · · cn)(bm · · · b2b1)

)
(2)

and, furthermore, that the above quantity is zero unless m = n and i(j) =
k(j) for all j, in which case it equals

τ ◦ Ei(m)(bmEi(m−1)(bm−1 · · ·Ei(2)(b2 Ei(1)(b1c1) c2) · · · cm−1) cm)

= τ ◦ Ei(1)(c1Ei(2)(c2 · · ·Ei(m−1)(cm−1Ei(m)(cmbm) bm−1) · · · b2) b1). (3)

This will suffice to prove the lemma, because the span of D and such ele-
ments b1 · · · bm is dense in M.

By freeness, we have

F
(
(bm · · · b2b1)(c1c2 · · · cn)

)
= δi(1),k(1) F

(
(bm · · · b2)Ei(1)(b1c1)(c2 · · · cn)

)
.
(4)

If m = n = 1, then (2) and (3) follow from traciality of τ ◦Ei(1) : Bi(1) → C.
If min(m,n) = 1 and max(m,n) > 1, then the right-hand-side of (4) is zero
by (1), and by symmetry also F ((c1c2 · · · cn)(bm · · · b2b1)) = 0, as required.

We may, thus suppose min(m,n) > 1 and i(1) = k(1). Then, using the
induction hypothesis (and noting that Dc2 ⊆ Bo

k(2)), we have

τ ◦ F
(
(bm · · · b2b1)(c1c2 · · · cn)

)

= δi(1),k(1) τ ◦ F
(
(bm · · · b2)Ei(1)(b1c1)(c2 · · · cn)

)

= δi(1),k(1)δm,nδi(2),k(2) · · · δi(m),k(m)

· τ ◦ Ei(m)(bmEi(m−1)(bm−1 · · ·Ei(2)(b2Ei(1)(b1c1) c2) · · · cm−1) cm).

If m 6= n or if m = n but i(j) 6= k(j) for some j, then not only is the
above quantity zero but, by symmetry, also τ ◦ F ((c1c2 · · · cn)(bm · · · b2b1))
vanishes.

We may, thus, suppose m = n > 1 and i(j) = k(j) for all j. Treating
Ei(1)(b1c1)c2 as an element of Bo

k(2), by the induction hypothesis of (3), we
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get

τ ◦ Ei(m)(bmEi(m−1)(bm−1 · · ·Ei(2)(b2Ei(1)(b1c1) c2) · · · cm−1) cm)

= τ ◦ Ei(2)(Ei(1)(b1c1)c2Ei(3)(c3 · · ·Ei(m)(cmbm) · · · b3)b2)
= τ

(
Ei(1)(b1c1)Ei(2)(c2Ei(3)(c3 · · ·Ei(m)(cmbm) · · · b3)b2)

)

= τ ◦ Ei(1)
(
b1c1Ei(2)(c2Ei(3)(c3 · · ·Ei(m)(cmbm) · · · b3)b2)

)

= τ ◦ Ei(1)
(
c1 Ei(2)(c2Ei(3)(c3 · · ·Ei(m)(cmbm) · · · b3)b2)b1

)
,

where in the last equality we have used the traciality of τ ◦Ei(1). Thus, we
have proved the identity (3) and that this quantity equals

τ ◦ F ((bm · · · b2b1)(c1c2 · · · cn)).
By symmetry, it is equal also to τ ◦ F ((c1c2 · · · cn)(bm · · · b2b1)). �

Of course, the result analogous to Proposition 2.1 for amalgamated free
products of C∗-algebras, is true by the same proof.

3. Centers of certain amalgamated free products

Let D ⊆ B be a unital inclusion of von Neumann algebras with a normal
conditional expectation E : B → D whose GNS representation is faithful.
Suppose there is a normal, faithful, tracial state τD on D such that τB :=
τD ◦ E is a trace on B. The GNS representation of τB is an action of B on
the Hilbert space L2(B, τB) = L2(B, E) ⊗D L2(D, τ) by multiplication on
the left and, thus, the GNS representation of τB is faithful. Since τB is a
trace, it follows that τB itself is faithful and, hence, E must be faithful.

For an element x of a von Neumann algebra, we will let [x] denote the
range projection of x. Thus, [x] is the orthogonal projection onto the closure
of the range of x, considered as a Hilbert space operator, and it belongs to
the von Neumann algebra generated by x. The notation Z(A) means the
center of A.

Lemma 3.1. With E : B → D and trace τB as above, let

q = q(E) =
∨

{[E(b∗b)] | b ∈ kerE}.
Then q ∈ D ∩ Z(B), and (1− q)B = (1− q)D.

Proof. If b ∈ kerE and u is a unitary in D then bu ∈ kerE, and

[E((bu)∗(bu)] = [u∗E(b∗b)u] = u∗[E(b∗b)]u

and we get u∗qu = q. Thus, q ∈ Z(D).
If q 6∈ Z(B), then there would be a partial isometry v ∈ B so that 0 6=

v∗v ≤ 1− q and vv∗ ≤ q. Since q ∈ Z(D) we get E(v) = qE(v)(1− q) = 0.
But, since E is faithful, E(v∗v) 6= 0 and [E(v∗v)] ≤ 1 − q, contrary to the
definition of q. Thus, we must have q ∈ Z(B).

If (1 − q)B 6= (1 − q)D, then there would be b ∈ (1 − q)B ∩ kerE with
b 6= 0. But again, this yields 0 6= E(b∗b) = (1 − q)E(b∗b), contrary to the
choice of q. Thus, we must have (1− q)B = (1− q)D. �
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Let
(M, F ) = (∗D)∞1 (B, E) (5)

be the von Neumann algebra free product with amalgamation over D of
infinitely many copies of (B, E). Our main goal in this section is to show
that the center of M is contained in D.

Let τ = τD ◦ F . By Proposition 2.1, τ is a faithful trace on M.
Let (Bi, Ei) denote the i-th copy of (B, E) in the construction of M. We

now describe some standard notation for M and related objects. The von
Neumann algebra M is constructed on the Hilbert space L2(M, τ), and we
write M ∋ x 7→ x̂ ∈ L2(M, τ) for the usual mapping with dense range.
For convenience, we will write the inner product on L2(M, τ) to be linear
in the second variable and conjugate linear in the first variable. Thus, we
have, for x1, x2 ∈ M,

〈x̂1, x̂2〉 = τ(x∗1x2).

Then we have L2(M, τ) = L2(M, F )⊗D L
2(D, τD), and this is isomorphic

to
L2(D, τD)⊕

⊕

k≥1
i1,...,ik≥1
ij 6=ij+1

H
o
i1
⊗D · · · ⊗D H

o
ik
⊗D L

2(D, τD),

where H
o
i is the Hilbert D,D-bimodule L2(Bi, Ei)⊖D. We will denote by

λ the left action of M on L2(M, τ) and by ρ the anti-multiplicative right
action, ρ(x) = Jλ(x∗)J , where J is the standard conjugate linear isometry
of L2(M, τ) defined by x̂ 7→ (x∗)̂ .

Lemma 3.2. Let N ∈ N, let

η1, η2 ∈ L2(D, τD)⊕
⊕

k≥1
1≤i1,...,ik≤N
ij 6=ij+1

H
o
i1 ⊗D · · · ⊗D H

o
ik
⊗D L

2(D, τD)

and let b1, b2 ∈ BN+1. Let c1, c2, d1, d2 ∈ D be such that

c∗1c2 = EN+1(b
∗
1b2), d2d

∗
1 = EN+1(b2b

∗
1).

Then

〈λ(b1)η1, λ(b2)η2〉 = 〈λ(c1)η1, λ(c2)η2〉,
〈ρ(b1)η1, ρ(b2)η2〉 = 〈ρ(d1)η1, ρ(d2)η2〉.

Proof. We may without loss of generality assume ηj = x̂j for some xj ∈
W ∗(

⋃N
j=1 Bj). Then

〈λ(b1)η1, λ(b2)η2〉 = τ(x∗1b
∗
1b2x2) = τD(F (x

∗
1b

∗
1b2x2)).

By freeness, we have

F (x∗1b
∗
1b2x2) = F (x∗1F (b

∗
1b2)x2) = F (x∗1c

∗
1c2x2),

from which we get

〈λ(b1)η1, λ(b2)η2〉 = τ(x∗1c
∗
1c2x2) = 〈λ(c1)η1, λ(c2)η2〉.
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Similarly, we have

〈ρ(b1)η1, ρ(b2)η2〉 = τ(b∗1x
∗
1x2b2) = τ(x2b2b

∗
1x

∗
1)

= τ(x2d2d
∗
1x

∗
1) = 〈ρ(d1)η1, ρ(d2)η2〉.

�

Theorem 3.3. The center of M lies in D. In particular,

Z(M) = D ∩ Z(B). (6)

Proof. It suffices to show Z(M) ⊆ D, for then (6) follows readily.
Let x ∈ Z(M). Let η = x̂− F (x)̂ . Then

η ∈
⊕

k≥1
i1,...,ik≥1
ij 6=ij+1

H
o
i1
⊗D · · · ⊗D H

o
ik
⊗D L

2(D, τD).

For N ∈ N, let ηN be the orthogonal projection of η onto the subspace
⊕

k≥1
1≤i1,...,ik≤N
ij 6=ij+1

H
o
i1 ⊗D · · · ⊗D H

o
ik
⊗D L

2(D, τD).

Then ηN converges in L2(M, τ) to η as N → ∞. Suppose b ∈ B ∩ kerE.
Fix N ∈ N and let bN denote the copy of b in the copy BN ⊆ M of B.
Then λ(bN )ηN−1 and ρ(bN )ηN−1 are orthogonal to each other, because they
lie in the respective subspaces

⊕

k≥1
1≤i1,...,ik≤N−1

ij 6=ij+1

H
o
N ⊗D H

o
i1
⊗D · · · ⊗D H

o
ik
⊗D L

2(D, τD), (7)

⊕

k≥1
1≤i1,...,ik≤N−1

ij 6=ij+1

H
o
i1 ⊗D · · · ⊗D H

o
ik
⊗D H

o
N ⊗D L

2(D, τD). (8)

On the other hand, λ(bN)F (x)̂ and ρ(bN )F (x)̂ lie in the subspace H
o
N ⊗D

L2(D, τD), which is orthogonal to both of the subspaces (7) and (8). Thus,
we have

0 = (bNx− xbN )̂ =
(
λ(bN)− ρ(bN )

)
x̂

=
(
λ(bN)− ρ(bN )

)(
ηN−1 + F (x)̂ + (η − ηN−1)

)

and from the orthogonality relations noted above, we get

‖λ(bN)ηN−1‖22 + ‖ρ(bN )ηN−1‖22
≤

∥∥λ(bN)ηN−1 − ρ(bN )ηN−1 + (λ(bN )− ρ(bN ))F (x)̂
∥∥2

2

= ‖(λ(bN)− ρ(bN ))(η − ηN−1)‖22 (9)

≤ 4‖b‖2 ‖η − ηN−1‖22.
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Consider the elements d1 = E(b∗b)1/2 and d2 = E(bb∗)1/2 of D. By Lemma
3.2, we have

‖λ(bN)ηN−1‖2 = ‖λ(d1)ηN−1‖2, ‖ρ(bN )ηN−1‖2 = ‖ρ(d2)ηN−1‖2
and from (9), we get

‖λ(d1)ηN−1‖22 + ‖ρ(d2)ηN−1‖22 ≤ 4‖b‖2‖η − ηN−1‖22.
Letting N → ∞, we get

λ(d1)η = 0 = ρ(d2)η. (10)

Let q = q(E) ∈ D ∩ Z(B) be the projection associated to the conditional
expectation E : B → D as described in Lemma 3.1. From (10) and letting
b run through all of kerE, we get λ(q)η = ρ(q)η = 0. This yields q(x −
F (x)) = 0, so x − F (x) ∈ (1 − q)B = (1 − q)D. But x − F (x) ⊥ D, so we
must have x− F (x) = 0 and x ∈ D. �

The aim of the remainder of this section (realized in Corollary 3.6, below)
is to characterize the normal traces on a von Neumann subalgebra whose
compositions with a given conditional expectation are traces on the larger
von Neumann algebra. The result is quite natural and is perhaps known.
It may also be possible to prove it directly using state decompositions or
averaging techniques, rather than free products. However, as we get it
from the results above with very little extra effort, it seems worth doing
it here. Furthermore, it is clearly related to the proof of our main result,
Theorem 5.1, and indeed to the improved characterization of extremality
of elements of TQSS(A), though we don’t actually use it in the proof.

Let D ⊆ B be a unital inclusion of finite von Neumann algebras with
a faithful conditional expectation E : B → D. Suppose there is a normal
faithful tracial state ρ on D such that ρ ◦ E is a trace on B. Let

C = Z(B) ∩ D. (11)

Let (M, F ) be the free product of infinitely many copies of (B, E) with
amalgamation over D, as in (5). Due to the existence of ρ, by Proposi-
tion 2.1, M is a finite von Neumann algebra. Let η be the center-valued
trace on M and let η↾D denote its restriction to D. By Theorem 3.3, the
center of M is C as in (11).

Let α be a permutation of N that has no proper, nonempty, invariant
subsets; thus, α results from the shift on Z after fixing a bijection from N

to Z. Let α̂ be the automorphism of M that permutes the copies of B in
the free product construction (5) according to α.

Lemma 3.4. We have η = η ◦ α̂
Proof. Dixmier averaging says that for any x ∈ M, η(x) is the unique
element in the intersection of C and the norm closed convex hull of the
unitary conjugates of x. (See, for example, Section 8.3 of [5]). In symbols,
this is

{η(x)} = C ∩ conv{uxu∗ | u ∈ U(M)}.



8 DABROWSKI, DYKEMA, AND MUKHERJEE

Since C ⊆ D, α̂ leaves every element of C fixed. Thus,

{η(x)} = α̂({η(x)}) = α̂(C) ∩ α̂(conv{uxu∗ | u ∈ U(M)})
= C ∩ conv{u α̂(x)u∗ | u ∈ U(M)}) = {η(α̂(x))}.

�

Lemma 3.5. We have η = η ◦ F .
Proof. It is well known and not difficult to check that for all x ∈ M, the
ergodic averages

1

n

n−1∑

k=0

α̂k(x)

converge in ‖·‖2-norm as n→ ∞ and, thus, also in strong operator topology,
to F (x). Because the center valued trace is normal, using Lemma 3.4, we
get

η(F (x)) = lim
n→∞

1

n

n−1∑

k=0

η(α̂k(x)) = η(x).

�

For a von Neumann algebra N , we let NTS(N ) denote the set of normal
tracial states on N .

Corollary 3.6. The map

τ 7→ τ ◦ η↾D (12)

is a bijection from NTS(Z(B) ∩ D) onto

{ρ ∈ NTS(D) | ρ ◦ E a trace on B}. (13)

Proof. It is clear that the map (12) is injective.
We view B as embedded in M by identification of B with any of the

copies arising in the free product construction (5). Since, by Lemma 3.5,
η = η◦E = η↾D ◦E, if τ ∈ NTS(C) and ρ = τ ◦η↾D, then ρ◦E = τ ◦(η↾B) =
(τ ◦ η)↾B is a trace on B. Thus, the map (12) goes into the set (13).

To see that it is onto, suppose ρ belongs to the set (13). Since M is
a finite von Neumann algebra, by a standard theory (see, for example,
Theorem 8.3.10 of [5]), the map τ 7→ τ ◦ η is a bijection from NTS(C) onto
NTS(M). By Proposition 2.1 ρ◦F is a normal tracial state onM, so equals
τ ◦ η for some τ ∈ NTS(C). Thus, ρ = ρ ◦ F ↾D = τ ◦ η↾D, as required. �

4. The conditional expectation onto the tail algebra in an

amalgamated free product

For a symmetric state ψ on the universal free product C∗-algebra A =
∗∞1 A, we let Mψ denote the von Neumann algebra generated by the image
of A under the GNS representation πψ of A on L2(A, ψ) arising from ψ and

let ψ̂ denote the normal extension of ψ to Mψ, which is the vector state for
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the vector of L2(A, ψ) corresponding to the identity element of A. The tail
algebra Tψ is the von Neumann subalgebra

Tψ =
⋂

n≥1

W ∗(
⋃

k≥n

λk(A)) ⊆ Mψ

where λk : A→ A is the embedding onto the k-th copy of A in the universal
free product C∗-algebra. Note that the action of the permutation group S∞

on A by permuting the embedded copies of A results in a ψ-preserving action
of S∞ on Mψ; we let Fψ denote the fixed point subalgebra of this action
and we always have Tψ ⊆ Fψ (see Lemma 5.1.3 of [4]). By Proposition

5.2.4 of [4], if the restriction of ψ̂ to Tψ has faithful GNS representation

(in particular, if ψ̂ is faithful on Mψ), then there is a normal, ψ̂-preserving
conditional expectation Eψ : Mψ → Tψ; furthermore, if also the restriction

of ψ̂ to Fψ has faithful GNS representation (in particular, if ψ̂ is faithful on
Mψ), then Tψ = Fψ.

Proposition 4.1. Let D ⊆ B̃ be a unital von Neumann subalgebra with

Ẽ : B̃ → D a normal, faithful, conditional expectation. Let

(M̃, F̃ ) ∼= (∗D)∞1 (B̃, Ẽ)
be the amalgamated free product of von Neumann algebras. Suppose ρ is a
normal faithful state on D. Suppose A is a unital C∗-algebra and σ : A→ B̃
is a unital ∗-homomorphism. Let ψ = ρ ◦ F̃ ◦ (∗∞1 σ) : A = ∗∞1 A → C. By
Proposition 3.1 of [4], ψ ∈ QSS(A). Then Mψ is canonically identified with

a von Neumann subalgebra of M̃ with the tail algebra Tψ identified with a

subalgebra of D. Moreover, the normal state ψ̂ on Mψ is identified with

the restriction of the state ρ ◦ F̃ to Mψ, which is faithful, and the normal
conditional expectation Eψ : Mψ → Tψ is identified with the restriction to

Mψ of F̃ .

Proof. Note that under the hypotheses, ρ ◦ F̃ is a faithful state on M̃ (by
Ueda’s result [9], as discussed in Section 2 above). Thus, the GNS Hilbert

space L2(A, ψ) is a subspace of L2(M̃, ρ ◦ F̃ ) and Mψ is realized as the

strong operator topology closure in M̃ of (∗∞1 σ)(A) with ψ̂ the restriction

to Mψ of ρ◦F̃ . Now, by examining the free product structure of the Hilbert

space L2(M̃, ρ ◦ F̃ ), we see that the fixed point subalgebra Fψ must lie in

D, and since ψ̂ is faithful on Mψ, we have Tψ = Fψ ⊆ D.
We must only show that the conditional expectation Eψ : Mψ → Tψ

equals the restriction to Mψ of F̃ . Since both of these conditional expec-
tations are normal, it will suffice to show their agreement on elements of
πψ(A). For this, we appeal to the construction of the conditional expec-

tation Gψ found in Theorem 5.1.10 of [4]; since ψ̂ is faithful on Mψ, this
conditional expectation Gψ coincides with the restriction to πψ(A) of Eψ.
The ∗-endomorphism α appearing in the aforementioned construction of Gψ
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must, by Lemma 5.1.9 of [4], agree with the normal “shift” ∗-endomorphism

α̃ of M̃, that sends the i-th copy of B̃ in M̃ to the (i + 1)-st copy (and
which is easily seen to exist, by the construction outlined in Section 2).
Thus, (see Theorem 5.1.10 of [4]),

Eψ(x) = WOT− lim
n→∞

α̃n(x)

for all x ∈ πψ(A), and by the structure of the free product Hilbert space

L2(M̃, ρ ◦ F̃ ), we conclude Eψ(x) = F̃ (x). �

Remark 4.2. In the situation of the previous proposition, by the methods
of Section 7 of [4] (see in particular Theorem 7.3 of [4]) the tail algebra of
ψ is equal to the smallest von Neumann subalgebra D∞ of D that contains

F̃ (σ(a1)d1σ(a2) · · · dn−1σ(an)) (14)

for every a1, . . . an ∈ A and every d1, . . . , dn−1 ∈ D∞. Thus, letting D0 = C1
and for p ≥ 1 letting Dp be the von Neumann algebra generated by all
expressions of the form (14) for aj ∈ A and d1, . . . , dn−1 ∈ Dp−1, we have
that D∞ equals the von Neumann algebra generated by

⋃∞

p=0Dp.

5. The simplex of tracial quantum symmetric states

Let A be a unital C∗-algebra and let TQSS(A) be the compact, convex
set of tracial, quantum symmetric states on A = ∗∞1 A. We assume that
A has a tracial state, so that TQSS(A) is nonempty, and we assume that
A 6= C.

By Theorem 7.6 of [4], TQSS(A) is in bijection with the set of (equiv-
alence classes of) quintuples (B,D, E, σ, ρ) where E : B → D ⊆ B is a
faithful conditional expectation of von Neumann algebras, σ : A → B
is an injective, unital ∗-homomorphism and ρ is a normal faithul, tracial
state on D such that ρ ◦ E is a trace on B, and certain minimality con-
ditions are satisfied. These minimality conditions are that B is generated
by D ∪ σ(A) and D is the smallest unital von Neumann subalgebra of B
that satisfies E(d0σ(a1)d1 · · ·σ(an)dn) ∈ D whenever n ∈ N, d0, . . . , dn ∈ D
and a1, . . . , an ∈ A. Given a quintuple (B,D, E, σ, ρ), one constructs the
amalgamated free product von Neumann algebra

(M, F ) = (∗D)∞1 (B, E) (15)

of infinitely many copies of (B, E) and one takes the free product ∗-homo-
morphism ∗∞1 σ : A → M arising from the universal property, sending the
i-th copy of A into the i-th copy of B. The tracial state ψ = ρ ◦ F ◦ (∗∞1 σ)
on A is the tracial quantum symmetric state of A that corresponds to
(B,D, E, σ, ρ) under the bijection refered to above. Then D = Tψ is the
tail algebra and M = Mψ is the von Neumann algebra generated by the
GNS representation of ψ.

The extreme points of TQSS(A) were characterized in Theorem 8.2 of [4]
as corresponding to the set of quintuples (B,D, E, σ, ρ) so that ρ is extreme



TRACIAL QUANTUM SYMMETRIC STATES 11

among the set R(E) of tracial states of D so that ρ ◦ E is a trace on B. In
fact, we arrive at a better characterization of the extreme tracial quantum
symmetric states below.

Note that TQSS(A) is a closed convex subset of the tracial state space,
TS(A), of A. The tracial state space of any C∗-algebra is known to be a
Choquet simplex (see, for example Theorem 3.1.18 of [8]) and the extreme
points of it are the tracial states that are factor states.

Theorem 5.1. TQSS(A) is a Choquet simplex and is a face of TS(A).
Moreover, for ψ ∈ TQSS(A) with corresponding quintuple (B,D, E, σ, ρ),
the following are equivalent:

(i) ψ is an extreme point of TQSS(A)
(ii) ψ is an extreme point of TS(A)
(iii) D ∩ Z(B) = C1.

Proof. The implication (i) =⇒ (ii), when proved, will imply that TQSS(A)
is a face of TS(A) and, thus, a Choquet simplex.

The implication (ii) =⇒ (i) is clearly true.
Let (M, F ) be as in (15). By Theorem 3.3, condition (iii) is equiva-

lent to factoriality of M, and this is equivalent to condition (ii). Thus,
conditions (ii) and (iii) are equivalent.

To finish the proof, it will suffice to show (i) =⇒ (iii). If (iii) fails to hold,
then D ∩ Z(B) has a projection p equal to neither 0 nor 1. Let t = ρ(p).
Since ρ is faithful, we have 0 < t < 1 and we can write ρ = tρ0 + (1− t)ρ1,
where

ρ0(x) = t−1ρ(px), ρ1(x) = (1− t)−1ρ((1− p)x).

Since p lies in D ∩ Z(B), we see that ρ0 and ρ1 are distinct normal tracial
states on D and that ρi ◦ E is a trace on B (i = 0, 1). Thus, ρ is not an
extreme point of R(E), and ψ is not extreme in TQSS(A). �

In Theorem 5.3, we will use multiplicative free Brownian motion (see [2])
to show that every quantum symetric state is a limit of extreme quantum
symmetric states. This will show that TQSS(A) is the Poulsen simplex,
when A is separable and not a copy of C.

Multiplicative free Brownian motion is the solution (Ut)t≥0 of the linear
stochastic differential equation

Ut = 1− 1

2

∫ t

0

Usds+

∫ t

0

idSsUs = e−t/2 +

∫ t

0

idSse
−(t−s)/2Us,

where (St)t≥0 is an additive free Brownian motion. Then each Ut is unitary
(see [1]) and belongs to the von Neumann algebra W ∗(St, t > 0), which is
a copy of L(F∞). We will need the following lemma.

Lemma 5.2. Let M be a von Neumann algebra with normal, faithful, tra-
cial state τ and suppose N ⊆ M is a unital von Neumann subalgebra and
(Ut)t≥0 is a multiplicative free Brownian motion that is free from N with
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respect to τ . Then for every unital C∗-subalgebra A ⊆ N with dim(A) > 1
and for every t > 0, we have

(U∗
t AUt)

′ ∩ N = C1.

Proof. If (U∗
t AUt)

′∩N is nontrivial, then it contains a projection p /∈ {0, 1}.
Without loss of generality, we may assume A is a von Neumann subalgebra
of N and, thus, contains a projection q /∈ {0, 1}.

From Proposition 9.4 and Remark 8.10 of [10], the liberation Fisher in-
formation satisfies

ϕ∗(U∗
t AUt : N ) ≤ F (Ut) <∞,

for any t > 0, where F is the Fisher information for unitaries. Thus, from
Remark 9.2(e) of [10], we have

ϕ∗(W ∗(U∗
t qUt) : W

∗(p)) ≤ ϕ∗(U∗
t AUt : N ) <∞.

As a consequence, the assumptions of Lemma 12.5 of [10] are satisfied and,
therefore, U∗

t qUt and p are in general position, i.e.,

U∗
t qUt ∧ p = 0 or U∗

t (1− q)Ut ∧ (1− p) = 0, (16)

and
U∗
t (1− q)Ut ∧ p = 0 or U∗

t qUt ∧ (1− p) = 0. (17)

But this is not compatible with the assumption that U∗
t qUt and p commute.

For example, if
U∗
t qUt ∧ p = U∗

t (1− q)Ut ∧ p = 0,

then
0 = U∗

t qUtp + U∗
t (1− q)Utp = p,

contrary to hypothesis, and similarly if other cases of (16) and (17) hold. �

Theorem 5.3. For every unital C∗-algebra A with dim(A) > 1, the extreme
points of TQSS(A) are dense in TQSS(A). Hence, if A is also separable,
then TQSS(A) is the Poulsen simplex.

Proof. If A is separable, then the free product algebra A is also separable
and, thus, TQSS(A) is second countable. By Urysohn’s metrization theo-
rem, it is metrizable. Once the density of extreme points is shown, it will
follow that TQSS(A) is the Poulsen simplex (see [7]).

We now show density of extreme points. Let ψ ∈ TQSS(A) and let
(B,D, E, ρ, σ) be its associated quintuple. We use the notation from the
description at the beginning of this section. In particular, ψ = ρ◦F ◦(∗∞1 σ),
and we let ψ̂ = ρ ◦ F denote the normal extension of ψ to M. Let

(M̃, τ) = (M, ψ̂) ∗ (L(F∞), τF∞
)

be the free product ofM with a copy of L(F∞). Then, since (L(F∞), τF∞
) ∼=

∗∞1 (L(F∞), τF∞
) ∼= ∗∞1 (W ∗(St, t > 0), τ), for the von Neumann algebra of a

free Brownian motion algebra W ∗(St, t > 0) ∼= L(F∞), letting

(B̃, η) = (B, ρ ◦ E) ∗ (W ∗(St, t > 0), τ)
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and letting Ẽ : B̃ → D be the composition of the η-preserving conditional

expectation B̃ → B arising from the free product construction with the

conditional expectation E : B → D, we have that M̃ is isomorphic to the
von Neumann algebra free product with amalgamation,

(M̃, F̃ ) ∼= (∗D)∞1 (B̃, Ẽ) (18)

and the trace τ arises as ρ ◦ F̃ .
Letting (Ut)t≥0 be a multiplicative free Brownian motion inW ∗(St, t > 0),

from the free L∞ version of the Burkholder-Gundy inequalities (Theorem
3.2.1 of [3]), we have the upper bound

||Ut − 1|| ≤ (1− e−t/2) + 2
√
2

(∫ t

0

||Us||2e−(t−s)ds

)1/2

= (1− e−t/2) + 2
√

2(1− e−t), (19)

which tends to zero as t→ 0+.
Let σt : A → B̃ be the ∗-homomorphism Utσ(·)U∗

t . Then ∗∞1 σt is a

∗-homomorphism from A into M̃. By freeness with amalgamation (see

Proposition 3.1 of [4]), the state ψt := ρ ◦ F̃ ◦ (∗∞1 σt) = τ ◦ (∗∞1 σt) is a
quantum symmetric state.

We will show that for every t > 0, ψt is an extreme point of TQSS(A). By
Proposition 4.1, the tail algebra Tψt

of ψt is a von Neumann subalgebra of D,
and the conditional expectation Eψt

onto the tail algebra is the restriction

of F̃ . In particular, see Remark 4.2 for description of generators for D.
Let (Bt,Dt, Et, ρt, σt) denote the quintuple corresponding to the quantum
symmetric state ψt. Then Dt = Tψt

⊆ D and Bt ⊇ σt(A). By Theorem 5.1,
showing that ψt is an extreme point of TQSS(A) is equivalent to showing
that Dt ∩Z(Bt) is trivial. But Dt∩Z(Bt) is contained in Dt ∩ (U∗

t σ(A)Ut)
′.

By Lemma 5.2, the latter set is trivial, and we have proved that ψt is an
extreme tracial quantum symmetric state.

From the bound (19), we deduce that for every x ∈ A, limt→0+ ‖ψt(x)−
ψ(x)‖ = 0, working first with the case of x in the algebraic free product,
and passing to the general case by norm approximation. �

Remark 5.4. In contrast, the simplices ZQSS(A) and ZTQSS(A) of central
quantum symmetric states and central tracial quantum symmetric states,
respectively, (see [4]) are Bauer simplices, meaning that their respective sets
of extreme points are closed. This follows from the proof of Theorem 9.2
of [4] and in particular the fact that the map φ 7→ ∗∞1 φ in equation (35) of [4]
is a homeomorphism from S(A) onto the extreme boundary of ZQSS(A)
and, by restricting to the tracial state space, yields a homeomorphism from
TS(A) onto the extreme boundary of ZTQSS(A).
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