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Abstract. The axion monodromy model involves a canonical scalar field that is governed
by a linear potential with superimposed modulations. The modulations in the potential are
responsible for a resonant behavior which gives rise to persisting oscillations in the scalar
and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been
shown to lead to an improved fit to the cosmological data than the more conventional, nearly
scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits
continued modulations and the resonance is known to boost the amplitude of the scalar
non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-
spectrum had been arrived at earlier which, in fact, has been used to compare the model with
the cosmic microwave background anisotropies at the level of three-point functions involving
scalars. In this work, with future applications in mind, we arrive at a similar analytical
template for the scalar-scalar-tensor cross-correlation. We also analytically establish the
consistency relation (in the squeezed limit) for this three-point function. We conclude with
a summary of the main results obtained.
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1 Introduction

Until very recently, inflationary models were compared with the data at the level of two-
point functions, i.e. the inflationary scalar and tensor power spectra were compared with the
angular power spectra of the Cosmic Microwave Background (CMB) and the matter power
spectrum associated with the Large Scale Structure (LSS) [1–9]. Over the last decade and a
half, it has been realized that non-Gaussianities in general and the three-point functions in
particular can provide strong constraints on the physics of the early universe. On one hand,
there has been tremendous progress in understanding the generation of non-Gaussianities
during inflation [10–22] and the corresponding signatures on the CMB and the LSS [23–39].
On the other hand, the expectation alluded to above has been largely corroborated by the
strong constraints that have been arrived at from the Planck CMB data on the scalar non-
Gaussianity parameter f

NL
[40]. The recent observations seem to suggest that the primordial

perturbations are consistent with a Gaussian distribution.
A nearly scale invariant primordial scalar power spectrum is remarkably consistent with

the observations of the CMB [1–9]. However, it has been repeatedly noticed that certain
features in the inflationary power spectrum can improve the fit to the data (for instance,
see Refs. [41–49]). One such type of feature is continued oscillations in the scalar power
spectrum that extends over a wide range of scales [50–57]. Such a power spectrum is known
to be generated by the so-called axion monodromy model, motivated by string theory [58–62].
The model is described by a linear potential with superimposed oscillations. The oscillations
in the potential give rise to a resonant behavior which leads to continued modulations in
the scalar and tensor power spectra. At the cost of two or three extra parameters, the
resulting power spectra are known to improve the fit to the CMB data from the Wilkinson
Microwave Anisotropy Probe (WMAP) and Planck by as much as ∆χ2 ≃ 10–20 [56, 57, 59–
61]. Ideally, one would like to carry out a similar analysis of comparing the model with the
CMB data at the level of the three-point functions as well. But, it proves to be numerically
taxing to evaluate the three-point functions in these models (see, for instance, Ref. [63]).
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In such a situation, clearly, it will be convenient if there exist analytical templates for the
inflationary three-point functions. Such a template for the scalar bi-spectrum has been
arrived at earlier [58, 64], which has been utilized towards comparing models leading to
oscillatory features with the CMB data [65, 66].

Apart from the scalar bi-spectrum, there exist three other three-point functions which
involve the tensor perturbations [14]. Amongst these three-point functions, the scalar-scalar-
tensor cross-correlation has the largest amplitude after the scalar bi-spectrum (in this con-
text, see Refs. [14, 67–74]). In this work, motivated by the efforts towards arriving at an
analytical template for the scalar bi-spectrum in the axion monodromy model, we obtain a
similar template for the scalar-scalar-tensor three-point function for an arbitrary triangular
configuration of the wavevectors. In the case of the scalar bi-spectrum, in order to determine
the dominant contribution due to the oscillations in the potential, it was sufficient to take
into account the effects due to the changes in the behavior of the slow roll parameters, and
one could work with the simple de Sitter modes for the curvature perturbation. In contrast,
to evaluate the scalar-scalar-tensor cross correlation, we find that apart from the changes in
the behavior of the slow roll parameters, we also need to take into account the modifications
to the de Sitter modes. As in the purely scalar case [75–84], the other three-point func-
tions involving the tensors are also known to satisfy the so-called consistency relation in the
squeezed limit [68, 70, 71, 85–87]. We shall analytically establish the consistency condition
for the scalar-scalar-tensor three-point function in the axion monodromy model.

The remainder of this paper is organized as follows. In the next section, we shall briefly
discuss the important aspects of the axion monodromy model and arrive at the scalar and
tensor power spectra in the model. In Sec. 3, we shall gather the essential expressions de-
scribing the scalar-scalar-tensor three-point function and the corresponding non-Gaussianity
parameter. In Sec. 4, we shall arrive at an analytical expression for the scalar-scalar-tensor
cross-correlation under certain approximations. To illustrate the extent of accuracy of the
approximations, we shall also compare the analytical result with the corresponding numer-
ical result. Further, in Sec. 5, we shall analytically verify the consistency relation for the
three-point function in the squeezed limit. We shall conclude in Sec. 6 with a brief summary
of the results obtained.

A few remarks on our conventions and notations seem essential at this stage of our
discussion. We shall work with natural units wherein ~ = c = 1, and define the Planck mass
to be M

Pl
= (8π G)−1/2. We shall adopt the signature of the metric to be (−,+,+,+). We

shall assume the background to be the spatially flat Friedmann-Lemâıtre-Robertson-Walker
(FLRW) line element that is described by the scale factor a and the Hubble parameter H.
As is convenient, we shall switch between various parameterizations of time, viz. the cosmic
time t, the conformal time η or e-folds denoted by N . An overdot and an overprime shall
represent differentiation with respect to the cosmic and the conformal time coordinates,
respectively. We shall restrict our attention in this work to inflationary models involving the
canonical scalar field. Note that, in such a case, the first and second slow roll parameters are
defined as ǫ1 = −Ḣ/H2 and ǫ2 = d ln ǫ1/dN .

2 The axion monodromy model

In this section, we shall summarize the essential aspects of the axion monodromy model. We
shall discuss the evolution of the background as well as the evolution of the scalar and tensor
perturbations and also arrive at the corresponding power spectra.
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2.1 The evolution of the background and the slow roll parameters

The axion monodromy model is described by a linear potential with superimposed oscilla-
tions [58–61]. The potential is given by

V (φ) = µ3 φ+ µ3 b f cos

(
φ

f

)

, (2.1)

where b is a dimensionless quantity and we have ignored a possible phase factor in the
trigonometric function. Throughout this work, we shall assume that b is small and attempt
to derive all the results at the linear order in b (as we shall discuss in due course, the
constraint from the recent Planck data suggests that b is indeed small, of the order of 10−2).
Evidently, this assumption is equivalent to considering the trigonometric modulations as
small departures from the linear potential. We shall also assume that the linear potential
admits slow roll and that the modulations lead to deviations from the monotonic slow roll
behavior [58].

The equation of motion governing the scalar field described by the potential (2.1) above
is given by

φ̈+ 3H φ̇+ µ3 − µ3 b sin

(
φ

f

)

= 0, (2.2)

with the Hubble parameter H = ȧ/a being determined by the first Friedmann equation, viz.

H2 =
1

3M2
Pl

[

φ̇2

2
+ V (φ)

]

. (2.3)

Since we shall assume that b is small, we can write the background inflaton as a slowly rolling
part plus a part which describes the modulations as

φ = φ0 + b φ1 + . . . . (2.4)

As we mentioned, we shall limit ourselves to terms which are linear in b. At the leading
order, under the slow roll approximation, the equations (2.2) and (2.3) simplify to

3H φ̇0 ≃ −µ3, (2.5a)

3H2M2
Pl

≃ µ3 φ0. (2.5b)

These equations can be easily integrated to yield the leading order term in the inflaton to be

φ0(t) =

[

φ
3/2
∗ −

√

3µ3

2
M

Pl
(t− t∗)

]2/3

, (2.6)

where φ0(t∗) = φ∗, with t∗ denoting the time when the pivot scale, say, k∗, leaves the Hubble
radius. It should be noted that, in order to achieve about 60–70 e-folds of inflation, we shall
require that φ∗ ≃ 10M

Pl
.

Let us now consider the behavior of φ1. The differential equation satisfied by the
component φ1 can be obtained to be

φ̈1 +

√

3µ3 φ0
M

Pl

φ̇1 −
µ3

2φ0
φ1 = µ3 sin

(
φ0
f

)

, (2.7)
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where we have made use of the fact that, until the first order in b, under the slow roll
approximation, we can write

H2 ≃ µ3

3M2
Pl

(φ0 + b φ1) . (2.8)

If we make use of the solution (2.6) for φ0, the above equation governing φ1 can be expressed
as

d2φ1
dφ20

− 3φ0
M2

Pl

dφ1
dφ0

− 3φ1
2M2

Pl

=
3φ0
M2

Pl

sin

(
φ0
f

)

. (2.9)

This equation can be integrated to arrive at the following solution for φ1:

φ1(φ0) =
3 f2 φ∗/M

2
Pl

1 + (3 f φ∗/M2
Pl
)2

[

−sin

(
φ0
f

)

+
3 f φ∗
M2

Pl

cos

(
φ0
f

)]

, (2.10)

which can be written as

φ1(φ0) = −
3 f2 φ∗/M

2
Pl

[
1 + (3 f φ∗/M2

Pl
)2
]1/2

sin

(
φ0
f

− ψ1

)

, (2.11)

where

sinψ1 =
3 f φ∗/M

2
Pl

[
1 + (3 f φ∗/M2

Pl
)2
]1/2

. (2.12)

Note that, when f φ∗/M
2
Pl

is assumed to be small (as we shall discuss later, the constraints
from the recent CMB observations suggest that f φ∗/M

2
Pl

≃ 7.6346 × 10−2), we can write

φ1(φ0) = −3 f2 φ∗
M2

Pl

sin

(
φ0
f

)

. (2.13)

Having understood the behavior of the background inflaton, let us now evaluate the
first and the second slow roll parameters. Recall that the first slow roll parameter is given
by ǫ1 = −Ḣ/H2 = φ̇2/(2H2M2

Pl
). Let us write the first slow roll parameter as ǫ1 = ǫ01 + ǫc1,

where ǫ01 is the contribution due to φ0, while ǫ
c
1 is the correction at the first order in b. As one

would expect, ǫ01 will roughly be constant and will be of the order of ǫ01 = ǫ∗1 ≃ M2
Pl
/(2φ2∗),

determined by the linear term in the potential. Upon making use of the solutions we have
obtained above, we can show that, the quantity ǫc1 is given by

ǫc1 = −3 b f

φ∗
cos

(
φ0
f

)

. (2.14)

In arriving at this expression, we have again made the assumption that f φ∗/M
2
Pl

≪ 1.
The second slow roll parameter can be expressed as ǫ2 = ǫ̇1/(H ǫ1). One can show that
ǫ2 = 2 (δ+ ǫ1), where δ = Ḧ/(H Ḣ) = φ̈/(H φ̇). If we write δ = δ0+δ1, where δ0 corresponds
to the case wherein b vanishes, then we can show that δ0 = ǫ∗1 and ǫ∗2 = 4 ǫ∗1. Also, for small
f φ∗/M

2
Pl
, we find that δ1 can be expressed as

δ1 = −3 b sin

(
φ0
f

)

. (2.15)
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2.2 The evolution of the perturbations and the power spectra

The assumptions and approximations that we have made in the previous sub-section en-
able us to analytically explore the evolution of perturbations and calculation of the power
spectra [58].

Let us begin by summarizing a few basic points concerning the scalar power spectrum.
Recall that, upon quantization, the curvature perturbation R can be decomposed in terms
of the corresponding Fourier modes as follows:

R̂(η,x) =

∫
d3k

(2π)3/2
R̂k(η) e

i k·x =

∫
d3k

(2π)3/2

(

âk fk(η) e
i k·x + â†

k
f∗k (η) e

−i k·x
)

, (2.16)

where the modes fk satisfy the differential equation

f ′′k + 2
z′

z
f ′k + k2 fk = 0, (2.17)

with z =
√
2 ǫ1 aMPl

, while the annihilation and the creation operators âk and â†
k
obey the

standard commutation relations. The scalar power spectrum, viz. P
S
(k), is defined as

〈 R̂k(η) R̂k′(η) 〉 = (2π)2

2 k3
P

S
(k) δ(3)(k + k

′), (2.18)

where the expectation value on the left hand side is to be evaluated in the specified initial
quantum state of the perturbations. If one assumes the initial state of the perturbations
to be the vacuum state |0〉 (defined as âk|0〉 = 0 ∀k) then, on making use of the decom-
position (2.16) in the above definition, the inflationary scalar power spectrum P

S
(k) can be

expressed as

P
S
(k) =

k3

2π2
|fk|2. (2.19)

The amplitude |fk| on the right hand side of the above expression is to be evaluated when
the modes are sufficiently outside the Hubble radius. It is useful to note here that the scalar
spectral index n

S
is defined as

n
S
= 1 +

d lnP
S
(k)

d ln k
. (2.20)

Let us analytically evaluate the scalar power spectrum in the axion monodromymodel [58].
If we choose to work in terms of the new variable x = −k η and use the exact relation

z′

z
= aH (1 + ǫ1 + δ) , (2.21)

we can rewrite the differential equation (2.17) governing the mode fk as

d2fk
dx2

+ 2 (1 + ǫ1 + δ)

(
aH

−k

)
dfk
dx

+ fk = 0. (2.22)

At the leading order in slow roll, we have

aH ≃ −1 + ǫ1
η

. (2.23)

We shall work in the de Sitter approximation when b = 0, which corresponds to ignoring the
contributions due to the ǫ∗1 term. The effects due to the δ1 term dominate the effects due to
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the ǫc1 term. Under these conditions, we can write the above differential equation describing
fk as follows:

d2fk
dx2

− 2 (1 + δ1)

x

dfk
dx

+ fk = 0. (2.24)

In the slow roll limit determined by the linear potential wherein δ1 can be ignored, the
positive frequency modes satisfying the above differential equation can be written in the de
Sitter form as

f+k (x) = i f0k (1− i x) ei x, (2.25)

where f0k = H0/(2MPl

√

k3 ǫ∗1), with H0 being given by H2
0 = µ3 φ∗/(3M

2
Pl
). Hence, in the

presence of a non-zero δ1, let us write the modes describing the curvature perturbation as [58]

fk(x) = f+k (x) + ck(x) f
−
k (x), (2.26)

where f−k (x) are the negative frequency modes that are related to the positive frequency
modes by the relation f−k (x) = f+∗

k (x). Note that the non-vanishing δ1 modifies the standard
de Sitter modes f+k (x). The non-trivial evolution of the modes is captured by the function
ck(x).

The de Sitter modes f±k satisfy the differential equation

d2f±k
dx2

− 2

x

df±k
dx

+ f±k = 0. (2.27)

Therefore, upon substituting the expression (2.26) in the differential equation (2.24), we
obtain the following equation governing ck:

d

dx

[(

1− i

x

)

e−2 i x dck
dx

]

+
i

x2
e−2 i x dck

dx
=

2 i δ1
x

. (2.28)

As is well known, the perturbations oscillate when they are well inside the Hubble radius. In
this sub-Hubble regime, the oscillations in the perturbations resonate with the oscillations
in the background quantities. This resonance occurs when x ≃ M2

Pl
/(2 f φ∗), which proves

to be a large quantity for the parameter ranges of our interest (recall that, we had assumed
f φ∗/M

2
Pl

to be small). Therefore, the terms involving inverse powers of x on the left hand
side of the above differential equation can be ignored in the sub-Hubble regime and, under
these conditions, the equation can be easily integrated. We find that the resulting ck(x) can
be expressed as

ck(x) = −3 b f φ∗
2M2

Pl

[

ei (α1+φk/f) e−πM2

Pl
/(2 f φ∗) Γ

(

1 +
iM2

Pl

f φ∗
,−2 i x

)

+e−i (α1+φk/f) eπM2

Pl
/(2 f φ∗) Γ

(

1−
iM2

Pl

f φ∗
,−2 i x

)]

, (2.29)

where Γ(a, x) is the incomplete Gamma function [88] and α1 = −Xres ln 2, with Xres =
M2

Pl
/(f φ∗). Note that Xres is a large quantity since we have assumed f φ∗/M

2
Pl

to be small.
Note that, in arriving at the above expression, we have expressed φ0 in terms of x as

φ0 = φk +
√

2 ǫ∗1MPl
lnx, (2.30)
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where the quantity φk is given by

φk = φ∗ −
√

2 ǫ∗1MPl
ln

(
k

k∗

)

(2.31)

with k∗ denoting the pivot scale. Since we have assumed that f φ∗/M
2
Pl

≪ 1, the first term
in Eq. (2.29) is exponentially suppressed and hence can be ignored. Thus, we can express ck
as

ck(x) = −3 b f φ∗
2M2

Pl

e−i (φk/f+α1) eπM2

Pl
/2 f φ∗ Γ

(

1−
iM2

Pl

f φ∗
,−2 i x

)

. (2.32)

Note that, in deriving the above solution for ck(x), we had ignored inverse powers of
x on the left hand side of Eq. (2.28). We should emphasize here that this approximation
is strictly valid only at sub-Hubble scales. However, since the complete mode approaches
a constant value at late times, one finds that the largest contribution to the three-point
functions arises from the sub-Hubble domain [58]. Hence, the above solution for ck(x) proves
to be sufficient for evaluating the three-point function of our interest analytically. As we
shall see, these arguments are corroborated by the numerical results we obtain.

The scalar power spectrum can now be obtained from the late time limit (i.e. as x→ 0)
of the modes fk. We find that

ck(0) =
3 i b

√
π√

2Xres
e−i (φk/f+β1), (2.33)

where the phase β1 = Xres lnXres − Xres − Xres ln 2 − π/4. Upon using this result, at the
order b, we can express the scalar power spectrum as [58]

P
S
(k) = P0

S
[1− ck(0)− c∗k(0)] = P0

S

[

1− δn
S
sin

(
φk
f

+ β1

)]

, (2.34)

where P0
S
represents the amplitude of the scalar power spectrum which arises in the slow roll

scenario when the oscillations in the potential are absent and the quantity φk depends on
the wavenumber through the relation (2.31). The quantity P0

S
is given by

P0
S
=

H2
0

8π2M2
Pl
ǫ∗1

(2.35)

and, for small f φ∗/M
2
Pl
, the quantity δn

S
can be expressed as

δn
S
=

3 b
√
2π√

Xres
. (2.36)

The sinusoidal term in the power spectrum leads to oscillations that extends over a wide
range of scales. These oscillations result in continued modulations in the scalar spectral
index n

S
[cf. Eq . (2.20)], which can be obtained from the expression (2.34) for the scalar

power spectrum. In order to separate the contributions at the zeroth and first order in b, it
is convenient to write the scalar spectral index in the form n

S
= n0

S
+ nc

S
, where n0

S
is the

scalar spectral index in the slow roll approximation when the oscillations are ignored and nc
S

is the correction at order b. One can show that n0
S
= 1− 2 ǫ∗1 − ǫ∗2 = 1− 6 ǫ∗1. The first order

correction to scalar spectral index can be evaluated from Eqs. (2.20) and (2.34) to be

nc
S
(k) = 3 b

√

2π Xres cos

(
φk
f

+ β1

)

. (2.37)
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The power spectrum (2.34) that we have arrived at above has been compared with the
WMAP and Planck data [56, 57, 61]. As we have discussed earlier, the persistent oscillations
in the power spectrum lead to a better fit to the data than the more conventional nearly
scale invariant primordial spectrum. The values of the parameters describing the axion
monodromy model that are found to lead to the best fit to the Planck data are as follows:
µ/M

Pl
= 2.512 × 10−10, b = 1.063 × 10−2 and f/M

Pl
= 7.6346 × 10−3 [57]. Note that these

values lead to f φ∗/M
2
Pl

= 7.6346 × 10−2, which in turn corresponds to Xres ≃ 13. It should
be mentioned that earlier CMB data had suggested values for f that was smaller by an order
of magnitude or more and hence a suitably larger value of Xres (of the order of 250 or so).
While Xres ≃ 13 is not very large, we find that our analytical results match the numerical
results fairly well over a range of f and b.

Let us now turn to the case of the tensor power spectrum. On quantization, the tensor
perturbation γij can be decomposed in terms of the corresponding Fourier modes as

γ̂ij(η,x) =

∫
d3k

(2π)3/2
γ̂kij(η) e

i k·x

=
∑

s

∫
d3k

(2π)3/2

(

b̂sk ε
s
ij(k)hk(η) e

i k·x + b̂s†
k
εs∗ij (k)h

∗
k(η) e

−i k·x
)

, (2.38)

where the modes hk satisfy the differential equation

h′′k + 2
a′

a
h′k + k2 hk = 0. (2.39)

The quantity εsij(k) represents the polarization tensor of the gravitational waves, with the
index s denoting the helicity of the graviton. The transverse and traceless nature of the gravi-
tational waves implies that the polarization tensor obeys the relations: εsii(k) = ki ε

s
ij(k) = 0.

We shall choose to work with the normalization εrij(k) ε
s
ij(k) = 2 δrs. As in the case of scalars,

the annihilation and creation operators b̂s
k
and b̂s†

k
satisfy the conventional commutation re-

lations. The tensor power spectrum, viz. P
T
(k), is defined as follows:

〈 γ̂kij(η) γ̂k
′

mn(η) 〉 =
(2π)2

2 k3
Πk

ij,mn

4
P

T
(k) δ(3)(k + k

′), (2.40)

with the expectation values on the left hand side to be evaluated in the specified initial
quantum state, and the quantity Πk

ij,mn is given by

Πk

ij,mn =
∑

s

εsij(k) ε
s∗
mn(k). (2.41)

On making use of the decomposition (2.38), the tensor power spectrum evaluated in the
vacuum state |0〉 (such that b̂s

k
|0〉 = 0 ∀ k and s) can be expressed as

P
T
(k) = 4

k3

2π2
|hk|2, (2.42)

with the right hand side to be evaluated at sufficiently late times when the modes are well
outside the Hubble radius. The tensor spectral index n

T
is defined as

n
T
=

d lnP
T
(k)

d ln k
. (2.43)
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In the axion monodromy model, the tensor modes and the tensor power spectrum can be
determined in a manner very similar to the scalar case. On substituting the expression (2.23)
in the equation (2.39) governing the evolution of the tensor modes, we obtain that

d2hk
dx2

− 2 (1 + ǫ1)

x

dhk
dx

+ hk = 0. (2.44)

When the modulations in the potential are ignored, the positive frequency tensor modes in
the slow roll limit are given by

h+k (x) = i h0k (1− i x) ei x, (2.45)

where h0k = H0/(MPl

√
k3). In the presence of the modulations, let us write the modes

describing the tensor perturbation as

hk(x) = h+k (x) + dk(x)h
−
k (x), (2.46)

where h−k (x) = h+∗
k (x). The de Sitter modes h±k satisfy the differential equation (2.27).

On substituting the expression (2.46) for the tensor modes in Eq. (2.39), we find that the
quantity dk satisfies the differential equation

d

dx

[(

1− i

x

)

e−2 i x ddk
dx

]

+
i

x2
e−2 i x ddk

dx
=

2 i ǫ1
x

. (2.47)

As in the scalar case, due to the resonance that arises in the sub-Hubble regime (i.e. when
x is large), we can ignore the terms involving the inverse powers of x on the left hand side of
the above differential equation. Upon integrating the above equation under these conditions,
we obtain dk to be

dk(x) = −3 i b f2

2M2
Pl

[

ei (φk/f+α1) e−πM2

Pl
/(2 f φ∗) Γ

(

1 +
iM2

Pl

f φ∗
,−2 i x

)

−e−i (φk/f+α1) eπM2

Pl
/(2 f φ∗) Γ

(

1−
iM2

Pl

f φ∗
,−2 i x

)]

, (2.48)

where Γ(a, x) represents the incomplete Gamma function. In the domain fφ∗/M
2
Pl

≪ 1, the
first term in the above expression is exponentially suppressed and hence dk simplifies to be

dk(x) =
3 i b f2

2M2
Pl

e−i (φk/f+α1) eπM2

Pl
/2 fφ∗ Γ

(

1−
iM2

Pl

f φ∗
,−2 i x

)

. (2.49)

This expression for dk allows us to evaluate the tensor power spectrum and, we find that in
the limit x→ 0, it can be expressed as

P
T
(k) = P0

T
[1− dk(0)− d∗k(0)] = P0

T

[

1− f

φ∗
δn

S
cos

(
φk
f

+ β1

)]

, (2.50)

where P0
T
represents the amplitude of the tensor power spectrum which arises in the slow

roll scenario when the oscillations are absent in the potential and is given by

P0
T
=

2H2
0

π2M2
Pl

. (2.51)
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The amplitude of the oscillations in the tensor power spectrum prove to be about f/φ∗ (which
is nearly 10−3, for the best fit values) times smaller than the magnitude of the oscillations
in the case of scalars. As in the case of the scalar spectral index, it is convenient to split the
contribution to the tensor spectral index into a slow roll part and a part which is first order
in b as n

T
= n0

T
+ nc

T
. The contribution at the zeroth order in b to the tensor spectral index

is given by n0
T
= −2 ǫ∗1, which is the standard slow roll result. The first order correction to

the tensor spectral index can be arrived at using the tensor power spectrum (2.50) and is
found to be [62]

nc
T
= −3 b

√

2π f

M
Pl

(2 ǫ∗1)
3/4 sin

(
φk
f

+ β1

)

, (2.52)

which reflects the continued oscillations in the tensor power spectrum.

3 The scalar-scalar-tensor cross-correlation in the Maldacena formalism

The scalar-scalar-tensor cross-correlation in Fourier space, viz. Bm3n3

RRγ (k1,k2,k3), evaluated
towards the end of inflation at the conformal time, say, ηe, is defined as

〈 R̂k1
(ηe) R̂k2

(ηe) γ̂
k3

m3n3
(ηe) 〉 ≡ (2π)3 Bm3n3

RRγ (k1,k2,k3) δ
(3) (k1 + k2 + k3) . (3.1)

For convenience, hereafter, we shall write this correlator as

BRRγ(k1,k2,k3) = (2π)−9/2 GRRγ(k1,k2,k3). (3.2)

The scalar-scalar-tensor cross-correlation generated in a given inflationary model can be
evaluated using the Maldacena formalism [14, 69]. The first step in the formalism is to arrive
at the third order action describing the perturbations. With the action at hand, one can use
the standard rules of perturbative quantum field theory to arrive at the corresponding three-
point function. The scalar-scalar-tensor cross-correlation Gm3n3

RRγ (k1,k2,k3), when evaluated
in the perturbative vacuum, can be written as (see, for example, Ref. [69])

Gm3n3

RRγ (k1,k2,k3) =

3∑

C=1

Gm3n3

RRγ (C)(k1,k2,k3)

= M2
Pl

Πk3

m3n3,ij
n̂1i n̂2j

3∑

C=1

[
fk1(ηe) fk2(ηe)hk3(ηe)

× GC
RRγ(k1,k2,k3) + complex conjugate

]
, (3.3)

where the quantities GC
RRγ(k1,k2,k3) are described by the integrals

G1
RRγ(k1,k2,k3) = −2 i k1 k2

∫ ηe

ηi

dη a2 ǫ1 f
∗
k1 f

∗
k2 h

∗
k3 , (3.4a)

G2
RRγ(k1,k2,k3) =

i

2

k23
k1 k2

∫ ηe

ηi

dη a2 ǫ21 f
′∗
k1 f

′∗
k2 h

∗
k3 , (3.4b)

G3
RRγ(k1,k2,k3) =

i

2

1

k1 k2

∫ ηe

ηi

dη a2 ǫ21
[
k21 f

∗
k1 f

′∗
k2 + k22 f

′∗
k1 f

∗
k2

]
h′∗k3 . (3.4c)

The lower limit of the integrals, viz. ηi, denotes a sufficiently early time at which the initial
conditions are imposed on the modes when they are well inside the Hubble radius. The upper
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limit ηe denotes a suitably late time which can, for instance, be conveniently chosen to be a
time close to the end of inflation. Note that for a given wavevector k, n̂ denotes the unit
vector n̂ = k/k. Hence, the quantities n̂1i and n̂2i represent the components of the unit
vectors n̂1 = k1/k1 and n̂2 = k2/k2 along the i-spatial direction.

As in the case of the scalar bi-spectrum, it proves to be convenient to introduce a
dimensionless non-Gaussianity parameter, say, CR

NL
(k1,k2,k3), to reflect the amplitude of

the scalar-scalar-tensor three-point function. It can be defined as a suitable ratio of the
three-point function and the scalar and tensor power spectra as follows [69, 85]:

CR
NL

(k1,k2,k3) = − 4

(2π2)2

[

k31 k
3
2 k

3
3 G

m3n3

RRγ (k1,k2,k3)
]

×
(

Πk3

m3n3,m̄n̄

)−1
{
[
k31 P

S
(k2) + k32 P

S
(k1)

]
P

T
(k3)

}−1

. (3.5)

4 Analytical template for the scalar-scalar-tensor cross-correlation

In this section, we shall first arrive at an analytical expression for the scalar-scalar-tensor
three-point function. Then, in order to illustrate the accuracy of the analytical results, we
shall compare them with the exact numerical results.

4.1 Analytical evaluation of the three-point function

Among the three different contributions to the scalar-scalar-tensor three-point function, the
term G1

RRγ(k1,k2,k3) [cf. Eq. (3.4a)] is linear in the first slow roll parameter ǫ1 and hence it
dominates over the other two terms [cf. Eqs. (3.4b) and (3.4c)], both of which are quadratic
in ǫ1. The term G1

RRγ(k1,k2,k3) can be decomposed into a slow roll part, which is zeroth
order in b, and terms involving b. The contribution when b = 0 corresponds to the standard
slow roll result and it can be easily evaluated using the de Sitter modes to be [85]

G
1(0)
RRγ(k1,k2,k3) = Πk3

m3n3,ij
n̂1i n̂2j

H4
0 k1 k2

4M4
Pl
ǫ∗1 (k1 k2 k3)

3

[

−k
T
+
k1 k2 + k2 k3 + k3 k1

k
T

+
k1 k2 k3
k2
T

]

, (4.1)

where k
T
= k1 + k2 + k3, and we have suppressed the indices m3 and n3 on GRRγ(k1,k2,k3)

for convenience.
Let us now turn to the contributions involving b. As we have discussed, we shall ignore

terms which are of higher order in b and focus only on the contributions that are linear in b.
Even amongst the various terms which are linear in b, we shall further restrict ourselves to
terms which are of the leading order in f φ∗/M

2
Pl
. In the case of the scalar bi-spectrum,

the dominant contribution arises due to a term dependent on ǫ̇2, which grows to be quite
large in the axion monodromy model. This in turn boosts the scalar bi-spectrum and the
corresponding non-Gaussianity parameter to rather significant values [64]. Moreover, since
ǫ̇2 becomes large, it proves to be sufficient to work with the de Sitter modes to evaluate the
dominant contribution. In contrast, in the case of the scalar-scalar-tensor cross-correlation,
apart from the correction to the slow roll parameter ǫ∗1 (viz. ǫc1), we have to take into
account the modification to the de Sitter modes, which are quantified by ck and dk. It
should be clear that, at the linear order in b, there arise four contributions due to ck and dk,
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two from the ck(x) and dk(x) inside the integral [cf. Eq. (3.4a)] and two others due to the
terms ck(0) and dk(0) outside [cf. Eq. (3.3)]. One finds that dk/ck ∼ f/φ∗, which is a small
quantity. Therefore, one can actually ignore the terms involving dk and retain only those
containing ck. Under these conditions, at the first order in b, we can write the expression for
the scalar-scalar-tensor three-point function as

G
1(1)
RRγ(k1,k2,k3) = M2

Pl
Πk3

m3n3,ij
n̂1i n̂2j

{

−2 i k1 k2

[

f+k1(0) f
+
k2
(0) g+k3(0)

∫ 0

−∞

dη a2

×
(

ǫ∗1 c
∗
k1 f

+
k1
f+∗
k2

g+∗
k3

+ ǫ∗1 c
∗
k2 f

+∗
k1

f+k2 g
+∗
k3

+ ǫc1 f
+∗
k1

f+∗
k2
g+∗
k3

)

+
(

ck1(0) f
+∗
k1

(0) f+k2(0) g
+
k3
(0) + ck2(0) f

+
k1
(0) f+∗

k2
(0) g+k3(0)

)

×
∫ 0

−∞

dη a2 ǫ∗1 f
+∗
k1

f+∗
k2
g+∗
k3

]

+ complex conjugate

}

. (4.2)

Let us first consider the term containing ǫc1 in the above expression. At the linear order
in b and f φ∗/M

2
Pl
, we have

G
1(1a)
RRγ (k1,k2,k3) = Πk3

m3n3,ij
n̂1i n̂2j

[

H4
0

8M4
Pl
ǫ∗21

−i k1 k2
(k1 k2 k3)3

∫ 0

−∞

dη

η2
ǫc1

(

1− ik
T
η

− (k1 k2 + k2 k3 + k3 k1) η
2 + i k1 k2 k3η

3

)

ei kT η

+complex conjugate

]

, (4.3)

where we have used the expressions (2.26) and (2.46) for the modes fk and gk in Eqs. (3.3)
and (3.4a). We can use the expressions (2.14) and (2.30) and substitute x = −k

T
η for

performing the above integrals. Each of these integrals are found to be of the following form:

I1(k1, k2, k3,Xres, f) =

∫ ∞

0
dx q(x) e−i x

{

e
i
[

(φk
T
/f)+Xres lnx

]

+ e
−i

[

(φk
T
/f)+Xres lnx

]}

,

(4.4)
where q (x) is some polynomial function of x. The two terms in the above integral can be
expressed in terms of the Gamma functions. However, we find that, for small f φ∗/M

2
Pl
, the

contribution due to the second term is exponentially suppressed when compared to the first
term and hence can be ignored. Under this assumption, we can evaluate the integrals in
Eq. (4.3) to obtain

G
1(1a)
RRγ (k1,k2,k3) = Πk3

m3n3,ij
n̂1i n̂2j

H4
0

4M4
Pl
ǫ∗1

3 b
√
2π√

Xres

k1 k2
(k1 k2 k3)3

×
{

k
T

1 +X2
res

[

− sin

(
φk

T

f
+ β2

)

+
1

Xres
cos

(
φk

T

f
+ β2

)]

− k
T

Xres
cos

(
φk

T

f
+ β2

)

+
k1 k2 + k2 k3 + k3 k1

k
T

sin

(
φk

T

f
+ β2

)

+
k1 k2 k3
k2
T

[

Xres cos

(
φk

T

f
+ β2

)

+ sin

(
φk

T

f
+ β2

)]}

, (4.5)
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where the phase factor β2 is given by β2 = Xres lnXres −Xres − π/4.
Let us now consider the terms containing ck in Eq. (4.2). We shall consider terms

involving both ck(0) as well as ck(η). We can substitute the expressions for the modes f+k
and g+k [cf. Eqs. (2.17) and (2.39)] to obtain the contributions due to these terms to be

G
1(1b)
RRγ(k1,k2,k3) = Πk3

m3n3,ij
n̂1i n̂2j

{

iH4
0

8M4
Pl
ǫ∗1

k1 k2
(k1 k2 k3)3

[∫ 0

−∞

dη

η2
c∗k1(η)

×
(

1− i k
T1
η

︸ ︷︷ ︸

I

+(k1 k2 − k2 k3 + k3 k1) η
2 − i k1 k2 k3 η

3

︸ ︷︷ ︸

II

)

ei kT1
η

+ ck1(0)

∫ 0

−∞

dη

η2

(

1− i k
T
η

︸ ︷︷ ︸

I

− (k1 k2 + k2 k3 + k3 k1) η
2

︸ ︷︷ ︸

II

+ i k1 k2 k3 η
3

︸ ︷︷ ︸

II

)

ei kT η

]

+ complex conjugate

}

+a similar term with k1 and k2 exchanged, (4.6)

where k
T1

= k
T
− 2 k1. Let us first consider the integrals which have been highlighted as (I)

in the above equation. The integrals involving c∗k1(η) are found to diverge as η → 0 [note
that ck(η) is given by Eq. (2.32)]. However, as we shall soon see, their complete contribution
to the three-point function proves to be finite in the limit. Therefore, we initially set the
upper limit of the integrals to be, say, ηe (which denotes the conformal time at the end of
inflation), and eventually consider the ηe → 0 limit. We also evaluate the integrals containing
ck1(0) in the same fashion. Thereafter, we combine all the integrals marked as (I), add the
resultant expressions to their complex conjugates, and take the ηe → 0 limit to finally arrive
at the corresponding contribution to the scalar-scalar-tensor cross-correlation. We find that
the contributions due to the terms marked as (I) can be written as

G
1(1bI)
RRγ (k1,k2,k3) = Πk3

m3n3,ij
n̂1i n̂2j

{

iH4
0

8M4
Pl
ǫ∗1

k1 k2
(k1 k2 k3)3

×
[
∫ 0

−∞

dη

η2
c∗k1(η) (1− i k

T1
η) ei kT1

η

+ ck1(0)

∫ 0

−∞

dη

η2
(1− i k

T
η) ei kT η

]

+ complex conjugate

}

=
H4

0

4M4
Pl
ǫ∗1

3 b
√
2π√

Xres

k1 k2
(k1 k2 k3)3

(k2 + k3) sin

(
φk1
f

+ β1

)

, (4.7)

where, to obtain the final result, we have made use of the expression (2.33) for ck1(0).
We can now consider the integrals which have been indicated as (II) in Eq (4.6). We

switch to the variable x = −k1η and substitute for ck1(η) from Eq. (2.32). Note that the
expression for ck1(η) involves the incomplete Gamma function [cf. Eq. (2.32)]. These terms
contain integrals of the following form:

I2 (k1, k2, k3,Xres) =

∫ ∞

0
dxu(x) ev(x) Γ (1 + iXres, 2 i x) , (4.8)
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where u(x) and v(x) are some polynomial functions of x and Γ (1 + iXres, 2 i x) is the incom-
plete Gamma function [88]. We find that these integrals can be evaluated if we make use of
the integral representations for the incomplete Gamma function and interchange the order
of the integrals as follows:

∫ ∞

0
dxu(x) ev(x)

∫ ∞

2 i x
dy yiXres e−y =

∫ ∞

0
dy yiXres e−y

∫ y

0

dp

2 i
u
( p

2 i

)

ev(p/2 i), (4.9)

where we have set p = 2 i x. The complete contribution due to the terms marked as (II) is
found to be

G
1(1bII)
RRγ (k1,k2,k3) = −Πk3

m3n3,ij
n̂1i n̂2j

H4
0

4M4
Pl
ǫ∗1

3 b
√
2π√

Xres

k1 k2
(k1 k2 k3)3

×
(

k1 k2 + k2 k3 + k3 k1
2 k

T

sin

(
φk1
f

+ β1

)

+
k1 k2 k3
2 k2

T

sin

(
φk1
f

+ β1

)

+
k1 k2 − k2 k3 + k3 k1

2k
T1

{

1

1 + (k
T1
/2 k1)

× sin

[
φk1
f

+ β1 −Xres ln

(

1 +
k
T1

2 k1

)]

− sin

(
φk1
f

+ β1

)}

+
k2 k3
4 k

T1

(

1 +
k
T1

2k1

)−2
{

sin

[
φk1
f

+ β1 −Xres ln

(

1 +
k
T1

2k1

)]

+Xres cos

[
φk1
f

+ β1 −Xres ln

(

1 +
k
T1

2 k1

)]}

+
k1 k2 k3
2 k2

T1

{

1

1 + (k
T1
/2 k1)

sin

[
φk1
f

+ β1 −Xres ln

(

1 +
k
T1

2 k1

)]

− sin

(
φk1
f

+ β1

)})

+a similar term with k1 and k2 exchanged. (4.10)

The sum of the contributions (4.5), (4.7) and (4.10) together with the contribution (4.1)
gives the complete contribution to the scalar-scalar-tensor cross-correlation under the approx-
imations we have worked with.

4.2 Comparison with the numerical results

In order to illustrate the accuracy of our analytical calculations, we shall now compare our
analytical results that have been arrived at under certain approximations with the exact
results obtained numerically. We have obtained the numerical results using a code we had
developed earlier (for details about the code, see Ref. [69]). In fact, we shall compare the
results for the corresponding non-Gaussianity parameter CR

NL
[cf. Eq. (3.5)]. In Fig. 1, we have

plotted the analytical and the exact numerical results for two sets of values of the parameters
involved. We have chosen values for the parameters such that the approximations we have
worked with are valid. It is evident from the figure that the analytical results match the
numerical ones quite well.

– 14 –



0.0 0.2 0.4 0.6 0.8 1.0

k3/k1

0.5

0.6

0.7

0.8

0.9

1.0
k
2
/k

1

0.6

0.75

0.9

0.0 0.2 0.4 0.6 0.8 1.0

k3/k1

0.5

0.6

0.7

0.8

0.9

1.0

k
2
/k

1

0.61

0.75

0.89

0.0 0.2 0.4 0.6 0.8 1.0

k3/k1

0.5

0.6

0.7

0.8

0.9

1.0

k
2
/k

1

-2.66

0.12

2.89

0.0 0.2 0.4 0.6 0.8 1.0

k3/k1

0.5

0.6

0.7

0.8

0.9

1.0

k
2
/k

1

-2.49

0.11

2.71

Figure 1: A comparison of the analytical results (on the left) with the numerical results
(on the right) for the non-Gaussianity parameter CR

NL
(k1,k2,k3) characterizing the scalar-

scalar-tensor three-point function. We have plotted the results for two sets of values of the
parameters involved. We have chosen µ/M

Pl
= 2.512× 10−10 in arriving at all these figures.

The results in the top row correspond to b = 1.063×10−2 and f/M
Pl

= 7.6346×10−3, which
are values that lead to the best fit to the Planck data [57]. The results in the bottom row
correspond to b = 5.0×10−2 and f/M

Pl
= 7.6346×10−4. It is clear that the analytical results

match the numerical results very well for both these sets of values. In fact, we find that the
match is always better than 7% over the range of wavenumbers that we have considered. Note
that, as expected, the non-Gaussianity parameter CR

NL
(k1,k2,k3) exhibits more oscillations

for smaller values of f , as is illustrated by the figures in the bottom row. Also, the strength
of these oscillations is more for larger values of b.

5 The squeezed limit and the consistency relation

In this section, we shall discuss the behavior of the scalar-scalar-tensor three-point function
in the so-called squeezed limit. This limit corresponds to the situation where one of the three
wavenumbers involved is much smaller than the other two. In such a limit, it is well known
that the three-point functions can be written in terms of the two-point functions through a
relation known as the consistency condition [14, 75–82, 85]. This condition primarily arises
due to the fact that the amplitude of the long wavelength scalar and tensor modes freeze
on supper Hubble scales and hence can be treated as a background as far as the smaller
wavelength modes are concerned. In the case of the scalar-scalar-tensor three-point function,
when the wavenumber of the tensor mode is considered to be much smaller than the two
scalar modes, it is found that the three-point function can be completely expressed in terms
of the scalar and tensor power spectra as follows (see, for instance, Refs. [14, 85]):

〈 R̂k1
(ηe) R̂k2

(ηe) γ̂
k3

m3n3
(ηe) 〉k3 = − (2π)5/2

4 k31 k
3
3

(
n

S
− 4

8

)

P
S
(k1)PT

(k3)

×Πk3

m3n3,ij
n̂1i n̂1j δ

3(k1 + k2), (5.1)
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where we have considered k3 to be the squeezed mode. The above condition can essentially
be expressed as

k3 k33 G
m3n3

RRγ (k,−k,k3) = −Πk3

m3n3,ij
n̂i n̂j

(2π)4

4

(
n

S
− 4

8

)

P
S
(k)P

T
(k3), (5.2)

with the limit k3 → 0 kept in mind. In what follows, using the analytical results we have ob-
tained for the power spectra and the scalar-scalar-tensor cross-correlation, we shall explicitly
show that such a consistency relation is indeed satisfied in the axion monodromy model.

Let us now consider the squeezed limit of the three-point function we have arrived at
analytically. In the limit k1 = −k2 = k and k3 → 0, at the leading order in Xres, we find
that the three-point function at the order b [i.e. the sum of the contributions (4.5), (4.7)
and (4.10)] reduces to

k3 k33 G
1(1)
RRγ(k,−k,k3) = Πk3

m3n3,ij
n̂i n̂j

H4
0

8 iM4
Pl
ǫ∗1

3 b
√
2π√

Xres

k

k
T1

×
(

ei φk/f

{

[1 + (k
T1
/2 k)]−iXres

1 + (k
T1
/2 k)

− 1

}

− e−i φk/f

{

[1 + (k
T1
/2 k)]iXres

1 + (k
T1
/2 k)

− 1

})

, (5.3)

where, recall that, k
T1

= k
T
− 2 k1. Hence, in the squeezed limit, k

T1
→ 0. Therefore, we

can expand the terms (1 + k
T1
/2 k)±i Xres in the above equation up to the first order in k

T1

to obtain the following expression for the three-point function:

k3 k33 G
1(1)
RRγ(k,−k,k3) = −Πk3

m3n3,ij
n̂i n̂j

3 bH4
0

√
2π

8M4
Pl
ǫ∗1

X1/2
res cos

(
φk
f

)

. (5.4)

We should mention that, in arriving at this expression, we have ignored a k-independent
phase.

Let us now turn to the right hand side of the relation (5.2). Up to the linear order in b,
we can have four combinations of the various terms, given by

(
n

S
− 4

8

)

P
S
(k)P

T
(k3) ≃

(

n0
S
− 4

8

)

P0
S
(k)P0

T
(k3) +

(

n0
S
− 4

8

)

Pc
S
(k)P0

T
(k3)

+

(

n0
S
− 4

8

)

P0
S
(k)Pc

T
(k3) +

(
nc

S

8

)

P0
S
(k)P0

T
(k3), (5.5)

where P0
S
(k) and P0

T
(k) and n0

S
are the scalar and the tensor power spectra and the scalar

spectral index, respectively, which arise in the absence of the oscillations in the axion mon-
odromy model. Note that Pc

T
(k) involves terms of order dk and, as we have discussed before,

these terms are of lower order when compared to the other terms involving ck. Hence, for
consistency, we can ignore the contribution due to Pc

T
(k) in the above equation. Therefore,

we finally obtain that
(
n

S
− 4

8

)

P
S
(k)P

T
(k3) ≃

(

n0
S
− 4

8

)

P0
S
(k)P0

T
(k3) +

(

n0
S
− 4

8

)

Pc
S
(k)P0

T
(k3)

+

(
nc

S

8

)

P0
S
(k)P0

T
(k3). (5.6)
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The first term in the above expression is the slow roll term for which the consis-
tency relation involving the b = 0 contribution to the scalar-scalar-tensor cross correla-

tion, viz. G
1(0)
RRγ(k1,k2,k3), can be verified easily [70, 85]. On evaluating the remaining

two terms, we find that the one involving nc
S
is of leading order, as the other term is sup-

pressed relative to this by a factor of Xres. Hence, at the leading order in b, we can replace
[(n

S
− 4) /8] P

S
(k)P

T
(k3) by

(
nc

S
/8
)
P0

S
(k)P0

T
(k3) in Eq. (5.2). Upon making this replace-

ment, the consistency relation at the linear order in b can be written as

k3 k33 G
1(1)
RRγ(k,−k,k3) = −Πk3

m3n3,ij
n̂1i n̂1j

(2π)4

4

(
nc

S

8

)

P0
S
P0

T
. (5.7)

Now, on substituting the expression for nc
S
[cf. Eqs. (2.37)] and the slow roll amplitudes for the

scalar and tensor power spectra [cf. Eqs. (2.35) and (2.51)] in the above expression, we find
that the resultant expression is the same as that obtained in Eq. (5.4), up to a k-independent
phase. This implies that the consistency relation is valid in the axion monodromy model even
in the presence of persistent oscillations in the two as well as the three-point functions [85].

6 Discussion

The axion monodromy model is described by a linear potential with small periodic modu-
lations. The modulations in the potential lead to oscillations in the slow roll parameters.
These oscillations associated with the background resonate with the oscillations of the scalar
and tensor perturbations at sub-Hubble scales for suitable values of the parameters of the
model. This resonance leads to persistent oscillations in the two and three-point functions.
The scalar and tensor power spectra as well as the scalar bi-spectrum have been analytically
evaluated earlier in the axion monodromy model under certain approximations.

In terms of their hierarchy, after the scalar bi-spectrum, the scalar-scalar-tensor cross-
correlation proves to be the most important of the three-point functions. In this work, we have
analytically calculated the scalar-scalar-tensor three-point function in the axion monodromy
model in the same approximation under which the scalar and tensor power spectra and the
scalar bi-spectrum had been evaluated earlier. We find that the analytical results we have
obtained match the corresponding numerical results very well for a range of the parameters
involved. Subsequently, using the analytical results, we have also been able to explicitly
verify the consistency relation governing the three-point function.

The template that we have obtained here can be used to compare the inflationary models
with the CMB data at the level of three-point functions involving the tensor perturbations
(in this context, see the recent work, Ref. [89]). Clearly, it will be interesting to extend our
analysis to the scalar-tensor-tensor three-point function as well as the tensor bi-spectrum.
We find that the tensor bi-spectrum can be easily evaluated using the methods adopted here.
However, comparison with the corresponding numerical results suggest that these methods
do not prove to be adequate to evaluate the scalar-tensor-tensor three-point function to the
same level of accuracy. Also, for instance, the consistency relation for the three-point function
also does not seem to hold under these approximations. These approximations need to be
extended in order to evaluate the scalar-tensor-tensor cross-correlation analytically to a good
level of accuracy. We are currently investigating this issue.
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