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In a family of drums used in the Indian subcontinent, the circular drum head is made of material
of non-uniform density. Remarkably, and in contrast to a circular membrane of uniform density, the
low eigenmodes of the non-uniform membrane are harmonic. In this work we model the drum head
by a non-uniform membrane whose density varies smoothly between two prescribed values. Using
a Fourier-Chebyshev spectral collocation method we obtain the eigenmodes and eigenvalues of the
drum head. For a suitable choice of parameters, which we find by optimising a cost function, the
eigenspectra obtained from our model are in excellent agreement with experimental values. Our
model and the numerical method should find application in numerical sound synthesis.

PACS numbers: 43.40.Dx, 43.75.Hi

I. INTRODUCTION

The eigenvalue problems for a string and an uniform
circular membrane are classical problems in mathemati-
cal physics. The eigenvalues of a string are determined
by the zeros of the sine function and so form a harmonic
series. The large number of harmonic overtones give the
vibrations of a string its musicality. The eigenvalues of
an uniform membrane, on the other hand, are determined
by the zeros of Bessel functions. The overtones are not
integer multiples of the fundamental. Consequently, the
vibrations do not have a strong sense of pitch and, there-
fore, lack the musicality of string vibrations.
Several musical traditions have devised means of

restoring musicality to the vibrations of circular drums.
The Western tympani achieves this by coupling the vi-
brations of the membrane with the large mass of air en-
closed in the kettle below the drum head. For a judicious
choice of modes, the combined membrane-air system has
harmonic vibrations[1]. A different strategy is used in a
whole family of drums used in the Indian subcontinent,
where harmonic overtones are obtained by loading the
central part of the membrane with material of heavier
density. These drums have a strong sense of pitch, and
in performance, are tuned to match the tonic of the vo-
calist or the instrumentalist.
The two most popular drums of this family are the

South Indian mridangam and the North Indian tabla.
The mridangam is a single drum covered on both sides
with drum heads made of leather, while the tabla is a
pair of drums, the dayan and the bayan, each of which
have a single drum head (Fig. 1). The loading in the
dayan is concentric to the membrane, while in the bayan
the loading is eccentric(Fig. 2).
Raman made the first scientific study of this family of

drums.[2] In a series of experiments, Raman and cowork-
ers obtained the eigenmodes and eigenvalues of the mri-

dangam, showing that the first nine normal modes gave
five very nearly harmonic tones. The higher overtones

FIG. 1: The tabla is a pair of drums consisting of the the left
drum, bayan and the right drum, dayan. The cords running
along the length of the drums are used to adjust the tension
in the membrane, allowing the tonic of the drum to be raised
or lowered.

were noticably anharmonic, but Raman noted features
in the construction of design to supress the higher over-
tones. Subsequently, Ramakrishna and Sondhi[3] mod-
elled the drum head as a composite membrane of two
distinct densities, with the caveat that “the density of the
loaded region is not constant ... but decreases gradually”.
With this simplification, and for concentric loading, the
eigenvalue problem could be solved analytically in terms
of Bessel and trigonometric functions. The eigenvalues
of the composite membrane model agree with Raman’s
experimental values to within 10%. Solving the compos-
ite membrane model for eccentric loading is considerably
more difficult due to lack of circular symmetry. An exact
solution for the eigenmodes in terms of known functions is
not available. Two approximate solutions[4, 5] have been
presented, but the agreement with experimental values
is generally poor. Little, therefore, is known about the
eigenspectrum of the eccentrically loaded drum head.

http://arxiv.org/abs/0809.1320v1
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The purpose of this work is two-fold. The first is
to present a mathematical model for the loaded drum
head of the Indian musical drums, using the tabla as
the prototypical example. The second is to present
a high-resolution numerical method, based on Fourier-
Chebyshev collocation, which may be used to obtain the
eigenvalues and eigenmodes of a non-uniform circular
membrane with an arbitrary variation of the mass den-
sity. Using the numerical method we obtain the eigen-
spectrum of our model drumhead, for both concentric
and eccentric loadings. For concentric loading, our re-
sults are in excellent agreement with Raman’s experimen-
tal values and offer an improvement over the composite
membrane model of Ramakrishna and Sondhi. For the
eccentric case, our numerical results give an accurate so-
lution for the eigenvalues and eigenmodes and do not re-
quire the uncontrolled simplifying assumptions of previ-
ous work. We compare the eigenspectra of the concentric
and eccentric drumheads and show that the eccentricity
lifts the degeneracy of pairs of concentric eigenmodes.
With further refinement, which is part of ongoing work,
we believe that our model will find application for numer-
ical sound synthesis of the tabla and other Indian musical
drums.
The remainder of the paper is organised as follows. In

the next section we present our mathematical model for
the continuous loading and the boundary value problem
that must be solved to obtain the eigenvalues and the
eigenfunctions. In Section III we discuss in detail our
numerical method, discussing in particular how it leads
to a generalised eigenvalue problem. Our results for con-
centric and eccentric loading are presented in Section IV.
We conclude with a summary and discussion of further
work.

II. MATHEMATICAL MODEL

The drum head of the tabla is made of leather with
the central patch (the sihai) made of a complex mixture
of materials, as explained in the caption to Fig. 2 The
sihai is approximately eight times as dense as the leather
and covers approximately a quarter of the area of the
membrane. The sihai is applied in layers, with each layer
made to dry completely before the application of the next
layer. This allows a control of the effective mass density
of the sihai. The variation of the harmonicity of the
drums with each layer of application of the paste has
been studied carefully by Rossing and Sykes[6].
It should be clear that the construction of the sihai is

a complex art. However, the most crucial effect of the
sihai is to increase the density in the central region of
the drum head. Effectively, it is possible to think of the
drumhead, then, as a membrane of non-uniform density.
This forms the basis of our mathematical model. We
approximate the tabla drum head as a circular membrane
of unit radius, with a non-uniform areal density ρ(r),
where r = (r, θ) is a point on the membrane. Our specific

FIG. 2: The drumhead of the dayan (above). The drumhead
is made with goatskin and loaded at the center. The cen-
tral loading patch, the sihai, is made of a paste of soot, iron
filings and flour and applied layer by layer to the goatskin
membrane. The sihai is cracked with a heavy stone after the
paste dries, to reduce the rigidity of the material. The thin
flap at the outer edge of the drumhead, the kinar, serves to
damp the higher harmonics. Distinct sounds, indicated by the
mnemonic syllables tin, tun, ta, ti, tete, are produced when
the drum is struck at different parts. The bayan (below) is
of similar construction, but crucially, the sihai is placed ec-
centrically on the membrane. The bayan has a smaller range
of sounds, the principal one being the mnemonic syllable ghe.
The pitch of this syllable is modulated by changing the po-
sition of the heel of the hand along the broadest part of the
unloaded region of the drum head

.

model, which includes both the concentric and eccentric
situations, is

ρ(r, θ) = 1 +

(

σ2 − 1
)

2

[

1− tanh

(

R(r, θ)− k

ξ

)]

, (1)

where

R(r, θ) =

√

(r cos θ − ǫ)
2
+ (r sin θ)

2
. (2)

This function changes smoothly from a value ρ2 at r = 1
to a value ρ1 = ρ2σ

2 at the center of the loaded region.
The change occurs over a region of width ξ along the cir-
cle whose equation in polar coordinates is r = R(r, θ).
For ǫ = 0 the loading is radially symmetric and repre-
sents the concentric loading of the dayan . For ǫ > 0, the
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loading is displaced from the center by a distance ǫ and
then represents the eccentric loading of the bayan . For
ξ ≪ 1, k2 is the ratio of the areas of the loaded to the
unloaded regions, requiring 0 < k < 1. For the concen-
tric case, the variation in density is centrally symmetric,
and we display the variation as a function of the radius
in Fig. 3. In the eccentric case, the density depends on
both the radius and the polar angle, and Fig. 4 illustrates
this case. Notice that σ = 1 corresponds to the uniform
membrane, while for fixed σ, k, and ǫ, ξ → 0 recovers
the composite membrane model. Our model, which is
smoothly non-uniform, allows a gradual decrease in den-
sity of the loaded region and avoids the abrupt change
in density of the composite membrane model. Previous
attempts at modelling the drumhead by continuous den-
sities have all focussed on the concentric case. Some of
these use unphysical models for the mass density[7, 8],
while others need parameters k and σ which do not agree
with experiment[9].
The equation of motion governing a membrane with

spatially varying density ρ = ρ(r, θ) and uniform tension
T is

ρü = T∇2u (3)

Here, u = u(r, θ, t) is the transverse displacement of the
membrane at time t. For a circular membrane of unit
radius clamped at the boundary, the eigenvalue problem
is obtained by seeking solutions of Eq.3 which satisfy the
Dirichlet condition

u(r = 1, θ, t) = 0 (4)

The initial-boundary value problem represented by Eq.3
and Eq.4 have exact analytical solutions in only a hand-
ful of special cases. Of these, the most relevant for the
present work are the uniform membrane ρ(r, θ) = ρ0
and the composite membrane model. To the best of our
knowledge, there are no exact analytical solutions when
the density varies with both the radius and the angle,
as is in the case of Fig. 4. Due to the lack of circular
symmetry, the usual strategy of separation of variables
in polar coordinates fails, and the eigenfunctions cannot
be obtained by a Fourier-Bessel expansion.
This motivates the use of a high-resolution numerical

method which we describe in the next section. The ad-
vantage of the method, besides its accuracy, is that it
solves with equal ease the eigenvalue problem for both
the concentric and eccentric cases, facing no difficulty
with density variations which depend on both radius and
angle. The numerical method also opens the way to a
time domain solution for Eq.3 which should find applica-
tion in numerical sound synthesis.

III. NUMERICAL METHOD

The eigenvalue equation for the normal modes of
the loaded drum is obtained by assuming a solution

FIG. 3: Variation of areal density of the membrane for ǫ = 0.
The density is plotted for σ = 2.57, k = 0.492 and ξ = 0.091.
We use this form of the density to model the dayan.

FIG. 4: Variation of areal density of the membrane for ǫ > 0.
The density is plotted for ǫ = 0.18, σ = 2.57, k = 0.29 and
ξ = 0.091. We use this form of the density to model the bayan

u(r, θ, t) = Ψmn(r, θ) exp(iωmnt) which transforms Eq.3
into

− ω2
mnρ(r, θ)Ψmn(r, θ) = T∇2Ψmn(r, θ) (5)

Here, Ψmn is the eigenmode with m nodal lines and n
nodal contours. This generalises the labelling used for
the uniform circular membrane, where the nodal lines
are diameters and the nodal contours are circles. There is
an important difference in the mathematical structure of
the eigenvalue problem for the uniform and non-uniform
membrane. Since the density variation is dependent on
position, it cannot be scaled out as in the case of the
uniform membrane. This leads to a generalised eigen-
value problem. The eigenfunctions and eigenvalues are
functionals of the non-uniform density ρ = ρ(r, θ).
A direct numerical solution of Eq.5 is possible using

method of varying degrees of accuracy and sophistica-
tion. Spectral collocation methods appear to offer the
greatest accuracy for the least computational expense for
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FIG. 5: Variation of eigenfrequencies with mass density ratio
σ for the concentric case, ǫ = 0, for fixed value of radius
ratio k = 0.4 and fixed smoothness parameter ξ = 0.091.
The frequencies are normalised by the first overtone. The
frequencies are very close being in integer ratios around σ =
3.0. For large σ, the frequencies essentially remain constant,
but there are several modes that are no longer harmonic.

this class of problems. We have therefore used a Fourier-
Chebyshev spectral collocation technique, which we de-
scribe below, to study the generalised eigenvalue problem
in Eq.5.
A spectral collocation method proceeds by choosing a

set of orthogonal functions and approximating the solu-
tion in terms of a linear combination of the orthogonal
functions. The approximating function is in the form
of an interpolant and matches the solution exactly at
a specially chosen set of nodes, the so-called collocation
points. The expansions then generate approximations for
the derivates which are represented as matrices. Thus,
the derivative of A function on a spectral collocation grid
is obtained by multiplying the vector of function values
by the spectral differentiation matrix. For two or more
variables, partial derivatives are obtained by Kronecker
products of the differentiation matrices corresponding to
each of the independent variables. In Fourier-Chebyshev
spectral collocation, a Fourier expansion is used for the
angular coordinate θ ∈ [0, 2π] and a Chebyshev expan-
sion is used for the radial coordinate r ∈ [0, 1]. The
usual Chebyshev expansion is for functions in [−1, 1] and
several methods exist for using the Chebyshev expansion
for the radial coordinate. Here, we follow the method
proposed by Fornberg[10], using the implementation of
Trefethen[11]. The Laplacian in polar coordinates,

∇2 = ∂2r + r−1∂r + r−2∂2θ (6)

is then replaced by the Fourier-Chebyshev differentiation
matrix

L = (D1 +RE1)⊗Il+(D2 +RE2)⊗Ir+R
2
⊗D

(2)
θ (7)

ForNr (odd) Chebyshev collocation points andNθ (even)
Fourier collocation points, the matrices above are repre-

sentations of the partial derivates on the grid. The two
terms with the matrices D1 and D2 represent ∂

2
r , the two

terms with with the matrices E1 and E2 represent r−1∂r
and the last term is the representation of r−2∂2θ . R is the

diagonal matrix diag(r−1
j ), 1 ≤ j ≤ (Nr − 1)/2. The two

identity matrices

Il =

(

I 0
0 I

)

(8)

Ir =

(

0 I
I 0

)

(9)

are formed formed out of the Nθ/2×Nθ/2 identity matrix
I. The somewhat complicated looking expression for the
Laplacian arises from the use of Fornberg’s prescription
for handling the radial coordinate using a Chebyshev ex-
pansion. Further details are available in Trefethen[11].
The loading function ρ(r, θ) is itself represented by a ma-
trix B and the generalized eigenvalue problem can then
be formulated as a matrix equation

L ·Ψ = −λ2B ·Ψ (10)

We solve for the eigenvectors Ψmn and the eigenvalues
λmn using the Matlab function eigs which is based on a
Cholesky decomposition algorithm.

We have benchmarked our code with the known eigen-
values of the uniform circular membrane and find spec-
tral convergence with increase in the number of modes.
For Nr = 31 and Nθ = 20 the eigenvalues are accurate
to 10 decimal places. For the non-uniform membrane,
higher number of modes are needed, especially in the ra-
dial direction, to capture the rapid variation in density
for ξ ≪ 1. The results reported below have Nr = 65
and Nθ = 30 for the concentric case, and Nr = 65 and
Nθ = 56 for the eccentric case unless stated otherwise.
Note that with this choice, the accuracy of the numerical
method is several decimal places more than the best re-
ported experimental values. Thus when comparing with
experiment, eigenvalues obtained from the numerical so-
lution can be safely attributed to the model itself and
not to numerical errors.

IV. RESULTS

We now present our results for the numerical solution
of the generalised eigenvalue problem for the smoothly
non-uniform membrane. Recall that our model density
distribution has four parameters, the ratio of areal den-
sities σ, the ratio of radii k, the eccentricity parameter
ǫ, and the smoothness parameter ξ. We first present re-
sults for ǫ = 0, which models the concentric loading of
the dayan, followed by results for ǫ > 0 which models the
eccentric loading of the bayan.
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TABLE I: Comparison of eigenfrequencies of the first 9 eigen-
modes of the dayan, the composite membrane model[3], and
the smoothly non-uniform membrane model presented in this
work, for σ = 3.125 and k = 0.4. The frequencies are nor-
malised by the first overtone. The figures in parantheses in-
dicate the deviation, in cents, from the experimental value.

Mode Experimental Composite Smooth
ψ01 1.03 1.0309 (+1.51) 1.0345 (+7.55)
ψ11 2.00 2.0000 (0.00) 2.0000 (0.00)
ψ21 3.00 3.0412 (+23.61) 3.0393 (+22.53)
ψ02 3.00 3.1546 (+86.99) 3.0534 (+30.54)
ψ31 4.00 4.0928 (+39.70) 4.0086 (+3.72)
ψ12 4.00 4.2268 (+95.47) 4.1463 (+62.18)
ψ03 5.04 4.9794 (-20.94) 4.7784 (-92.27)
ψ41 5.03 5.1134 (+28.47) 5.0023 (-9.56)
ψ22 5.08 5.3093 (+76.43) 5.2491 (+56.69)

A. Concentric loading

In Fig. 5 we show the variation of the eigenfrequencies
of the first nine eigenmodes as the density contrast is
increased, at fixed values of k and ξ. All frequencies
are normalised by the frequency of the first overtone.
The frequency ratios rapidly depart from those of the
uniform circular membrane (σ = 1) to attain harmonic
ratios in the neighbourhood of σ = 3. Our numerical
results suggest that for very large σ the ratios do not
depend on σ but have several modes which are no longer
harmonic. There is, then, an optimum value of σ around
σ = 3 which gives maximally harmonic vibrations. The
absolute values of the frequencies decrease monotonically
with an increase in the loading, as has been observed
previously in analytical and experimental work.
To obtain the values of σ and k which produce a

maximally harmonic drum, we define a quality function
Q(σ, k) which measures the squared deviation of the fre-
quency of the i−th eigenmode from its nearest integer
value.

Q(σ, k) =

Nmax
∑

i=1

(ωi(σ, k) − hi)
2 (11)

Here ωi denotes the eigenvalue of the i−th eigenmode,
where i is the rank of the eigenmode when sorted in as-
cending order of eigenvalue. Eigenvalues from i = 1 to
i = Nmax are used in calculating the quality. hi denotes
the nearest integer multiple of the fundamental corre-
sponding to frequency ωi. Smaller values of Q(σ, k) cor-
respond to more harmonic vibrations.
Thus, to find the best values of σ and k at fixed

smoothness ξ, we are left with a two parameter optimi-
sation problem. We scan the (σ, k) parameter space over
the range 1 ≤ σ ≤ 5 and 0.2 ≤ k ≤ 0.8 and obtain the
values of Q(σ, k), with Nmax = 15. We show the result as
a pseudocolour plot in Fig. 6. In this range, we find that
Q has a minimum of Qmin = 0.027 for σopt = 2.57 and
kopt = 0.492. These values for the density and radii ratios

FIG. 6: The quality function Q(σ, k), defined in the text, as a
function of σ and k. Darker regions correspond to more har-
monic vibrations. The most harmonic vibrations are obtained
for σ = 2.57 and k = 0.492.

FIG. 7: Comparison of eigenfrequencies of the first 15 eigen-
modes of the dayan, the composite membrane model[3], and
the smoothly non-uniform membrane model presented in this
work. The higher overtones are clearly more harmonic when
a gradual variation of density of the loaded region is allowed.
The parameters used for the smoothly non-uniform membrane
are the optimum values of σ = 2.57, k = 0.492, ξ = 0.091.

is better when compared with Q = 0.074 for σ = 3.125,
k = 0.4 for the composite membrane model. Our op-
timum values, which are obtained without any fitting
parameters, fall well within the range of 2.5 < σ < 4,
0.45 < k < 0.55 that are actually used in the construc-
tion of the dayan . Having obtained the optimal values of
σ and k we further optimise on the smoothness parameter
to find a value of ξopt of 0.091.

In Table I we compare the eigenvalues as determined
from experiment, from the composite membrane model,
and the present model with smooth non-uniformity. We
restrict the comparison to the first nine eigenmodes which
Raman identified as the being most harmonic. To make
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FIG. 8: Nodal contours for the first 20 eigenmodes of the dayan. The plots are with σ = 2.57, k = 0.492, ξ = 0.091.

a like-for-like comparison with the composite membrane,
we use values σ = 3.125 and k = 0.4. Apart from mode
ψ03, the present model provides a better fit to experi-
mental values than the composite membrane model.

Going beyond the first nine modes, we find that our
model continues to produce harmonic overtones while the
composite membrane model shows significant deviations
from harmonicity. This is seen clearly in Fig. 7 where we
compare the first 15 eigenvalues for our model and the
composite membrane model, for σ = 2.57 and k = 0.492.
We can, therefore, conclude that the gradual change in
density of the loaded region, included here but absent
from the composite membrane model, does have an ap-
preciable effect on the musicality of the drum. In Fig. 8
we show the nodal lines for the first 20 eigenmodes, in-
cluding the degenerate ones. These are similar to the
nodal lines of an uniform circular membrane.

Returning to Fig. 6, we note that there is a distinct
valley of small values in the pseudocolor plot of Q(σ, k).
This implies that there are many pairs of values of σ and
k which allow for vibrations that are by and large har-
monic. There is, indeed, a wide variation of σ and k in
the dayan from different instrument makers, typically in
the range 2.5 < σ < 4 and 0.45 < k < 0.55. It is tempt-

ing to speculate if this could have helped the early makers
of the Indian drums, no doubt proceeding by empirical
trial-and-error effort, at reaching the optimal values of
σ and k. It should also be mentioned that several In-
dian musical drums, notably the mridangam, often use
a temporary loading of flour paste (which is applied at
the start of the performance and removed afterwards) to
ensure harmonic vibrations. It is likely that the princi-
ple of central loading was discovered by such temporary
application of a heavier material, and later evolved into
the more elaborate permanent loading of the sihai.

B. Eccentric loading

The main function of the eccentric loading in the bayan
is to allow for modulations in the pitch of the drum dy-
namically, that is, while it is being played. The heel of the
hand is moved back and forth along the diameter passing
through the centers of the membrane and the eccentri-
cally placed sihai to modulate the pitch. In this way,
the bayan can produce a distinct sound, not found in any
of the other Indian musical drums. In their experimen-
tal measurement [12] of the eigenfrequencies of the tabla,
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FIG. 9: Variation of eigenvalues with eccentricity for k = 0.29,
σ = 3.125 and ξ = 0.091. The lower eigenvalues remain
unchanged for moderate eccentricities.

Banerjee and Nag note that only the first few modes are
excited by the player’s action. The requirement appears
to be, then, to allow an eccentric placement of the si-

hai and yet retain the harmonicity of the lower modes of
vibrations.
In Fig 9, we show how eigenvalues depend on the ec-

centricity ǫ at fixed values of σ = 3.125, k = 0.29 and
ξ = 0.091. We see that for eccentricities up to 0.1, there
is hardly any variation in the eigenspectrum. For larger
eccentricity the higher eigenmodes become anharmonic
faster than the lower eigenmodes. This is completely
consistent with the observation of Nag et al. Our present
model thus captures this important feature of the eccen-
tric loading.
It is worthwhile comparing our numerical results with

two prior approximate analytical calculations. In Table II
we compare the eigenvalues as obtained from experiment,
an approximate calculation based on the composite mem-
brane model[4], and the present model. The agreement
with experimental values is very good, except for eigen-
modes which have one nodal circle. We believe that our
numerical results are accurate for these modes, but are
yet to understand why Ramakrishna’s approximate cal-
culation produces better fits to the experimental data.
We note that a similar divergence between the model
and experiment has been noted in work by Rahman and
Sarojini[5], where a variational method was used to cal-
culate the eigenvalues.
In Table III we compare our model with the varia-

tional calculation of the eigenvalues of the composite
membrane. This comparision is of methodological in-
terest only, since the values used do not correspond to
the actual values used in the construction of the bayan.
We note that the agreement is generally not very good,
indicating that the variational method possibly overesti-
mates the eigenvalues in this case.
In Fig. 10, we show the nodal contours of the first 20

eigenmodes for eccentric loading. It is interesting to see

TABLE II: Comparison of eigenfrequencies of the first 10
eigenmodes of the dayan, the composite membrane model,
and the smoothly non-uniform membrane model presented in
this work, for (k = 0.29, ǫ = 0.18). The figures in paranthe-
ses indicate the deviation of frequencies, in cents, from the
experimental value.

Mode Experimental Analytical Numerical
ψ01 0.54 0.49 (-168.2) 0.4846 (-187.38)
ψ11 0.95 0.97 (+36.07) 0.9960 (+81.86)
ψ11 1.00 1.00 (0.0) 1.0000 (0.00)
ψ21 1.52 1.46 (-69.72) 1.5617 (+46.86)
ψ21 1.54 1.47 (-80.53) 1.5628 (+25.44)
ψ02 1.75 1.72 (-29.93) 1.3843 (-405.81)
ψ31 2.06 1.94 (-103.9) 2.0903 (+25.28)
ψ31 2.1 1.95 (-128.29) 2.1012(+0.99)
ψ12 2.32 2.34 (+14.86) 1.7341 (-503.88)
ψ12 2.36 2.35 (-7.35) 1.7752(-492.93)

that modes which were degenerate in the concentric case,
are no longer degenerate. Further, the nodal diameters
now deform into nodal lines which are no longer straight.
The nodal circles also deform into closed contours. The
lifting of the degeneracies is also evident in Fig. 9 where
we see that each of the lines fork out into two lines at
large values of the eccentricity. Finally, in Fig. 11 and
Fig. 12 we compare the first four eigenmodes for concen-
tric and eccentric cases. As should be obvious, the lifting
of the degeneracies is clearly seen. Certain eigenmodes
no longer have circular symmetry.

V. SUMMARY

We have presented a mathematical model, consisting
of a membrane of non-uniform density, for the vibrations
of the drum head of Indian musical drums. We used
a high-resolution numerical method, based on Fourier-
Chebyshev collocation, to make an exhaustive study of
the variation of the eigenvalues of the model as func-
tion of the model parameters. The eigenspectrum of the
model agrees very well with the experimentally measured
eigenvalues of the tabla.
There are several directions in which this present work

needs to be extended to make it more realistic. First,
we have completely neglected the role of the enclosed
air inside the drums. The principal effect of this is to
raise the pitch of those modes which, during vibration,
appreciably change the volume of the enclosed air. Modes
with nodal circles are strongly affected, the greatest being
the fundamental. Modes with nodal diameters are not
affected, since the total change in the enclosed volume of
air is zero. Preliminary work along these lines has been
done by Bhat[13], but a more systematic numerical study
remains to be done. This is part of ongoing work.
Second, our present study focusses only the the real

parts of the eigenvalues of the normal modes. We have
completely neglected the role of acoustic damping due to
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FIG. 10: Nodal contours for the first 20 eigenmodes of the bayan. The plots are with σ = 3.125, k = 0.29, ξ = 0.091 and
ǫ = 0.18.

the radiation of sound. The damping effects depend quite
strongly on the symmetry of the vibrations. For example,
the radiation damping of the fundamental, which is in
the far field is an acoustic monopole, is quite different
from that of the first overtone, which in the far field is
an acoustic dipole. We have seen no numerical study
of the radiation damping problem for the Indian drums,
though extensive work has been done for the uniform
circular membrane. This is a problem for further study.

Third, with further refinement our model and the
numerical method should find application in numerical
sound synthesis. With the increasing power of computer
hardware, it is now possible to simulate in real time,
physical models, albeit simple ones, of musical elements
like strings, membranes, and plates. Numerical sound
synthesis will take advantage of growing computational
power and we believe that it will be possible to have real-
istic numerical models of the Indian musical drums using
the model and numerical method presented here.

Fourth, we note that our model of the non-uniform
membrane is simplified. The sihai, as mentioned earlier,
is actually a complex material, made of several ingredi-
ents like soot, iron filings, flour and other polymerising
substances. The making and application of the sihai is

TABLE III: A comparison of the variational[5] and numerical
eigenvalues for eccentric loading,(k = 0.4, ǫ = 0.18).

Mode Variational Numerical
ψ01 1 1
ψ11 1.9 1.9199
ψ11 1.96 1.9215
ψ02 3.08 2.9026
ψ21 2.98 2.9207
ψ21 2.98 2.9215
ψ12 4.04 3.7715
ψ12 4.15 3.8323

an art, and we believe our smoothly non-uniform mem-
brane model captures the subtle physics of the sihai in
a gross manner. There remains considerable scope for
improvement of mathematical models of the drum head.

Finally, we end with an interesting speculation. Marc
Kac [14] posed the isospectral problem for a two-
dimensional Laplacian by wittily asking “Can one hear
the shape of a drum ?”. Very recently it has been shown
that one cannot hear the shape of a drum [15], that is,
there exist distinct boundaries in which the Laplacian op-
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FIG. 11: Eigenmodes for the concentric case

FIG. 12: Eigenmodes for the eccentric case
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erator with Dirichlet boundary conditions has the same
spectrum. One may now ask, is the same true for a non-
uniform membrane ? In other words, “Can one hear the
shape of an Indian drum ?”.
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