
UPR-0459 T

revised May 1992

THE ANOMALY STRUCTURE OF (2, 0) HETEROTIC WORLDSHEET

SUPERGRAVITY WITH GAUGED R-INVARIANCE

Suresh Govindarajan 1

and

Burt A. Ovrut2

Department of Physics

University of Pennsylvania

Philadelphia, PA 19104-6396

ABSTRACT

We present a superfield approach to the theory of (2, 0) worldsheet supergravity. The

(2, 0) structure group is enlarged to Lorentz ×U(1) and the anomaly structure of this ex-

tended theory is studied. We then modify the theory by adding the Lorentz Chern-Simons

term and present a two dimensional Green-Schwarz mechanism. The resultant theory cor-

responds to superconformally invariant string theories outside the critical dimension.

Appeared in Nucl. Phys. B385 (1992) 251-275.

1Present address: The Institute of Mathematical Sciences, CIT Campus, Taramani, Madras 600 113

India.
2email:ovrut@penndrls.upenn.edu



1 Introduction

It has been shown [1] that all four-dimensional string vacua with N = 1 spacetime

supersymmetry are associated with new minimal supergravity which is a rather restrictive

form of supergravity. One of the features of this supergravity is the existence of a local U(1)

R-invariance. It is of interest to ask whether this local U(1) invariance is anomalous at the

quantum level. This has been answered in the affirmative [2] but the calculation is extremely

tedious and opaque. Two dimensional (2, 0) supergravity has a similar U(1) symmetry and

hence is a good laboratory to study this R-invariance. In this paper, we have studied the

theory of heterotic (2, 0) supergravity and compute the superfield anomaly structure. This is

done by choosing an algebraic gauge where supergraph calculations are simplified. We also

provide a comprehensive discussion on the relevant supercurrents and their conservation laws.

This also provides a framework to study various target space symmetries using techniques

introduced in [3] after suitably generalising to the (2, 0) case. Recently a four-dimensional

superspace version of the Green-Schwarz mechanism [4] has been employed in [2] to cancel

the anomaly. As is true about most calculations in four dimensional supergravity, explicit off-

shell calculations are prohibitively complicated. Unlike the four dimensional case, we are able

to make a supergraph calculation of the complete off-shell anomaly. In this paper, we also

study a two dimensional Green-Schwarz mechanism. We first modify the theory by coupling

the Chern-Simons term to a chiral scalar. This is done by modifying the chirality constraint

on the scalar. We find that this not only provides us with the required Chern-Simons term

but also a Green-Schwarz term(albeit with a fixed coefficient). We also introduce a separate

Green-Schwarz term. We find that this cancels the anomaly for an appropriate choice of

couplings for the Chern-Simons and the Green-Schwarz terms. It removes the restriction on

the numbers of chiral scalars and fermions. Since the number of scalars correspond to the

dimension of the target space, this may have some relevance to non-critical strings. This
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will be studied elsewhere. Again, this an interesting laboratory to study the superspace

Green-Schwarz mechanism.

The paper is organised as follows. Section 2 deals with (2, 0) supergeometry. Sec-

tion 3 gives the super-Weyl transformations. Section 4 discusses supergauge which is an

algebraic(non-derivative) gauge suitable for supergraph calculations. Section 5, we give the

matter Lagrangians and also derive the ghost Lagrangians. In section 6, we study the various

conservation laws for the relevant supercurrents and interpret them. We then make a super-

graph calculation of the one-loop effective action to determine the structure of the anomaly

and find conditions for its cancellation. Finally, in section 7, we present a two dimensional

Green-Schwarz mechanism which is used to cancel the anomaly. We briefly discuss how it

could be related to non-critical strings.

2 (2,0) Supergeometry

In this section we define (2,0) superspace and discuss various aspects of (2,0) supergravity.

The structure group of the superspace is chosen to be SO(1, 1)×U(1). The (p,q) superalgebra

is described in appendix B. Superspace is given by zM = (xm, θ+1 , θ̄+1̄ ) . One introduces

a supervielbien EM
A and the corresponding one-form EA = dzM EM

A where A = a, +1, +1̄

are tangent space indices(See appendix A, [5] and [6] for notation). The one-forms have the

following U(1) weights.

w(Ea) = 0, w(E+1) = i, w(E+1̄) = −i (2.1)

We also introduce two Lie-Algebra valued one-form gauge connections ΦB
A = dzMΦMB

A

and AB
A = dzMAMB

A corresponding to the Lorentz and U(1) groups respectively. Since

both the groups are abelian, it is convenient to write ΦMB
A = ΦMκB

A and AMB
A = AMεB

A

where κB
A = diag (+1,−1, 1

2
, 1

2
) and εB

A = diag (0, 0, +i,−i) Similarly the torsion is defined

by T A = DEA where D represents the covariant exterior derivative. The curvatures for the
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Lorentz and U(1) groups are defined by R = dΦ and F = dA respectively. Covariant

derivatives are given by

∇MΩA = ∂MΩA + (−)mbΩBΦMB
A + (−)mbΩBAMB

A (2.2)

where ΩA is an arbitrary form.

The torsions and curvatures are subject to the following Bianchi identities.

DT A = EBRB
A + EBFB

A

DR = 0

DF = 0 (2.3)

The supergravity multiplet thus introduced is highly reducible. This reducibility is fixed by

the following choice of torsion constraints [7]. A geometric basis for these torsion constraints

has been provided in [8].

Tαβ
c = −2iδc+δαβ

T+α
a = Tαβ

γ = 0

Taβ
γ = Tab

c = 0 (2.4)

We solve the Bianchi identities subject to these torsion constraints. The results are

− 1
2i

R−+1 = F−+1 = T+−
+1̄ (2.5)

∇+1R−+1 = 0 (2.6)

1
2

R+− + iF+− = −2i∇+1̄T+−
+1̄ (2.7)

T−α
a = Rαβ = Fαβ = R+β = F+β = 0 (2.8)

where α, β = +1, +1̄ and we have left out the complex conjugate equations. So the inde-

pendent non-vanishing torsion components are T+−
α . All curvatures can be determined in

terms of these components.
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Note that, we have not introduced in (2.4) any constraints on the U(1) curvature. This

is unnecessary since the Bianchi identities lead us to restrictions on the curvature. For

example, the choice of T++1
+1 = 0 as a constraint implies through the Bianchi identities

that F+1+1 = 0. We would also like to point out that if one works with a structure group

of only the Lorentz group, one finds that certain torsion components can be interpreted as

gauge connections for U(1) group [9]. This is probably a generic feature of (p,q) supergravity.

3 Super-Weyl Transformations

Super-Weyl transformations are those local tangent space transformations on EM
A , ΦMB

A

and AMB
A that leave the torsion constraints (2.4) invariant [10] and for which infinitesimally,

δEM
a = lEM

a, (3.1)

where l is a superfield. For the chosen constraints we find the need to introduce another

superfield h to parametrise these transformations. The infinitesimal super-Weyl transforma-

tions are

δwEM
a = lEM

a, (3.2)

δwEM
α = EM

β
(

1
2

lδβ
α + hεβ

α
)

− iEM
+δαβ∂βl, (3.3)

δwφM = NaEM
a∂al + EM

α∂αl, (3.4)

δwAM = −∂Mh + ( 1
2i

)EM
+ [∂+1, ∂+1̄]l + EM

βεβ
α∂αl. (3.5)

where α = +1, +1̄. Note that under U(1) transformations

δEM
α = EM

βεβ
αλ (3.6)

δAm = −∂mλ (3.7)

where λ is the U(1) parameter. It follows that the transformations corresponding to h are

identical to U(1) gauge transformations and will not be regarded as part of the super-Weyl
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transformations. So we obtain the true super-Weyl transformations by setting h = 0 in the

above equations.

δwEa
M = −lEM

a + iδa
+δαβ∂αl Eβ

M , (3.8)

δwEα
M = −1

2
lEM

α , (3.9)

δwφa = −lφa + iδa
+δαβ∂αl φβ + Na∂al, (3.10)

δwφα = −1
2

lφα + ∂αl, (3.11)

δwAa = −lAa + δa
+

{

iδαβ∂αl Aβ − 1
2

[∂+1, ∂+1̄]l
}

, (3.12)

δwAα = −1
2

lAα + εα
β∂βl. (3.13)

For the (2,0) theory with ungauged U(1), the super-Weyl transformations were parametrised

by a chiral superfield [11]. Here it has become a full unconstrained superfield. Note that

A+| can be set to zero using the highest component of l, the super-Weyl parameter. There

would be no Faddeev-Popov ghosts associated with this gauge fixing since it transforms

algebraically without any derivatives.

4 Super Gauge

In this section we go into a gauge, which we shall refer to as super gauge. This gauge is

convenient for supergraph calculations which we will use for calculating the anomaly. This

gauge is obtained by fixing all algebraic (that is, non derivative) gauge transformations. Since

these are algebraic transformations, there are no Faddeev-Popov ghosts associated with fixing

them. Secondly, we introduce the superconformal gauge. This gauge is of interest because

it can be shown that the anomaly is local in this gauge (see equation (6.41)). It is the

counterpart of the conformal gauge in the bosonic string.

Supergauge:
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We first determine the independent components of the vielbein to linear order. Expand

the vielbein as

EM
A = eM

A + eM
B hB

A (4.1)

where eM
A is the flat vielbein and compute the torsion and curvature tensors to linear order

in hB
A. The torsion constraints as well as the Bianchi identities, then imply that the hB

A’s

are not all independent. We find that the only independent h′s are h−
a, h+1

a, h+1
+1 and the

complex conjugate h′s. All the other variations are determined by the following relations.

h+
+ = 1

2i

(

D+1h+1̄
+ + D+1̄h+1

+
)

+
(

h+1
+1 + h+1̄

+1̄
)

(4.2)

h+
− = 1

2i

(

D+1h+1̄
− + D+1̄h+1

−
)

(4.3)

h+
+1 = 1

2i

(

D+1h+
+ − D+h+1

+ + Ω+1̄

)

(4.4)

h−
+1̄ = 1

2i

(

D+1h−
+ − D−h+1

+
)

(4.5)

h+1
+1̄ = − 1

2i
D+1h+1

+ (4.6)

φ+1 = D+1h−
− − D−h+1

− (4.7)

D+1h+1
− = 0 (4.8)

D+1h+1
+1 = −1

2
φ+1 − iA+1 (4.9)

where we have not given the complex conjugate equations.

We now give the transformations of hB
A. We demand that eM

A not transform under any

of the transformations. We obtain to lowest order in hB
A,

δhb
A = −DBξA + κb

AL + δb
Al (4.10)

δhβ
A = −DBξA + 2iξγδγβδA,+ + κβ

AL + 1
2

δb
Al + εβ

Aλ (4.11)

where ξ, L, l, and λ are parameters corresoponding to supercoordinate, Lorentz, super-Weyl

and U(1) respectively. We shall reduce the number of independent h′s by means of algebraic

gauge fixing. We have that

δh+1
+ = 2iξ+1̄ − D+1ξ

+ (4.12)
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Then using the ξ+1̄ transformation, we choose

h+1
+ = 0 (4.13)

This is obviously an algebraic gauge choice since no derivatives are involved in the above

transformation law. In order that we preserve this gauge condition, we need

ξ+1̄ = 1
2i

(D+1ξ
+) (4.14)

Since h+1
− is constrained as in equation (4.8) to be antichiral, we solve for it in terms of

an unconstrained complex superfield V −. Let

h+1
− = D+1V

− (4.15)

h+1̄
− = D+1̄V̄

− (4.16)

V − = S− + iU− (4.17)

where V̄ − = (V −)∗ and S− and U− are real superfields. We induce an extra gauge degree of

freedom by introducing the prepotential V −. This is given by

δV − = 2K̄− (4.18)

where D+1K̄
− = 0.

The transformation law for V − under supercoordinate transformations is obtained from

that of h+1
− . We obtain

δV − = −ξ− + 2K̄− (4.19)

This implies that S− and U− transform as

δS− = −ξ− + (K + K̄) (4.20)

δU− = i(K − K̄) (4.21)
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Then the ξ− transformation can be chosen so that

S− = 0 (4.22)

Again, note that this is an algebraic gauge choice. This gauge condition is preserved provided

ξ− = (K− + K̄−) (4.23)

where D+1K̄
− = 0 and (K)∗ = K̄−.

We have that h−
− and (h+1

+1 + h+1̄
+1̄) transform as

δh−
− = −D−ξ− − L + l (4.24)

δ(h+1
+1 + h+1̄

+1̄) = −D+ξ+ + L + l (4.25)

where we have used equation (4.14) and its complex conjugate equation. This implies that

δ(h−
− − h+1

+1 − h+1̄
+1̄) = −2L − D−ξ

− + D+ξ+ (4.26)

Then we can use of the Lorentz transformations to choose,

h−
− = h+1

+1 + h+1̄
+1̄ (4.27)

≡ Σ (4.28)

To preserve this gauge condition, we make the following Lorentz transformation,

L = −1
2

(D−ξ
− − D+ξ+) (4.29)

where ξ− is restricted to be of the form in equation (4.23). At this point, let us recap the

gauge choices we have made so far. They are

h+1
+ = 0 (4.30)

S− = 0 (4.31)

h−
− = h+1

+1 + h+1̄
+1̄ (4.32)
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This implies that the independent non-vanishing components of the vielbein are h+1
+1 ,

h+1̄
+1̄ , h−

+ and U−. We shall make further gauge choices to reach supergauge.

The Bianchi identities imply that F+1+1 = 0. This implies that

D+1A+1 = 0 (4.33)

We solve for this in terms of a complex prepotential W .

A+1 = D+1W (4.34)

W = Q + iR (4.35)

where Q and R are real superfields. The transformation law of W is derived from that of

A+1 to be

δW = λ + il (4.36)

We induce an extra gauge degree of freedom by introducing the prepotential W . This is

given by

δW = −2iσ̄ (4.37)

where D+1σ̄ = 0. This implies that Q and R transform as

δQ = λ + i(σ − σ̄) (4.38)

δR = l − (σ + σ̄) (4.39)

Then, using the super-Weyl transformation l, we can choose

R = 0 (4.40)

This gauge condition is preserved if

l = (σ + σ̄) (4.41)
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Similarly, using the U(1) transformation λ, we can choose

Q = 0 (4.42)

This implies that

A+1 = 0 (4.43)

This gauge condition is preserved provided we choose

λ = −i(σ − σ̄) (4.44)

We shall refer to the transformations (4.41) and (4.44) parametrised by σ as the residual

U(1)-Weyl transformation. Finally, in this algebraic gauge, we are left with three indepen-

dent components of the vielbein. They are h−
+, U− and Σ. We now give their transforma-

tions under the residual supercoordinate transformations.

δh−
+ = −D−ξ

+

δU− = i(K− − K̄−)

δΣ = −1
2

(D−ξ
− + D+ξ+) (4.45)

At this point, we would like to remark that the transformation law for U− seems to indicate

that U− can be set to zero by means of an algebraic gauge fixing. This is not true since K−

, but not U− is constrained. The derivatives in the transformation law are hidden in the

constraints on K−. This can be shown explicitly by

δU−|
θ+1θ̄+1̄ = i∂+(K−| + K̄−|) (4.46)

This shows that the transformation involves derivatives. Under the residual U(1)-Weyl

transformations, we have that

δh−
+ = 0

δU− = 0

δΣ = (σ + σ̄) (4.47)
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It can be shown that the Bianchi identities subject to the torsion constraints implies that

Σ is expressible in the following form.

Σ = 1
2

(ϕ + ϕ̄) (4.48)

where D+1ϕ̄ = 0.

The proof is as follows. As a consequence of the Bianchi identities, we obtain(see equation

(4.9))

1
2

φ+1 + iA+1 + D+1h+1
+1 = 0 (4.49)

In this gauge, we have

A+1 = 0 (4.50)

φ+1 = D+1(Σ − iD−U
−) (4.51)

Substituting for A+1 and φ+1 into (4.49), we get

D+1(
1
2

Σ + 1
2i

D−U
− + h+1

+1) = 0 (4.52)

We solve this equation by introducing an antichiral field ϕ̄ (D+1ϕ̄ = 0). This implies

(1
2

Σ + 1
2i

D−U
− + h+1

+1) = ϕ̄ (4.53)

The above equation and its complex conjugate imply

Σ = 1
2

(ϕ + ϕ̄) (4.54)

h+1
+1 − h+1̄

+1̄ = iD−U
− + (ϕ̄ − ϕ) (4.55)

where we have used Σ = h+1
+1 + h+1̄

+1̄. This completes the proof.

At this stage we could use the super-Weyl transformations to set ϕ = 0. We shall not do

so since we would like to keep ϕ for calculating the anomaly.

Superconformal Gauge:
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One can make further gauge choices after reaching the supergauge. These involve deriva-

tive transformations and have non-trivial Faddeev-Popov ghosts associated with them. We

set h−
+ = 0 and U− = 0 using supercoordinate transformations (4.45). This will be given

in the next section. The only non-zero prepotentials in this gauge is ϕ and its complex

conjugate. This is the superconformal gauge. In this gauge we have

∂− = e
1
2

(ϕ+ϕ̄)D− (4.56)

∂+1 = e
1
4

(3ϕ̄−ϕ)D+1 (4.57)

This can also be reached from the Lorentz-Weyl-U(1) gauge. In the Lorentz-Weyl-U(1)

gauge, we have

∂− = eΣ−ΥD−, (4.58)

∂+1 = e(
1
2

(Σ+Υ)+iΛ)D+1, (4.59)

A+1 = e(
1
2

(Σ+Υ)−iΛ) − iD+1̄(Σ + iΛ). (4.60)

We set Υ = 0 using Lorentz transformations. We then use a combination of the U(1) and

super-Weyl to set A+1 = 0. This implies that (Σ + iΛ) should be replaced by a antichiral

superfield ϕ̄ (D+1ϕ̄ = 0). Using the complex conjugate relation, we obtain that

Σ −→ 1
2

(ϕ + ϕ̄) (4.61)

Λ −→ − 1
2i

(ϕ − ϕ̄) (4.62)

Finally, the residual transformations which preserve this gauge are given by

δϕ = σ (4.63)

where D+1̄σ = 0. The residual transformations can be identified as follows. 1
2

(σ + σ̄)| corre-

sponds to weyl transformations and − 1
2i

(σ− σ̄)| corresponds to axial U(1) transformations.

This is easily seen from the lowest components of (4.41) and (4.44).
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5 Matter and Ghost Lagrangians

In this section we give the matter and ghost Lagrangians. We introduce two types of matter,

a complex chiral scalar Zm and a complex chiral spinor ΨI with Lorentz charge −1/2. The

Zm are covariantly chiral,

∇+1̄Z
m = 0 (5.1)

and ΨI
−

are covariantly chiral,

∇+1̄Ψ
I
−

= 0. (5.2)

The subscript in Ψ− refers to the −1/2 Lorentz weight of the chiral spinor. Their Lagrangians

are (see [7] )

SZ = i

∫

dzE−1
(

Zm∇−Z̄
n − Z̄n∇−Zm

)

gmn (5.3)

SΨ =

∫

dzE−1
(

Ψ̄I
−
ΨJ
−

)

ηIJ (5.4)

where m, n = 1, . . . , D and I, J = 1, . . . , N . Also dz = dxdθ+1dθ+1̄ and E ≡ sdetEM
A . We

shall drop the subscript in Ψ− for the rest of the discussion.

The pure gravity action cannot be written as an integral over the full superspace. It can

be written as a chiral action which necessitates the introduction of a chiral density. Let ǫ be

the chiral density.

Sgr =

∫

dxdθ+1ǫR−+1̄ +

∫

dxdθ+1̄ǭR−+1 (5.5)

The pure gravity action can be written in full superspace in the supergauge. It is given by

Sgr =

∫

dzE−1A−. (5.6)

We now derive the ghost Lagrangian. As discussed in the previous section, we do not

need to introduce Faddeev-Popov ghosts in order to reach the supergauge. However to reach

the superconformal gauge from the supergauge, we have to introduce Faddeev-Popov ghosts.
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We have that ( see (4.45))

δh−
+ = −D−ξ+ (5.7)

We then use the ξ+ transformation to choose

h−
+ = 0 (5.8)

The Jacobian for the transformation is provided by the following Lagrangian.

Sgh1 =

∫

dzb+D−c
+ (5.9)

where c+ is the ghost corresponding to ξ+. and b+ is the antighost.

We have (see (4.45))

δU− = i(K− − K̄−) (5.10)

Using this transformation, we can choose

U− = 0 (5.11)

The Jacobian for the transformation is provided by the following Lagrangian.

Sgh2 =

∫

dzb−−(c− − c̃−) (5.12)

where c̃− is the ghost corresponding to K̄− and hence satisfies the same constraint as K̄−.

Similarly c− is the ghost corresponding to K− and hence satisfies the same constraint as

K−. So we have

D+1̄c
− = 0 (5.13)

D+1c̃
− = 0. (5.14)

It can easily be seen that the above action reduces to the usual ghost Lagrangian for the

bosonic string on eliminating auxiliary fields. The complete ghost Lagrangian is as follows.

Sgh = Sgh1 + Sgh2 (5.15)

=

∫

dz
(

b+D−c
+ + b−−(c− − c̃−)

)

(5.16)
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The ghosts and antighosts c+, c−, c̃− and b−− have anticommuting statistics. We assume

that the ghost Lagrangian is valid outside the superconformal gauge. This enables us to

calculate the ghost contribution to the anomaly. This is done by replacing flat derivatives

by covariant ones and introducing the superdeterminant into the integration measure. We

also assume that c− is covariantly chiral and c̄− is covariantly antichiral. Hence, outside of

the superconformal gauge, the ghost action is

S =

∫

dzE−1
(

b+∇−c
+ + b−−(c− − c̃−)

)

(5.17)

We shall now calculate quantum corrections to the effective action and determine which

transformations are anomalous. We shall then determine the conditions under which the

quantum theory is non-anomalous.

6 One Loop Effective Action

In this section, we present a supergraph calculation of the superdiffeomorphic anomaly.

This will be done by computing the one loop effective action Γeff and varying it under

supercoordinate transformations. We will be carrying out the calculation in the linearised

approximation defined by

EM
A = eM

A + eM
B hB

A (6.1)

where eM
A is the flat vielbein. We will also work in the supergauge defined in section 4. We

find that the superdensity in the linearised approximation is

E−1 = 1 + Str(hB
A) (6.2)

where

Str(hB
A) = h+

+ + h−
− − h+1

+1 − h+1̄
+1̄ (6.3)

In the supergauge, we obtain

E−1 = 1 + Σ
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= 1 + 1
2

(ϕ + ϕ̄) (6.4)

We also have

∂A = DA − hA
BDB (6.5)

where DA are the flat superspace derivatives.

The matter and ghost fields have to satisfy covariant constraints. We solve for them in

terms of fields which are flat constraints. This is described in appendix C. We obtain

Zm = Zm
0 − iU−(D−Z

m
0 ) (6.6)

ΨI = ΨI
0 − iU−(D−ΨI

0) −
1
2

Σ ΨI
0 + 1

2i
(D−U

−)ΨI
0 (6.7)

c− = c−0 − iU−(D−c
−

0 ) + Σ c−0 + i(D−U
−)c−0 (6.8)

where we introduced flat chiral fields Zm
0 , ΨI

0 and c−0 . The expansion for the other fields can

be obtained by taking the complex conjugate of the above equations. c+, b+ and b−− are not

constrained and hence do not have to be expanded in terms of flat fields.

We now substitute equations (6.4), (6.5) and equations (6.6) to (6.8), into the matter and

ghost lagrangians to obtain the linearised coupling to (2,0) supergravity in the supergauge.

We expand the actions as follows

S = S0 + Sint (6.9)

We obtain

SZ0 =
i

2

∫

dz
(

Zm
0 D−Z̄

n
0 − Z̄n

0 D−Z
m
0

)

gmn (6.10)

SZint =

∫

dz(1
2

h−
+D+1Z

m
0 D+1̄Z̄

n
0 + 2U−D−Z

m
0 D−Z̄

n
0 )gmn (6.11)

SΨ0 =

∫

dzΨ̄I
0Ψ

J
0ηIJ (6.12)

SΨint = i

∫

dzU−(D−Ψ̄I
0Ψ

J
0 − Ψ̄I

0D−ΨJ
0 )ηIJ (6.13)

Sgh0 =

∫

dz
(

b+D−c
+ + b−−(c−0 − c̃−0 )

)

(6.14)

17



Sgh int =

∫

dzh−
+

(

D+(c+b+) − 1
2i

[(D+1b+)(D+1̄c
+) + (D+1̄b+)(D+1c

+)]
)

−

∫

dziU−
(

2b−−D−(c−0 + c̃−0 ) + D−(b−−)(c−0 + c̃−0 )
)

(6.15)

where we have rescaled fields b−−, b+ and c+ to get rid of the dependence on Σ in Sgh int.

This redefinition makes the ghost Lagrangian U(1)-Weyl invariant . It enables us to derive

conserved currents which are identical to the ones derived by the Noether construction (see

[12, page 490]). The currents are obtained by functionally varying the Lagrangian with

respect to the gravity prepotentials. We define the currents as follows

Sint =

∫

dz
(

J+h−
+ + J−Σ + J−−U

−
)

(6.16)

We find that classically, the currents defined above are given by,

J+ = 1
2

D+1Z
m
0 D+1̄Z̄

n
0 gmn

+
{

D+(c+b+) − 1
2i

[(D+1b+)(D+1̄c
+) + (D+1̄b+)(D+1c

+)]
}

(6.17)

J− = 0 (6.18)

J−− = 2(D−Z
m
0 D−Z̄

n
0 )gmn + i(D−Ψ̄I

0Ψ
J
0 − Ψ̄I

0D−ΨJ
0 )ηIJ

− i
(

2b−−D−(c− + c̃−0 ) + D−(b−−)(c− + c̃−0 )
)

(6.19)

We obtain the conservation laws for the currents by demanding that the Lagrangian be

invariant under residual supercoordinate transformations (4.45). First, on varying Sint under

the ξ+ transformation, we obtain

δSint = −

∫

dz(J+D−ξ
+ + 1

2
J−D+ξ+) (6.20)

which on integrating by parts gives the following conservation law.

D−J+ + 1
2

D+J− = 0 (6.21)
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On expanding the above equation in components, we obtain three conservation laws.

∂−JU(1) + + ∂+JU(1) − = 0 (6.22)

∂−Jsusy + + ∂+Jsusy − = 0 (6.23)

∂−T++ + ∂+T+− = 0 (6.24)

which correspond to the conservation of the U(1), supersymmetry and energy-momentum

tensor respectively. Secondly, under the K− transformation, we obtain

δSint =

∫

dz{J− − 1
2

D−(K− + K̄−) + J−−i(K
− − K̄−)} (6.25)

This does not lead to two conservation laws, one each for K− and K̄− since they are related

by complex conjugation. It also implies that the corresponding conservation can only be

obtained in components. This should be expected since this is the conservation law corre-

sponding to the non-supersymmetric sector. Let ξ−0 ≡ (K− + K̄−)|. The ξ−0 component

gives

1
2

D−J−|θ+1θ̄+1̄ + D+J−−| = 0 (6.26)

which becomes

∂−T+− + ∂+T−− = 0 (6.27)

This is the conservation of the energy-momentum tensor.

Finally, invariance under residual U(1)-Weyl transformations (4.47) implies that J− = 0.

This implies that the conservation laws (6.21) and (6.26) can be simplified to

D−J+ = 0 (6.28)

D+J−−| = 0 (6.29)

We can see that this is true classically. We will show that this is not a symmetry of the

quantum theory except for a specific choice of D and N . The breakdown of super-Weyl

invariance will manifest in the breakdown of the above conservation law.
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We now calculate quantum corrections to the effective action. We now make use of S0

to calculate the propagators for the various fields. They are

〈Zm
0 (z)Z̄n

0 (z′)〉 =
iD+1̄D+1

�
|zδ(z − z′)gmn (6.30)

〈ΨI
0(z)Ψ̄J

0 (z′)〉 =
D−D+1̄D+1

�
|zδ(z − z′)ηIJ (6.31)

〈b+(z)c+(z′)〉 =
2iD+

�
|zδ(z − z′) (6.32)

〈b−−(z)c−0 (z′)〉 = −
D+1D+1̄D−

�
|zδ(z − z′) (6.33)

〈b−−(z)c̃−0 (z′)〉 = +
D+1̄D+1D−

�
|zδ(z − z′) (6.34)

where δ(z−z′) ≡ −δ(x−x′)(θ+1 −θ+1 ′)(θ̄+1̄ − θ̄+1̄ ′). We find that the only non-local terms

in the effective action involve h−
+ and U−. The graphs of interest are given in figure 1. All

other graphs are local terms. Since we are interested in the non-local part of the one-loop

effective action, we will only deal with the graphs given in figures 1a-1c. The graphs are

regulated using ’t Hooft’s trick [13] where the divergent integrals are made to converge by

an appropriate choice of poles in the propagator. The results are

Γeff =
(2 − D)

16π

∫

dz

{

(
D+1D+

D−
h−

+)D+1̄h−
+

}

+
(2D + N − 26)

48π

∫

dz

{

(
D3
−
D+1

D+
U−)D+1̄U

−

}

(6.35)

The effective action is not invariant under the residual supercoordinate transformations

given in equation (4.45) but is invariant under residual U(1)-Weyl transformations(4.47).

This implies that conservation laws (6.21) and (6.26) are no longer valid. Hence there is an

anomaly. We would like to shift the anomaly to the super-Weyl transformations by adding

local counterterms. The most general local counterterms are as follows

Wc.t. =
−1

16π

∫

dz { αD+1h−
+D+1̄ϕ̄

+ βD+1ϕD+1̄h−
+
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+ γD+1h−
+D−D+1̄U

−

+ ǫD+1U
−D−D+1̄h−

+

+ κϕD2
−
U− + νϕ̄D2

−
U− + τϕ̄D−ϕ} (6.36)

It can be shown that for arbitrary values of D and N , there is no choice of counterterms

that can achieve this objective. However, if D and N satisfy the following equation

D − N + 20 = 0, (6.37)

this is possible. The following choice of coefficients in the counterterms does the job.

α = β = −(D − 2),

γ = − ǫ = −i(D − 2),

κ = ν = 2(D − 2)

τ = 2i(D − 2) (6.38)

For this choice of counterterms, the effective action takes the following simple form.

Γ′eff = Γeff + Wc.t. (6.39)

=
2 − D

8π

∫

dzR−+1
1

�
R−+1̄ (6.40)

where � ≡ −2D+D−.

This action is local in the superconformal gauge. It is given by

Γ′eff =
2 − D

16πi

∫

dz(ϕD−ϕ̄ + c.c) (6.41)

The above action is invariant under the residual supercoordinate transformations but is

not invariant under the residual U(1)-Weyl transformations (4.47). This implies that J− is

no longer identically zero. The quantum correction is obtained by functionally varying the

effective action with respect to Σ. We obtain that

J− = −4i
(2 − D)

8π

D−
�

F+− (6.42)
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For example, this implies in components that the trace of the stress- tensor is given by

T+− = − 1
2i

(2 − D)

8π
R+−| (6.43)

The breakdown of U(1)-Weyl invariance is given by

D+J+ =
(2 − D)

8πi
F+− (6.44)

We obtain U(1)-Weyl invariance provided

D = 2 and N = 22 (6.45)

So the theory is superconformally invariant at the quantum level for the above choices for

D and N . The results are in agreement with those in [14]. It is interesting to note that

this agreement holds inspite of the fact that we have gauged the U(1) unlike in [14]. This is

due to the fact that T++1
+1 behaves precisely like A−. This behaviour has been noticed in

the second reference of [7]. On gauging the U(1) field, one finds that the additional torsion

constraint T++1
+1 = 0 can be imposed.

At this point, we would like to note that the quantum corrections have been obtained in

a gauge (albeit an algebraic one). Is it possible to do so without making any gauge choices?

We find that the presence of too many auxiliary fields (we mean fields that do not occur

in the Wess-Zumino gauge) make it prohibitively complicated to carry out the calculation

without any gauge choices.

7 Green-Schwarz Mechanism

In this section, we present a (superspace) two dimensional Green-Schwarz mechanism. This

is of interest because it will provide an interesting toy model wherein one can do explicit

calculations. This may also have some relevance to non-critical strings as we will see later.
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The role of the antisymmetric tensor is played by a scalar field and the Chern-Simons

term is given by the gauge potential. Let Y be a complex scalar superfield. We introduce

its field strength (which is a one-form) by

H = dY (7.1)

where d is the exterior derivative. We impose the chirality constraint as follows

H+1̄ = 0 (7.2)

The constraint implies that

H+1̄ = ∇+1̄Y = 0 (7.3)

which implies that Y is a chiral superfield. Similarly, Y ∗ is antichiral. The Bianchi identity

dH = 0 does not give anything new. The action for a scalar field is given by

S0[Y ] =
−iη

2

∫

dzE−1 (Y ∗H− + c.c.) (7.4)

=
−iη

2

∫

dzE−1 (Y ∗∇−Y + c.c.) (7.5)

where η = ±1.

The (Lorentz) Chern-Simons term is given by

ΩCS = φ (7.6)

where φ is the Lorentz connection. We couple the Chern-Simons term by modifying the field

strength as follows

H̃ = dH + σΩCS (7.7)

where σ is real. The Bianchi identity now gives

dH̃ = σR (7.8)
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We still demand that the modified field strength satisfy the same constraint as before , that

is,

H̃+1̄ = 0. (7.9)

The constraint gives

∇+1̄Y + σφ+1̄ = 0, (7.10)

which implies that Y is no longer chiral. The torsion constraints (2.4) subject to the Bianchi

identities imply that R+1̄+1̄ = 0 which in turn implies

∇+1̄φ+1̄ = 0 (7.11)

We solve this by means of the prepotential T .

φ+1̄ = ∇+1̄T (7.12)

We can now define a related field Ỹ which is chiral.

Ỹ = Y + σT (7.13)

In the presence of the Chern-Simons term, we modify the action (7.4) by substituting the

modified field strength in the place of the unmodified one.

SCS =
−iη

2

∫

dzE−1
(

Y ∗H̃− + c.c.
)

(7.14)

=
−iη

2

∫

dzE−1 (Y ∗(∇−Y + σφ−) + c.c.) (7.15)

As stated earlier, Y is not chiral. Hence it is of interest to expand the above action in terms

of Ỹ which is chiral. We obtain

SCS = S0[Ỹ ] +
iησ

2

∫

dzE−1
(

Ỹ (φ− − 2∇−T
∗) + c.c.

)

+ · · · (7.16)
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where the ellipsis refers to pure gravity terms. Note that this action is not invariant under

Lorentz transformations

δỸ = 0 (7.17)

δT = L (7.18)

where L is the superfield which parametrises the Lorentz transformation . However, as usual

with Chern-Simons terms, we try to vary Ỹ to make it invariant. This is impossible. The

best one can do is to decompose SCS as

SCS =

(

S0[Ỹ ] +
−iησ

4

∫

dz[Ỹ (φ− + ∇−T
∗) + c.c.]

)

+
3iησ

4

∫

dz[Ỹ (φ− −∇−T ∗) + c.c.] (7.19)

By making Ỹ transform, we can make the first term Lorentz invariant. Now the second term

is not Lorentz invariant. The modified transformation law for Ỹ which accomplishes this is

δỸ = 1
2

σL (7.20)

The first term corresponds to the usual CS coupling while the second term is really the

Green-Schwarz term (with a fixed coefficient). This will be obvious from the component

Lagrangian which we give later. Hence these two terms will suffice to cancel the anomaly

as we shall see later. As always, one can also add a Green-Schwarz term with arbitrary

coefficient to the above Lagrangian. It is given by

SGS = iτ

∫

dzE−1(Y (φ− −∇−T
∗) + c.c.) (7.21)

We obtain

S = SCS + SGS

= S0 + ia

∫

dz[Ỹ (φ− + ∇−T
∗) + c.c.]

+ ib

∫

dz[Ỹ (φ− −∇−T
∗) + c.c.] (7.22)
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where a = (−ησ

4
) and b = (3ησ

4
+ τ).

In order to compute the contribution of the above field to the effective action, we expand Ỹ

in terms of a flat chiral Y0, that is

D+1̄Y0 = 0 (7.23)

We also work in supergauge where (from the complex conjugate of (4.51))

φ+1̄ = D+1̄(Σ + iD−U
−) (7.24)

This gives us an expression for T

T = (Σ + iD−U
−) (7.25)

It is of interest to expand the action (7.22) in components. Let

y = 1
2

(Y0 + Y ∗0 )| (7.26)

z = 1
2i

(Y0 − Y ∗0 )| (7.27)

The action is given (in supergauge) by

S =

∫

d2x( {a(y∂cφc|) − b(yR+−|)}

−az{ 1
2i

[D+1, D+1̄](φ− + D−Σ)| + i∂+∂2
−
U−|}

−bz{ 1
2i

[D+1, D+1̄](φ− − D−Σ)| − i∂+∂2
−
U−|}) + · · · (7.28)

where the ellipsis refers to terms coming from S0 and the fermionic partners of y and z. As

expected y couples to the Lorentz curvature through the Green-Schwarz term. The other

term involving y is the CS term (after integrating by parts).

There are two non-local contributions to the one-loop effective action from (7.22). One

is the one-loop contribution from S0 which can be trivially obtained from the results of the

previous section. This is possible since the graphs corresponding to S0 are the same as in
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figure (1a) with the Y0 fields running through the loop. All one has to do is replace D by

(D + 1) in Γeff (equation 6.35) in order to include this contribution to the effective action.

The Chern-Simons and Green-Schwarz terms make contributions to the one-loop effective

action by means of tree diagrams given in figure 2. The propagator for Y0 is given by

〈Y0(z)Y ∗0 (z′)〉 = η
iD+1̄D+1

�
|zδ(z − z′) (7.29)

The contribution of the Chern-Simons and Green-Schwarz terms as given by the above graphs

is

ΓGS = η
−(a + b)2

2

∫

dz

{

(
D+1D+

D−
h−

+)D+1̄h−
+

}

+ η
(a − b)2

2

∫

dz

{

(
D3
−
D+1

D+
U−)D+1̄U

−

}

(7.30)

On including all the contributions to the non-local part of the effective action, we obtain

Γtot = Γeff + ΓGS (7.31)

= (
(1 − D)

16π
− η

(a + b)2

2
)

∫

dz

{

(
D+1D+

D−
h−

+)D+1̄h−
+

}

+ (
(2D + N − 24)

48π
+ η

(a − b)2

2
)

∫

dz

{

(
D3
−
D+1

D+
U−)D+1̄U

−

}

(7.32)

We repeat the analysis of the last section to make the one-loop effective action to be invari-

ant under residual supercoordinate transformations (4.45) and residual U(1)-Weyl transfor-

mations (4.47). We shall attempt to do so by adding local counterterms as given in equation

(6.36). This is not possible unless, we demand

ab = −η
(D − N + 21)

96π
(7.33)

Now, unlike in the previous section D and N are arbitrary. The Green-Schwarz mechanism

makes it possible to cancel the supercoordinate(Lorentz) anomaly without fixing either D

or N . Now by adding local terms we can make Γtot invariant under residual supercoordinate
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transformations. We obtain

Γtot = {
(1 − D)

8π
− η(a + b)2}

∫

dzR−+1
1

�
R−+1̄ (7.34)

The above action is not invariant under residual U(1)-Weyl transformations (4.47). We can

achieve this by choosing

D = 1 − 8πη(a + b)2 (7.35)

So by appropriately choosing a, b, we can make the theory superconformally invariant. The

new couplings imply that D and N are not constrained anymore. What are the implications

of this freedom? First, it can be seen (from the component Lagrangian (7.28)) that for a = 0

corresponds to the linear dilaton coupling proposed by Myers [15] and extended by others

[16]. It can also be seen that for D > 1, that η = −1 which implies that Y has a timelike

kinetic energy term. For a, b 6= 0, as in Myers [15], one expects shifts in the conformal

dimensions of vertex operators involving the superfield Y . The new feature for arbitrary a, b

is that the conformal dimension is different for the left and right handed sectors (that is the

dimension is of the form (h, h′) with h 6= h′). Its connection to non-critical strings would lie

in being able to give the superfield Y a suitable interpretation. This is being studied.

8 Conclusion

In this paper, we have studied the extended (2, 0) heterotic supergravity and obtained the

anomaly structure. We find that the critical dimension 2 and we also need 22 chiral fermions.

This number is not altered by the presence of the gauged U(1). presented a Green-Schwarz

mechanism in two dimensions. Interesting questions are its relevance to non-critical strings

for arbitrary a, b(the coefficients of the Chern-Simons and Green-Schwarz terms). It would

be interesting to study the symmetries of this theory using deformations of the stress-tensor

as in [1]. Finally, it is of interest to know the effect of including non-trivial monopole

configurations to the theory. This is being studied.

28



Acknowledgements

We would like to thank Phil Nelson, G.L.Cardoso, Steve Thomas and E. Wong for useful

discussions. We also thank S.Kalyana Rama for many discussions during the early stages

of this work. This work has been supported in part by the Department of Energy under

Contract No. DOE-AC02-76-ERO-3071 and NATO Grant Number 860684.

29



Appendix

A Notation

In flat superspace, the coordinates are zA where A = (+,−, +1, +1̄). The flat covariant

derivatives DA are given by

D+ = ∂+ (A.1)

D− = ∂− (A.2)

D+1 = ∂+1 + iθ+1 ∂+ (A.3)

D+1̄ = ∂+1̄ + iθ̄+1̄ ∂+ (A.4)

Chiral Superfields are defined by

D+1̄B = 0 (A.5)

where B is a generic superfield. Chiral superfields have the following component expansion

B = B0 + θ+1 B+1 + iθ+1θ̄+1̄ ∂+B0 (A.6)

Complex conjugation:

In heterotic superspace, we cannot define hermitian conjugation. We define complex conju-

gation using the following rules.

(θ+1 )∗ = θ̄+1̄ (A.7)

(
→

D+1)
∗ = −(

←

D+1̄) (A.8)

(A B)∗ = B∗ A∗ (A.9)

(D+1A)∗ = −(A∗
←

D+1̄) (A.10)

where A and B are arbitrary superfields.
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B (p,q) supersymmetry algebra

We are working with in the lightcone coordinates with metric η+− = −1. Pm are the

generators of translations, QI
+ and QI′

−
are the generators of supersymmetry. The indices

m,n are vector indices, +,− are spinor indices (in the Majorana-Weyl representation) and

I, J (I ′, J ′) count the number of left(right) supersymmetry generators with I, J = 1, . . . , p

(I ′, J ′ = 1, . . . , q). The (p,q) super-Poincare algebra [17] is then given by

[Pm, Pn] = 0 (B.1)

{QI
+, QJ

+} = 2P+δIJ (B.2)

{QI′

−
, QJ ′

−
} = 2P−δ

I′J ′

(B.3)

{QI
+, QJ ′

−
} = 0 (B.4)

[

QI
α, Pm

]

= 0 (B.5)

The supersymmetry algebra is completed by including gauge groups. There exist two

types of groups, those that act trivially on the Q’s and those which act non-trivially on the

Q’s. We will restrict ourselves to the latter groups which will be referred to as R-symmetry

groups. Let Ra represent the generators of the group. The algebra now includes

[Ra, Rb] = ifab
cRc (B.6)

[

QI
+, Ra

]

= R̃a

I

JQJ
+ (B.7)

[

QI′

−
, Ra

]

= R̆a

I′

J ′QJ ′

−
(B.8)

[Pm, Ra] = 0 (B.9)

where fab
c is the structure constant of the group and R̃ (R̆) is the matrix representation of

Ta in the space indexed by I,J (I’,J’). By demanding that equations (B.2),(B.3), and (B.4)
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be preserved we find that the following relation has to be satisfied.

R̃a

I

LR̃a

J

KδKL = δIJ (B.10)

The largest possible group which preserves the p × p matrix is O(p). This implies that

the largest possible R-symmetry group is O(p) × O(q), where the group O(p) (O(q)) acts

trivially on the left (right) supersymmetry generators. We would like to emphasise that the

R-symmetry groups are not your usual gauge groups but correspond to an extension of the

structure group from SO(1,1) to SO(1,1) × O(p) × O(q). Specialising to the case of (2,0),

the structure group is then SO(1,1)× O(2).

C Expanding covariantly chiral fields in terms of flat chiral fields :

In this appendix we shall solve for a (generic) covariantly chiral superfield B in terms of a

flat chiral superfield B0. Let B have Lorentz charge ‘q’. We express B as follows

B = B0 + f(B0, hB
A) (C.1)

where f satisfies f(B0, h = 0) = 0 and f(B0 = 0, h) = 0. We have

∇+1̄B = 0 (C.2)

Expanding to linear order in hB
A and substitute (C.1) , we obtain

D+1̄f − h+1̄
ADAB0 + qφ+1̄B0 = 0 (C.3)

We now solve for f as a bilinear in B0 and hB
A. We obtain

f(B0, hB
A) = V̄ −(D−B0) − qh−

−B0 + q(D−V̄
−)B0 −

1
2i

h+1̄
+(D+1B0) (C.4)

where we have used h+1̄
− = D+1̄V̄

− and φ+1̄ = D+1̄h−
− − D−h+1̄

−. This gives

B = B0 + V̄ −(D−B0) − qh−
−B0 + q(D−V̄

−)B0 −
1
2i

h+1̄
+(D+1B0) (C.5)
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This gives the expansion of a covariantly chiral superfield in terms of a flat chiral superfield

to linear order in hB
A. The above expansion would be modified if the superfield B carries a

U(1) charge.
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Figure Captions

Figure 1: Graphs leading to non-local terms in the one loop effective action.

Figure 2: Graphs obtained from the Chern-Simons and Green-Schwarz terms.

36


