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ABSTRACT

We study the effect of Freudenthal duality on supersymmetric extremal black hole
attractors in N = 2, D = 4 ungauged supergravity. Freudenthal duality acts on the
dyonic black hole charges as an anti-involution which keeps the black hole entropy and
the critical points of the effective black hole potential invariant. We analyze its effect on
the recently discovered distinct, mutually exclusive phases of axionic supersymmetric black
holes, related to the existence of non-trivial involutory constant matrices. In particular, we
consider a supersymmetric D0 − D4 − D6 black hole and we explicitly Freudenthal-map
it to a supersymmetric D0 − D2 − D4 − D6 black hole. We thus show that the charge
representation space of a supersymmetric D0 − D2 − D4 − D6 black hole also contains
mutually exclusive domains.

http://arxiv.org/abs/1703.08669v2


1 Introduction

Black holes always remain a topic of great interest because of their thermodynamic be-
havior. It is one of the significant success of string theory to provide statistical descrip-
tion (by counting degeneracy of D-branes in the weak coupling limit) of the macroscopic
(Bekenstein-Hawking) entropy [1] of certain supersymmetric black holes.

A crucial phenomenon characterizing certain classes of black holes is the attractor mech-
anism, which states that, for an extremal black hole, scalar fields are drawn towards fixed
values at the horizon losing all asymptotic memories; such fixed values depend only on black
hole electric and magnetic charges [2]. A static, spherically symmetric and asymptotically
flat black hole can be described by an effective one-dimensional theory. The attractors
are then obtained by extremizing the effective black hole potential, that is an algebraic
function of the moduli fields and of the charges. The horizon value of the effective potential
provides the black hole entropy, which depends only on the black hole charges [3].

An interesting issue in black hole physics concerns the multiplicity of the attractors
within the moduli space; this was first investigated by Moore [4]. In N = 2, D = 5
ungauged supergravity, existence of multiple supersymmetric (1

2
-BPS) attractors has been

discussed and explicitly constructed for a two-moduli, non-homogeneous model [5]. In
this case, multiplicity arises due to the presence of disjoint branches in the moduli space
[6] (thus being consistent with the uniqueness results of [7]). Using the correspondence
between 4D/5D critical points [8], the analysis has been reduced to four dimensions and
it has been shown that a five-dimensional multiple supersymmetric attractor leads to one
supersymmetric and one non-supersymmetric critical point in four dimensions [9]. While
in D = 4 the supersymmetric attractor is proved to be unique [10], there exist multiple
non-supersymmetric attractors with the same charge configurations, the same entropy and
the same number of zero modes to the mass matrix (massless Hessian modes); it is puzzling
to note that such multiple solutions exist also when the moduli space is connected [9]. By
introducing particular involutory constant matrices (generally depending on the geometry
of the moduli space), in [10] it has been also shown that the representation space of e.m.
charges of four dimensional supersymmetric black holes with non-vanishing axions contains
mutually exclusive domains, and inside each domain the attractor is unique. Within the
same framework, new phases of non-BPS attractors were recently discovered in [11].

As the black hole charges transform linearly under symplectic transformations of the
(electric-magnetic) U -duality group1, the entropy is a U -duality invariant quantity. Four
dimensional extremal black holes also exhibit another transformation which keeps the en-
tropy invariant, called Freudenthal duality (F-duality). F-duality can be defined as an
anti-involutive, non-linear map acting on symplectic spaces, in particular on the represen-
tation space of the black hole electric-magnetic charges (which becomes a charge lattice
upon quantization). After its introduction [14], in [15] F-duality was shown to be a sym-

1Throughout the present investigation, we work in the (semi)classical regime for which the electromag-
netic charges take values in the real numbers. Here U -duality is referred to as the “continuous” symmetries
of [12]. Their discrete versions are the non-perturbative U -duality string theory symmetries studied in [13].
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metry not only of the classical Bekenstein-Hawking entropy, but also of the critical points
(attractors) of the effective black hole potential itself (see also [16, 17]). Moreover, it was
extended to any generalized special geometry, thus comprising all N > 2 (extended) su-
pergravities, as well as N = 2 generic, not necessarily homogeneous special Kähler geome-
try [15]. It is here worth remarking that F-duality appeared in various other contexts, such
as gauge theories with symplectic scalar manifolds [18] and multi-centered black holes [19].
Lagrangian densities with on-shell F-duality symmetry were constructed in [20]. Finally,
in [21] F-duality was consistently formulated in the context of Abelian gaugings of N = 2,
D = 4 supergravity, both for U(1) Fayet-Iliopoulos gauging and for theories coupled to
hypermultiplets.

Despite preserving homogeneity in charges, F-duality is an intrinsically non-linear, anti-
involutive map acting on charges, thus it is inherently different from U -duality, and issues
of higher derivative corrections are not yet well understood. By denoting with n + 1 the
number of Abelian vector fields, F-duality acts on the dyonic charge vector QM = (pΛ, qΛ)
(Λ = 0, 1, ..., n) as an entropy-preserving anti-involution [15]

πQ̂M(Q) : = ΩMN ∂S(Q)

∂QN
, (1.1)

̂̂
Q = −Q, (1.2)

S(Q) = S(Q̂), (1.3)

where Ω is the 2(n + 1) × 2(n + 1) symplectic metric: ΩMN =

(
0 −I
I 0

)
, ΩT = −Ω

and Ω2 = −I, and S is the Bekenstein-Hawking (semi)classical black hole entropy. F-
duality generally commutes with supersymmetry (if any) and with U -duality; note that no
assumption on the geometry of the moduli space of the scalar fields has been made.

Within the context of cubic geometries ofN = 2, D = 4 ungauged supergravity coupled
to n vector multiplets (usually arising from the large volume limit of compactifications of
Type IIA superstrings on Calabi-Yau manifolds), the aim of this paper is to study the
effect of F-duality on the the most general, axionic D0 −D4−D6 supersymmetric black
hole solution, which was obtained in [10] by introducing suitable constant, involutory ma-
trices. Considering a simple (yet, non-homogeneous) n = 2 model, it was shown that
the symplectic representation space of dyonic black hole charges (which becomes a charge
lattice upon imposing Dirac-Schwinger-Zwanzinger quantization conditions) contains mu-
tually exclusive domains, and that inside each domain the attractor solution is unique [10].
By F-transforming the most general D0−D4−D6 BPS black hole attractors, we will prove
that such mutually exclusive domains also exist for the most general D0−D2−D4−D6
BPS supporting charge configuration. Moreover, we will formulate the most general Ansatz
for the entropy and the value of the horizon, attracted moduli within such a configuration,
thus fully generalizing the results of [22] and [10].

The plan of the paper is as follows.
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In Sec. 2.1, we recap the D0 − D4 − D6 BPS black hole attractor solution, while in
Sec. 2.2 we consider a model with two moduli and state the condition of existence of a
non-trivial involutory matrix. We further comment on the non-homogeneity and explicit
realization of such a model, as well as on the U -invariance, in Sec. 2.2.1.

Then, in Sec. 3 we apply F-duality on the D0−D4−D6 BPS black hole, finding that
the corresponding F-dual configuration is a D0−D2−D4−D6 BPS black hole.

Sec. 4 is devoted to the generalization of the results of [22] and [10] : we discuss the
most general supersymmetric D0−D2−D4−D6 black hole attractor solution which, for
particular values of real, charge-dependent parameters, is F-dual to D0−D4−D6.

Sec. 5 presents some comments and hints for further developments.
An Appendix, containing some technical details, concludes the paper.

2 Supersymmetric D0−D4−D6 Black Hole

2.1 The Solutions

Attractor solutions describing supersymmetric extremal D0 − D4 − D6 black holes in
N = 2, D = 4 supergravity have been studied in [10]. In a special Kähler geometry of the
vector multiplets’ moduli space described by the holomorphic prepotential (a = 1, ..., n)

F (X) = Dabc

XaXbXc

X0
, (2.1)

the most general supersymmetric attractor solution to this black hole configuration is given
by

xa
1 =

1

p0

(
pa − 2D − q0 (p

0)
2

2χ
Iabp

b

)
, (2.2)

xa
2 = − 1

p0

√√√√1−
(
2D − q0 (p0)

2

2χ

)2

Iabp
b, (2.3)

where the so-called 4D/5D special coordinates’ symplectic frame is used2, with the scalar
fields denoted by xa := xa

1 + ixa
2. Moreover, we used the notation of [10], namely D :=

Dabcp
apbpc, Da := Dabcp

bpc and χ := DaI
a
bp

b. The involutory matrix Iab satisfies [10]

IacI
c
b = δab (2.4)

DadeI
d
bI

e
c = Dabc. (2.5)

The corresponding black hole entropy takes the following form [10]:

S =
π

p0

√
4χ2 − (2D − q0p0

2)2. (2.6)

2In such a symplectic frame, the D-brane charges can be denoted as follows : D0 (q0), D2 (qa), D4
(pa) and D6 (p0), as understood throughout.
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Any choice of Iab that satisfy conditions (2.4)-(2.5) will provide an independent and well-
defined expression of the Bekenstein-Hawking entropy and of corresponding attractor, hori-
zon values of the scalar fields (2.2)-(2.3). The trivial choice of the involution is of course
Iab = δab. For this choice, (2.6) reduces to

S = π
√
4q0D − (q0p0)2, (2.7)

which is the standard entropy of D0−D4−D6 BPS extremal black hole [22]. The attractor
value of the scalar fields for this trivial choice of involutory matrix is3 [10, 22]

xa =
pa

2D

(
p0q0 − i

√
4q0D − (p0q0)2

)
. (2.8)

Note that the above expression reduces to the smooth D0−D4 attractor solution upon
setting the D6 charge p0 to zero. However, for any other choice of Iab the solutions (2.2)
and (2.3) as well as the corresponding entropy (2.6) become singular in the limit p0 → 0.
Thus, these new branches of solutions cease to exist in the absence of D6 branes. This is
consistent with the uniqueness of D0−D4 attractors [10].

2.2 n = 2 Model and Non-trivial Involutory Matrix

By considering an example of two-moduli (n = 2) model, in Sec. 4 of [10], it has also been
shown explicitly that there exists a non-trivial choice of an involutory matrix Iab 6= δab
satisfying (2.4)-(2.5). A generic 2× 2 involutory matrix can be parametrized as

Iab =:

(
u v
w −u

)
, (2.9)

such that u2 + vw = 1; for brevity’s sake, we further denote the four possible components
of the rank-3 completely symmetric tensor Dabc occurring in (2.1) (namely, of the triple
intersection number of the Calabi-Yau manifold in the large volume limit of the Type IIA
compactifications) as D111 = a, D112 = b, D122 = c and D222 = d. It has been proved that
the conditions (2.4)-(2.5) can be satisfied with Iab 6= δab, for

u =
L√

L2 − 4MN
, v =

−2M√
L2 − 4MN

, w =
2N√

L2 − 4MN
, (2.10)

where we introduced the notation L = ad − bc,M = c2 − bd and N = b2 − ac. Note that
a crucial consistency condition is

L2 − 4MN > 0. (2.11)

3From the treatment of [8], Im(xa) < 0 in the 4D/5D special coordinates’ symplectic frame of special
Kähler geometry.
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For the choice (2.9-(2.10) of Iab, the horizon, attractor values of the two vector multiplet
moduli x1 = x1

1 + ix1
2 and x2 = x2

1 + ix2
2 are given by (2.2)-(2.3), which explicitly read

x1
1 =

1

p0


p1 −

(
D − 1

2
q0 (p

0)
2
)
(Lp1 − 2Mp2)

χ
√
L2 − 4MN


 , (2.12)

x1
2 = − 1

p0

√√√√1−
(
D − 1

2
q0 (p0)

2

χ

)2
(Lp1 − 2Mp2)√

L2 − 4MN
, (2.13)

x2
1 =

1

p0


p2 −

(
D − 1

2
q0 (p

0)
2
)
(2N p1 − Lp2)

χ
√
L2 − 4MN


 , (2.14)

x2
2 = − 1

p0

√√√√1−
(
D − 1

2
q0 (p0)

2

χ

)2
(2N p1 −Lp2)√
L2 − 4MN

. (2.15)

So, for an n = 2 model satisfying (2.11), two distinct and independent BPS attractor
solutions exist, depending on whether Iab = δab or Iab given by (2.9-(2.10) is chosen.

Now the key question naturally arises whether these two BPS solutions exist for the
same supporting D0 − D4 − D6 black hole charge configuration. As investigated in [10],
the conditions of positive definiteness of the Kähler metric gab̄ for the two classes of BPS
solutions boil down to the study of the sign of the quantity

N
(
p1
)2 − Lp1p2 +M

(
p2
)2

, (2.16)

and they read as follows :

‘std.’ sol. (2.7)-(2.8): N
(
p1
)2 − Lp1p2 +M

(
p2
)2

> 0; (2.17)

‘non-std.’ sol. (2.6) and (2.12)-(2.15): N
(
p1
)2 − Lp1p2 +M

(
p2
)2

< 0. (2.18)

Also the positive definiteness of the gauge kinetic terms can (at least numerically) be
checked to hold for both solutions for such distinct conditions. Thus, in the considered
n = 2 model, the ‘standard’ and ‘non-standard’ BPS attractor solutions are supported
by two different, distinct domains in the representation space of the dyonic black hole
charges [10].

2.2.1 Non-Homogeneity and U-Invariance

Some comments are in order here.

1. The consistency condition (2.11) necessarily implies the non-homogeneity of the vec-
tor multiplets’s two-dimensional special Kähler moduli space. Indeed, from the clas-
sification of homogeneous (d-)spaces [23,24], the unique n = 2 homogeneous model is
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the so-called ST 2 model (corresponding to the dimensional reduction of (1, 0), chiral
minimal “pure” supergravity from D = 6 to D = 4 [24]), characterized by c = 2 and
a = b = d = 0, and thus violating (2.11), because in this case L2− 4MN = 0. Thus,
the n = 2 model considered here, as well as in [10], has a non-homogeneous moduli
space.

2. For explicit n = 2 models for which the treatment of Sec. 2.2 holds, one can e.g.
see the two Tables at pages 51-53 of [25], providing various (non-homogeneous) cu-
bic models in which multiple axionic D = 4 BPS attractors exist. For instance,
XII

14 (7, 2, 2, 2, 1), for which a = 2, b = 7, c = 21, d = 63 is an example of such
models [25].

3. As also resulting from the treatment e.g. of [24], all special Kähler geometries de-
scribed by the cubic holomorphic prepotential (2.1) (usually named d-geometries) are
characterized by a ‘minimal’ electric-magnetic (U -)duality symmetry, which pertains
to (the large volume limit of) Calabi-Yau compactifications ( [26]; for recent accounts,
cfr. [27] and [28], and Refs. therein). It can easily be checked that the two inequality
conditions appearing in the r.h.s.’s of (2.17) and (2.18) are not invariant under such
a duality, and thus they are not well-defined. In fact, in order to U -invariantly char-
acterize the separation of the two domains in the charge representation space, one
should better consider the positivity condition of the determinant of the metric gab̄
for both classes of BPS solutions, respectively given by Eqs. (4.8) and (4.9) of [10],
which are consistently U -invariant.

3 Freudenthal Dual of D0−D4−D6 BPS Black Hole

In this section we apply F-duality on the D0 −D4 −D6 charge vector Q and find a new
dyonic charge vector Q̂. Following (1.1) and also the relation between moduli and entropy
(cfr. e.g. [29], and Refs. therein)

xa =
pa + i

π
∂S
∂qa

p0 + i
π

∂S
∂q0

, (3.1)

we obtain the new F-transformed set of charges Q̂ = (p̂0, p̂a, q̂0, q̂a) in terms of Q =
(p0, pa, q0, 0a), where S is the most general supersymmetric entropy [22] :

p̂0 =
π(q0p

02 − 2D)

S
, (3.2)

p̂a =
π

p0S

[
2χIabp

b −
(
2D − q0

(
p0
)2)

pa
]
, (3.3)

q̂0 = − π

p03S

[
4χ2 − 4D2 + q20(p

0)4
]
, (3.4)

q̂a =
6π

p02S

[
2χDbI

b
a −

(
2D − q0

(
p0
)2)

Da

]
. (3.5)
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So, we have obtained a generic charge configuration (with all types of D-brane charges
switched on) by acting with F-duality on the supersymmetric D0 − D4 − D6 black hole
: this is provided by the most general F-dualized charge configuration Q̂ coming from
supersymmetric D0−D4−D6 black hole charge configuration Q.

4 Supersymmetric D0−D2−D4−D6 Black Hole

By further generalizing the results of [10], in this section we will find out the most general
expression of entropy and moduli of a supersymmetric D0−D2−D4−D6 black hole, and
show that it is F-dual to the supersymmetric D0−D4 −D6 with the help of Eqs. (3.2)-
(3.5). For convenience’s sake, we will denote all generic BPS dyonic D0−D2−D4−D6
charges, as well as the symplectic vector comprising them all, as tilded.

In order to find out the entropy and attractor solution, we follow the method due to
Shmakova [22]. For a generic supersymmetric black hole in Type IIA string theory with
all non-vanishing D-brane charges, the entropy is given by [22] :

S(Q̃)

π
=

1

3p̃0

√
4

3
(∆̃ax̃a)2 − 9(p̃0(p̃ · q̃)− 2D̃)2, (4.1)

where ∆̃a := 3D̃a− p̃0q̃a, D̃a := Dabcp̃
bp̃c, D̃ := D̃ap̃

a and p̃ · q̃ := p̃0q̃0+ p̃aq̃a. The variables
x̃a are the real solutions of

Dabcx̃
bx̃c = ∆̃a. (4.2)

The moduli fields xa = xa
1 + ixa

2 at the BPS attractor point are [22]

xa
1 =

3

2

x̃a

p̃0(∆̃cx̃c)
(p̃0(p̃ · q̃)− 2D̃) +

p̃a

p̃0
, (4.3)

xa
2 = −3

2

x̃a

(∆̃cx̃c)

S(Q̃)

π
. (4.4)

To solve Eq. (4.2), we consider the most general Ansatz

x̃a = αp̃0IabD̃
bcq̃c + βp̃0D̃abq̃b + σIabp̃

b + ρp̃a, (4.5)

where D̃acD̃cb := δab , D̃ab := Dabcp̃
c, and α, β, σ and ρ are real, Q̃-dependent quantities.

From the very definition of ∆̃a and Eq. (4.2), one obtains

∆̃a = (p̃0)2(α2 + β2)DabcD̃
beq̃eD̃

cf q̃f + (σ2 + ρ2)D̃a + 2p̃0(ασ + βρ)q̃a

+2p̃0(αρ+ βσ)q̃bI
b
a + 2(p̃0)2αβDabcI

b
dD̃

deq̃eD̃
cf q̃f

+2σρDabcI
b
dp̃

dp̃c. (4.6)

The most general BPS dyonic solution will be given by the most general solution of Eq.
(4.2) with (4.6) plugged in.
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By recalling the results (3.2)-(3.5), one can check (cfr. also the Appendix) that setting

α = −β = − B

2
√
3A

√
(6D̃ − p̃0A)2 − (p̃0B)2

(6D̃ − p̃0A)
, (4.7)

σ =

√
3(6D̃ − p̃0A)√

(6D̃ − p̃0A)2 − (p̃0B)2
, (4.8)

ρ = −
√
3p̃0B√

(6D̃ − p̃0A)2 − (p̃0B)2
, (4.9)

where

A : = q̃ap̃
a, B := q̃aI

a
bp̃

b, (4.10)

A : = 18q̃0 + D̃abq̃aq̃b, B := q̃aI
a
bD̃

bcq̃c, (4.11)

the supersymmetric D0 − D2 − D4 − D6 black hole charge vector Q̃ becomes F-dual to
the supersymmetric D0−D4−D6 black hole charge vector Q :

Q̃
∣∣∣
(3.2)-(3.5), (4.7)-(4.11)

= Q̂, (4.12)

and all tilded quantities correspondingly become hatted. This duality trivially holds for
the ‘standard’ BPS solution with Iab = δab, providing the BPS solution found by Shmakova
[22]. On the other hand, for the new, ‘non-standard’ solution with Iab 6= δab , x̃

a changes,
and so xa

1, x
a
2 and S do, and we find distinct solutions.

When all the brane charges are non-vanishing, the charge-dependent quantities A and
B defined in (4.11) satisfy the relation

A(6D̂a − p̂0q̂a) + p̂0Bq̂bI
b
a = 0. (4.13)

Exploiting Eqs. (3.2)-(3.5), one can then write the D4 brane charges pa of supersymmetric
D0 − D4 − D6 black hole in terms of supersymmetric D0 − D2 − D4 − D6 black hole
charges as

pa =
αp̂0√
3

(
D̂abq̂b − IabD̂

bcq̂c

)
+

1√
3

(
σp̂a + ρIabp̂

b
)
. (4.14)

For n = 2 (two-moduli cubic model, treated in Sec. 2.2), by plugging (4.14) into (2.16),
one can express this latter in terms of hatted charges. Thus, as for the D0 − D4 − D6
case, also for the D0 − D2 − D4 − D6 case one can explicitly check that the ‘standard’
and ‘non-standard’ classes of BPS solutions are supported by different, mutually exclusive
domains in the charge representation space.

Finally, it is worth pointing out that if one sets q̃a = 0, α, β and ρ vanish and σ =√
3 and then, by inserting them in Eq. (4.2), we find the most general supersymmetric

D0−D4−D6 entropy and attractor solutions in tilded charges [10]. Thus, one can conclude
that (4.5) is the most general BPS Ansatz in N = 2, D = 4 ungauged supergravity coupled
to vector multiplets, up to the constraint (4.2). This is the full-fledged generalization of [22]
for completely general BPS dyonic D0−D2−D4−D6 supporting charge configuration.
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5 Conclusion

In N = 2, D = 4 ungauged supergravity coupled to vector multiplets with cubic holo-
morphic prepotential (2.1), by using suitable involutory matrices, we have constructed the
most general supersymmetric (1

2
-BPS) attractor solution of D0−D2−D4−D6 extremal

black hole which is Freudenthal dual to the most general attractor solution of supersym-
metric D0 −D4 −D6 black hole. This holds for suitable choices of the parameters α, β,
σ and ρ of the solution.

In an n = 2 model with non-homogeneous moduli space, the charge representation
space supporting supersymmetric D0 − D2 − D4 − D6 extremal black hole attractors
contains mutually exclusive domains, and inside each of these domains there exists a unique
supersymmetric attractor.

Especially in the cases with more than two moduli, it would be interesting to further
explore the geometric constraints on the existence of non-trivial involutory matrices satis-
fying (2.4)-(2.5), and thus of ‘non-standard’ classes of BPS attractors (which, for n = 2,
are given by the consistency condition (2.11)). The known orbit stratification of the charge
representation space in models with symmetric moduli spaces would prevent the existence
of ‘non-standard’ classes of BPS attractors; it remains to be seen whether this is also the
case for homogeneous non-symmetric moduli spaces, as well. We leave this very interesting
issue for further future investigation.

For what concerns the study of involutory matrices in non-homogeneous special Kähler
moduli spaces arising in (the large volume limit of) Type IIA compactifications on Calabi-
Yau manifolds, one might consider the relatively simple class of reducible cubic prepoten-
tials, which was recently classified in [30], showing that the automorphism group in the
two non-homogeneous classes of such spaces has a co-homogeneity one action, thus of a
peculiar non-transitive type. We hope to report on such topics in future works.
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A Appendix

We insert D0−D2−D4−D6 F-dual charges Q̂ in terms of D0−D4−D6 charges Q in
the expressions made of Q̂, using Eqs. (3.2), (3.3), (3.4), (3.5), (4.5) and (4.6). After some
algebra, we find

α(Q̂) = −β(Q̂) = −

√
4χ2 −

(
2D − q0 (p0)

2)2

2
√
3
(
2D − q0 (p0)

2) , (A.1)

σ(Q̂) =
2
√
3χ√

4χ2 −
(
2D − q0 (p0)

2)2
, (A.2)

ρ(Q̂) =

√
3
(
2D − q0 (p

0)
2
)

√
4χ2 −

(
2D − q0 (p0)

2)2
, (A.3)

x̃a(Q̂) =
√
3Iabp

b, (A.4)

∆̃ax̃
a(Q̂) = 3

√
3χ. (A.5)

As it is well known, the entropy is F-invariant [14, 15] (cfr. (4.1)) :

S(Q̂)

π
=

S(Q)

3π(q0p0
2 − 2D)

√
4

3
(3
√
3χ)2 − 9(4χ2 − (2D − q0p0

2)2) =
S(Q)

π
, (A.6)

and so are the horizon, attractor values of the moduli [15] (cfr. (4.3)-(4.4))

xa
1(Q̂) =

3

2

Iabp
b

3χ

(
S

π

)2
p0(

2D − q0 (p0)
2) −

2χIabp
b −
(
2D − q0 (p

0)
2
)
pa

p0
(
2D − q0 (p0)

2) ,

=
1

p0

(
pa − 2D − q0 (p

0)
2

2χ
Iabp

b

)
= xa

1(Q), (A.7)

xa
2(Q̂) = −3

2

Iabp
b

3χ

S(Q)

π
= − 1

p0

√√√√1−
(
2D − q0 (p0)

2

2χ

)2

Iabp
b = xa

2(Q). (A.8)
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