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We study the ground-state phase diagram of the Ashkin-Teller random quantum spin chain by
means of a generalization of the strong-disorder renormalization group. In addition to the conven-
tional paramagnetic and ferromagnetic (Baxter) phases, we find a partially ordered phase charac-
terized by strong randomness and infinite coupling between the colors. This unusual phase acts, at
the same time, as a Griffiths phase for two distinct quantum phase transitions both of which are of
infinite-randomness type. We also investigate the quantum multi-critical point that separates the
two-phase and three-phase regions; and we discuss generalizations of our results to higher dimensions
and other systems.

PACS numbers: 75.10.Nr, 75.40.-s, 05.70.Jk

I. INTRODUCTION

Random quantum many-particle systems are easiest to
understand if both interactions and disorder are weak.
In these cases, the system often behaves analogously to
a clean noninteracting one, with small perturbative cor-
rections. If, on the other hand, interactions or disorder
are strong, qualitatively new behavior can arise. For in-
stance, repulsive interactions induce a new phase, the
Mott insulator, in systems of lattice bosons or electrons.
Moreover, strong randomness leads to an Anderson insu-
lator in which the quantum wave functions are localized.
Particularly strong disorder and correlation effects can

be expected in the vicinity of zero-temperature quan-
tum phase transitions where the fluctuations extend over
large length and time scales. Examples include infinite-
randomness criticality [1, 2], quantum Griffiths singular-
ities [3, 4] and smeared phase transitions [5] (for recent
reviews see, e.g., Refs. [6, 7]).
Disordered quantum spin chains are a paradigmatic

class of materials to study these phenomena, both in the-
ory and in experiment. Theoretically, they have been at-
tacked by strong-disorder renormalization group (SDRG)
methods [8, 9] that give asymptotically exact results for a
number of one-dimensional systems. The ground state of
the antiferromagnetic spin-1/2 random quantum Heisen-
berg chain is an exotic random-singlet state controlled by
an infinite-randomness renormalization group fixed point
[10]. Similarly, the ferromagnetic-paramagnetic quan-
tum phase transition of the random transverse-field Ising
chain is of unconventional infinite-randomness type and
accompanied by power-law quantum Griffiths singulari-
ties [2]. Some of these phenomena have been observed in
early experiments on organic crystals [11, 12] and more
recently in MgTiOBO3 [13].
In this paper we investigate the random quantum

Ashkin-Teller model, a prototypical disordered spin chain
(or ladder) that can be understood as two coupled ran-
dom quantum Ising chains. In addition to quantum spin
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FIG. 1. (Color online) Schematic ground state phase diagram
of the random quantum Ashkin-Teller chain. For ǫ < 1, the
paramagnetic and ferromagnetic phases are connected by a
direct continuous quantum phase transition. For ǫ > 1, they
are separated by a partially ordered “product” phase charac-
terized by strong randomness and renormalization group flow
towards infinite coupling. The flow is indicated by arrows on
the principal axis, δ = 0 and ǫ = 1, of the multicritical point
(MCP).

systems, versions of the Ashkin-Teller model are used to
describe layers of atoms absorbed on surfaces [14], cur-
rent loops in high-Tc superconductors [15], as well as the
elastic response of DNA molecules [16].

We explore the ground state phase diagram of the ran-
dom quantum Ashkin-Teller chain by a generalization of
the SDRG technique. In addition to the conventional
paramagnetic and ferromagnetic phases, we identify an
unconventional partially ordered phase characterized by
finite but strong randomness and infinite coupling be-
tween the two constituent Ising chains (see Fig. 1). It
plays the role of a “double-Griffiths” phase for two sep-
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arate quantum phase transitions both of which are of
infinite-randomness type. The two-phase region at weak
coupling and the three-phase region at strong coupling
are separated by a distinct infinite-randomness multi-
critical point.
The remainder of this paper is organized as follows.

We introduce the random quantum Ashkin-Teller model
in Sec. II. The SDRG method is developed in Sec. III.
Section IV is devoted to the resulting ground state phase
diagram and the properties of the quantum phase tran-
sitions between the different phases. In the concluding
section V, we discuss generalizations of our results to
higher dimensions as well as connections to other ran-
dom quantum systems.

II. RANDOM QUANTUM ASHKIN-TELLER

MODEL

The Hamiltonian of the one-dimensional random quan-
tum Ashkin-Teller model is given by [17–19]

H =−
2

∑

α=1

∑

i

(

JiS
z
α,iS

z
α,i+1 + hiS

x
α,i

)

−
∑

i

(

KiS
z
1,iS

z
1,i+1S

z
2,iS

z
2,i+1 + giS

x
1,iS

x
2,i

)

(1)

where Sx and Sz denote the usual Pauli matrices.
The model can be understood as two identical random
transverse-field Ising chains [first line of (1)], coupled via
their energy densities [second line of (1)]. The index
α = 1, 2 that distinguishes the two chains is often called
the color index. The strength of the coupling between the
colors can be parameterized by the ratios ǫh,i = gi/hi and
ǫJ,i = Ki/Ji. Note that the Hamiltonian (1) is invari-
ant under the duality transformation: Szα,iS

z
α,i+1 → τxα,i,

Sxα,i → τzα,iτ
z
α,i+1, Ji ⇄ hi, and ǫJ,i ⇄ ǫh,i, where τ

x and
τz are the dual Pauli operators.
We take the interactions Ji and transverse fields hi to

be independent random variables. Without loss of gener-
ality, we can assume the Ji and hi to be positive as possi-
ble negative signs can absorbed by local transformations
of the spin variables. For now, we assume the (bare) cou-
pling strengths to be uniform, ǫh,i = ǫJ,i = ǫI ≥ 0 [20].
Effects of random ǫ will be discussed later in Sec. IVC.
The behavior of the random quantum Ashkin-Teller

chain (1) in the weak-coupling regime, ǫ < ǫc = 1, has
been studied in Refs. [19, 21]. In the following, we there-
fore focus on the strong-coupling case ǫ ≥ ǫc = 1 where
these results do not apply. For strong coupling, the terms
in the second line of (1) dominate. It is thus convenient
to introduce the product Sz1,iS

z
2,i as a new variable. We

define

σzi = Sz1,iS
z
2,i , (2)

ηzi = Sz1,i , (3)

σzi η
z
i = Sz2,i . (4)

The mapping of the Pauli matrices Sx1,i and S
x
2,i can be

easily worked out by exploring their action on a complete
set of basis states in the 4-dimensional single-site Hilbert
space. This gives

σxi = Sx2,i , (5)

ηxi = Sx1,iS
x
2,i , (6)

σxi η
x
i = Sx1,i . (7)

Using these transformations, the Hamiltonian (1) can be
rewritten as

H =−
∑

i

(Kiσ
z
i σ

z
i+1 + hiσ

x
i )−

∑

i

(Jiη
z
i η
z
i+1 + giη

x
i )

−
∑

i

(Jiσ
z
i σ

z
i+1η

z
i η
z
i+1 + hiσ

x
i η

x
i ) . (8)

This form immediately gives an intuitive physical picture
of the strong coupling regime ǫ≫ 1 close to self duality,
htyp ≈ Jtyp, i.e., close to the horizonal line δ = 0 in Fig.
1. Here, the typical values of the fields and interactions
are defined as lnhtyp = 〈lnh〉 and ln Jtyp = 〈ln J〉 where
〈. . .〉 denotes the disorder average. The behavior of the
product variable σ is dominated by the four-spin interac-
tionsKi while the behavior of the variable ηi which traces
the original spins is dominated by the two-spin transverse
fields gi. Moreover, the coupling terms between σ and η
are weak. Thus, we expect the system to be in a phase in
which the product variables σi develop long-range order
while the spins remain disordered.

III. STRONG-DISORDER RENORMALIZATION

GROUP

To confirm this intuitive picture and to work out the
properties of the product phase and its transitions, we
now develop a strong-coupling SDRG. The basic idea of
any SDRG consists in identifying the largest local en-
ergy scale and perturbatively integrating out the corre-
sponding high-energy degree of freedom. As the random
quantum Ashkin-Teller model contains four competing
local energies Ji,Ki, hi, gi rather than the usual two, we
need to generalize the RG scheme by also considering the
second-largest energy in a local cluster. Details of this
calculation are outlined in Appendix A. In the strong-
coupling regime, ǫ > 1, there are four possible SDRG
steps.
(a) If the largest energy in the system is the two-spin

field gi, and the second largest energy in the local cluster
of sites i−1, i and i+1 is a four-spin interaction, say Ki,
the SDRG step decimates the variable ηi but merges σi
and σi+1 to a new cluster σ̃. The unperturbed Hamilto-
nian for this SDRG step reads H0 = −Kiσ

z
i σ

z
i+1 − giη

x
i .

We now keep only the ground state of H0 and treat all
other terms that contain σi, σi+1 or ηi in second order
perturbation theory. The resulting Hamiltonian has the
same form as (8) with one fewer site and renormalized
energies arranged as shown in Fig. 2.
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FIG. 2. (Color online) SDRG steps (a) and (b) decimate a
spin variable ηi but merge two product variables, σi and σi+1,
into a new cluster.

J̃eff =
2Ji−1Ji
gi

, h̃eff =
2hihi+1

Ki
(9)

As J̃eff and h̃eff are renormalized downward while all re-
maining Ki and gi are unchanged, the coupling strengths
ǫh,i and ǫJ,i increase under renormalization.
(b) The same SDRG step is carried out if the largest

energy is the four-spin interaction Ki, and the second-
largest energy in the cluster of sites i and i+ 1 is a two-
spin field, say gi.
(c) If the largest energy in the system is the two-spin

field gi, and the second largest energy in the local cluster
of sites i− 1, i and i+1 is the field hi, both σi and ηi are
decimated. This is equivalent to decimating both original
spins S1,i and S2,i and leads to the recursion relations

K̃eff =
Ki−1Ki

2hi
, J̃eff =

Ji−1Ji
gi + hi

(10)

for the interaction energies that emerge between sites i−1
and i+1 in the renormalized chain. This implies that the
renormalized coupling strength ǫ̃J = ǫJ,i−1ǫJ,i(1+ ǫh,i)/2
increases under renormalization (as we are interested in
the strong-coupling regime ǫ > ǫc = 1).
(d) Finally, if the largest energy is the four-spin inter-

action Ki, and the second-largest energy associated with
the sites i and i + 1 is the interaction Ji, clusters are
formed from σi and σi+1 as well as ηi and ηi+1. This is
equivalent to forming clusters of both original spin vari-
ables, S1,i and S1,i+1 as well as S2,i and S2,i+1. The

resulting recursions for the transverse field h̃eff and two-
spin field g̃eff acting on these clusters read

g̃eff =
gigi+1

2Ji
, h̃eff =

hihi+1

Ki + Ji
. (11)

The renormalized coupling strength ǫ̃h = ǫh,iǫh,i+1(1 +
ǫJ,i)/2 increases under renormalization.

The SDRG steps (a) to (d) are now iterated. As a
result, the maximum local energy Ω in the system grad-
ually decreases from its initial (bare) value ΩI .

IV. PHASE DIAGRAM AND PHASE

TRANSITIONS

A. Double Griffiths phase

Based on the SDRG recursions (9) to (11), the phase
diagram of the random quantum Ashkin-Teller model
shown in Fig. 1 is easily understood. Let us start by
recalling that in the weak-coupling regime, ǫ < 1, the lo-
cal coupling strengths ǫh,i and ǫJ,i decrease without limit
under renormalization [19, 21]. This implies that the two
Ising chains that make up the Ashkin-Teller model de-
couple in the low-energy limit. Our system thus behaves
analogously to the random transverse-field Ising chain
[1, 2]: A paramagnetic phase at large transverse fields hi
and a ferromagnetic phase at large interactions Ji are di-
rectly connected by an infinite-randomness critical point
at δ = lnhtyp − ln Jtyp = 0 (transition 1 in Fig. 1) [22].
To understand the strong-coupling regime ǫ > 1, let us

first focus on the self-duality line δ = lnhtyp−ln Jtyp = 0.
If the bare ǫI is just slightly above 1, most of the recur-
sions will initially be site and bond decimations [types (c)
and (d)]. In these steps, the local coupling strengths ǫh,i
and ǫJ,i rapidly increase. When they become larger than
the widths of the J and h distributions, the character of
the SDRG changes. Now, most steps are “mixed steps”
of types (a) and (b). As a result, the product variable σ
forms larger and larger clusters while the spin variable η
is decimated.
The system is thus in a “double Griffiths phase:” The

σ-part of the Hamiltonian behaves analogously to an or-
dered Griffiths phase while the η-part behaves as in a
disordered Griffiths phase. This double Griffiths phase
has a nonzero product order parameter or polarization
Mp =

∑

i σ
z
i while the spin variable ηzi (and thus Sz1,i and

Sz2,i) remains disordered, M =
∑

i ηi = 0. Note that this
behavior is valid not just on the self-duality line, δ = 0,
but also in its vicinity because the RG flow of each of the
variables σ and η is dominated by a single term in the
Hamiltonian and does not rely on the balance between
interactions and transverse fields. Thus, we have indeed
discovered a bulk phase rather than a special line in the
phase diagram. Moreover, as the ǫh,i and ǫJ,i flow to
infinity, the analysis is asymptotically exact.
To find the extensions of the partially ordered dou-

ble Griffiths phase we need to locate its transitions to
the conventional paramagnetic and ferromagnetic phases.
Looking at the first sum in the Hamiltonian (8), it is clear
that the long-range order of the product variable will be
destroyed if we raise δ = lnhtyp − ln Jtyp until the trans-
verse fields hi compete with the four-spin interactionsKi.
This leads to a competition between the SDRG steps (a)
and (c). From comparing the h recursion in (9) with the
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FIG. 3. (Color online) Schematic of the Griffiths dynamical
exponent z as a function of δ for fixed ǫ > 1. Rare large mag-
netization clusters lead to Griffiths singularities associated
with the exponent zm (green dashed line) while the singular-
ities stemming from rare polarization clusters are associated
with zp (red dash-dotted line). Thermal quantities are dom-
inated by the larger of the two exponents z = max(zm, zp)
which features non-monotonous behavior (thick solid line).

K recursion in (10), we conclude that the phase boundary
between the double Griffiths phase and the paramagnetic
phase (transition 2 in Fig. 1) is located at Ktyp = 2htyp
or equivalently δc = ln(ǫ/2) in the limit of large ǫ. More-
over, the transition is governed by an infinite-randomness
fixed point in the random transverse-field Ising univer-
sality class. The phase boundary to the ferromagnetic
phase (transition 3 in Fig. 1) can be found analogously.
For large ǫ, it is located at 2Jtyp = gtyp or equivalently
δc = ln(2/ǫ) in agreement with the self-duality of the
Hamiltonian.
The thermodynamics of the double Griffiths phase is

highly unusual. It can be found in the usual way, i.e.,
by including conjugate fields into the SDRG. Each of the
two order parameters, the magnetizationM =

∑

i ηi and
the polarization Mp =

∑

i σ
z
i , displays power-law quan-

tum Griffiths singularities controlled by different Grif-
fiths dynamical exponents zm and zp, respectively, that
vary non-universally with ǫ and δ. The exponent zm di-
verges at the transition to the ferromagnetic phase while
zp diverges at the transition to the paramagnetic phase.
Duality imposes the relation zp(ǫ, δ) = zm(ǫ,−δ). Ther-
mal quantities such as the entropy and the specific heat
pick up contributions from both order parameters. Their
Griffiths dynamical exponent z = max(zm, zp) thus dis-
plays an interesting non-monotonous dependence on δ,
as sketched in Fig. 3.

B. Multicritical point

Finally, we consider the infinite-randomness multicrit-
ical point (MCP) located at ǫ = 1, δ = 0. It has two
independent unstable directions, the lines δ = 0 and
ǫ = 1. On the line ǫ = 1 that separates the weak-coupling

and strong-coupling regimes, all SDRG steps are site and
bond decimations (types (c) or (d)). The recursions (10)
and (11) reduce to the well-known transverse-field Ising

forms J̃eff = Ji−1Ji/(2hi) and heff = hihi+1/(2Ji) [23].
The SDRG flow of the J and h distributions on the line
ǫ = 1 is thus identical to the corresponding flow of the
random-transverse-field Ising chain. We emphasize, how-
ever, that although the SDRG flow of the J and h distri-
butions at ǫ = 1 is identical to the weak-coupling regime
ǫ < 1, the fixed-point Hamiltonian differs because the
two Ising chains that make up the Ashkin-Teller model
do not decouple.
The flow along the line ǫ = 1 can be characterized

by the following critical singularities: correlation length
ξ ∼ |δ|−ν , magnetization M ∼ |δ|β , and correlation time
ln ξt ∼ ξψ with exponents

ν = 2, β = 2− (1 +
√
5)/2 = 0.382, ψ = 1/2 (12)

In contrast, the SDRG flow on the self-duality line δ = 0
for ǫ > 1 close to the MCP is determined by the evolution
of ǫ under repeated site and bond decimations (steps (c)
and (d)). It can be worked out (see Appendix B) by
including ln(ǫ) as an auxiliary variable in the SDRG flow
of the J and h distributions. We find different critical
singularities ξ ∼ (ǫ − 1)−νǫ and Mp ∼ (ǫ − 1)βǫ with
exponents

νǫ =
8

1 +
√
7
= 2.194 , βǫ =

6− 2
√
5

1 +
√
7

= 0.419 . (13)

The tunneling exponent ψ remains 1/2. Combining these
results to write a scaling form of the polarization gives

Mp(δ, ǫ− 1) = b−β/νMp(δb
1/ν , (ǫ− 1)b1/νǫ) (14)

where b is an arbitrary scale factor. The phase transition
between the partially ordered and paramagnetic phases
corresponds to a singularity of Mp for δ > 0 and ǫ > 1.
Using (14), we find that the phase boundary behaves as

δc ∼ (ǫ− 1)νǫ/ν = (ǫ− 1)4/(1+
√

7) = (ǫ− 1)1.097 (15)

sufficiently close to the multicritical point. The phase
boundary to the ferromagnetic phase can be found anal-
ogously.

C. Random coupling strength ǫ

So far, we have considered systems in which the (bare)
coupling strengths are uniform ǫJ,i = ǫh,i = ǫI . In the
present section, we discuss what changes for random cou-
pling strengths.
If all ǫJ,i and ǫh,i are below the multicritical value of 1,

the renormalized values ǫ̃ are also smaller than 1 and de-
crease under renormalization. Thus, the two Ising chains
that make up the Ashkin-Teller model decouple in the
low-energy limit, just as in the case of uniform bare ǫ.
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Conversely, if all ǫJ,i and ǫh,i are above the multicriti-
cal value of 1, the renormalized values ǫ̃ are also larger
than 1 and increase under renormalization. The system
thus flows to the strong coupling region, also just as in
the case of uniform bare ǫ. Consequently, none of our
results change in these two cases, except for unimpor-
tant modifications of nonuniversal quantities. This also
implies that the three bulk phases shown in Fig. 1 are
stable against weak randomness in ǫ. The same holds for
the phase transitions (1), (2) and (3) sufficiently far away
from the multicritical point discussed in Sec. IVB.
In contrast, the multicritical point at δ = 0, ǫ = 1 it-

self is unstable against weak disorder in the ǫJ,i and ǫh,i.
To show this, we analyze how the width of a narrow ǫ-
distribution around ǫ = 1 flows under repeated SDRG
site and bond decimations. By including ln ǫ as an auxil-
iary variable in the SDRG and using the methods of Ref.
[10], we find

σln ǫ ∼ Γφ
(sym)

1/2 , φ
(sym)
1/2 =

1 +
√
6

4
. (16)

(Note that we need to consider the flow of a symmetri-

cally distributed auxiliary variable; the exponent is there-
fore denoted as φ(sym).) This means that a narrow bare
distribution broadens under the SDRG, destabilizing the
uniform-ǫ multicritical point of Sec. IVB.
We have not found an analytic solution of the multicrit-

ical behavior in the case of random ǫJ,i and ǫh,i. Instead,
we implement the SDRG numerically. We study systems
with up to 5× 108 sites. To place the system on the self-
duality line δ = lnhtyp − ln Jtyp = 0, we employ iden-

tical power-law distributions PI(J) = J−1+1/w/w and
RI(h) = h−1+1/w/w for the interactions and transverse
fields, with w being a measure of the disorder. The cou-
pling strengths ln ǫ are drawn from a box distribution
between ln ǫmin and ln ǫmax. The results of a strongly
disordered (w = 2000) example system are summarized
in Figs. 4 and 5. We fix ln ǫmin = −1000 and tune the
multicritical point by varying ln ǫmax. The data are av-
erages over 50 different chains of 5× 107 sites each. Fig.
4 shows how the average 〈ln ǫ〉 and standard deviation
σln ǫ of the coupling strength evolve under the SDRG.
From the inset, we determine the multicritical point to
be located between ln ǫmax = 643.5 and 644. Moreover,
σln ǫ increases as ℓ

ψκ with ψκ = 0.434(3) with the SDRG
length scale. Here, the number in brackets gives the er-
ror of the last digit. This error is mostly due to the
uncertainty in precisely locating the multicritical point.
The statistical error is much smaller. As the tunneling
exponent remains at ψ = 1/2, this implies

σln ǫ ∼ Γκ , κ = 0.868(6) (17)

The value of the exponent κ [24] fulfills the constraint
κ < 1 derived by Fisher [10]. Interestingly, it is not very

different from the value φ
(sym)
1/2 ≈ 0.8624 that describes

the initial increase of σln ǫ near the uniform-ǫmulticritical
point.
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FIG. 4. (Color online) Average value 〈ln ǫ〉 (solid lines)
and standard deviation σln ǫ (dashed lines) of the coupling
strength ln ǫ versus the SDRG length scale ln ℓ for different
values of the tuning parameter ln ǫmax = 641 . . . 646. The in-
set shows ln |〈ln ǫ〉| and ln σln ǫ for selected curves, giving a
multicritical value of ln ǫc = 643.75
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 |<
ln
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 -
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FIG. 5. (Color online) Distance ln |〈ln ǫ〉− ln ǫc| from the mul-
ticritical point versus the SDRG length scale ln ℓ for different
values of the tuning parameter ln ǫmax = 640.5 . . . 646.

In Fig. 5, we study how the distance |〈ln ǫ〉− ln ǫc| from
the multicritical point increases with SDRG length scale
ℓ in the regime |〈ln ǫ〉 − ln ǫc| < σln ǫ. We find |〈ln ǫ〉 −
ln ǫc| ∼ ℓψ(κ+λ) with ψ(κ+ λ) = 0.89(2) [25]. Expressed
in terms of Γ, this means

|〈ln ǫ〉 − ln ǫc| ∼ Γκ+λ , κ+ λ = 1.78(4) . (18)

Again, the error is mostly due to uncertainties in the
location of the multicritical point as well as the fit range.
We have performed analogous calculations for a num-

ber of different parameter sets. For the weaker disorder
case of w = 3 and ln ǫmin = −3, the multicritical point is
located at ln ǫmax ≈ 2.424. In this case, our analysis of
180 chains of 5× 108 sites gives the same value as above,
κψ = 0.434(3). The exponent ψ(κ + λ) is somewhat
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harder to determine in the weak-disorder case because
the available fit range becomes very narrow. We find
ψ(κ+λ) = 0.88(4) in agreement with the strong-disorder
value. Further calculations for even weaker disorder and
shorter chains (between 106 and 5 × 107 sites) are less
precise but compatible with the values given above.
Once |〈ln ǫ〉 − ln ǫc| > σln ǫ, almost all ǫ are on the

same side of the multicritical point. The further anal-
ysis therefore follows the steps outlined in Appendix B.
The resulting multicritical behavior along the self-duality
line on the strong-coupling side of the MCP is charac-
terized by the power laws ξ ∼ (〈ln ǫ〉 − ln ǫc)

−νǫ and
Mp ∼ (〈ln ǫ〉 − ln ǫc)

βǫ with exponents

νǫ =
4− 2κ

λ
= 2.48(15), βǫ =

2− κ

λ
(2−φ0) = 0.474(20).

(19)
The shape of the phase boundary close to the mul-
ticritical point can be found as in Sec. IVB yielding
δc ∼ (〈ln ǫ〉 − ln ǫc)

1.24.

V. DISCUSSION AND CONCLUSIONS

In summary, we have investigated the ground state
phase diagram of the random quantum Ashkin-Teller
spin chain. The topology of the phase diagram, shown in
Fig. 1, is analogous to that of the clean quantum Ashkin-
Teller model (see, e.g., Ref. [26]). However, the properties
of the phases and phase transitions are different. In addi-
tion to the usual paramagnetic and ferromagnetic phases,
we have identified a partially ordered phase characterized
by strong randomness and infinite coupling between the
colors. This phase acts as a Griffiths phase for two dis-
tinct quantum phase transitions leading to an unconven-
tional non-monotonic variation of the Griffiths dynamical
exponent throughout the phase.
We now turn our attention to the phases boundaries

between the three phases. The direct transition at weak
intercolor coupling between the paramagnetic and ferro-
magnetic (Baxter) phases (transition (i) in Fig. 1) is in
the infinite-randomness universality class of the random
transverse-field Ising chain, as was already found in Refs.
[19, 21]. In contrast, the corresponding phase boundary
in the clean quantum Ashkin-Teller chain shows an un-
usual line of fixed points with continuously varying expo-
nents [18, 27]. The quantum phase transitions separating
the partially ordered phase from the paramagnetic and
ferromagnetic phases (transitions (ii) and (iii)) are also
of infinite-randomness type and in the universality class
of the random transverse-field Ising chain, while they are
in the (1+1)-dimensional Ising universality class in the
clean model.
We have also studied the quantum multicritical point

separating the two-phase and three-phase regions. It is in
one of two different universality classes (both of infinite-
randomness type), depending on whether the intercolor
coupling strengths ǫ are uniform or random. This differs

from the infinite-order multicritical behavior seen in the
clean case [18, 27].
Generalizations of the Ashkin-Teller Hamiltonian (1)

to n > 2 colors have recently reattracted considerable
attention because they have been used to analyze the
fate of first-order quantum phase transitions under the
influence of disorder [21, 28, 29]. Interestingly, for n > 4
colors, the paramagnetic and ferromagnetic phases meet
directly at the self-dual line 〈lnh〉 = 〈ln J〉 for all coupling
strength ǫ ≥ 0. Thus an analog to the partially ordered
strong-coupling phase does not exist. For three and four
colors, this question is not yet solved to the best of our
knowledge.
The random quantum Ashkin-Teller chain (1) with N

sites can be mapped onto a random XXZ quantum spin
chain with 2N sites [30]. Under this mapping, the trans-
verse fields hi in the Ashkin-Teller model map onto the
even bonds of the XXZ chain while the interactions Ji
map onto the odd bonds. The coupling strengths ǫh,i
and ǫJ,i map onto the local anisotropies of the XXZ chain.
Importantly, the mapping is nonlocal as it involves (semi-
infinite) chains of operators. Thus, although the energy
spectra of the Ashkin-Teller model and the XXZ chain
are analogous, their order parameters are not directly re-
lated. This explains, for example, why the correlation
length exponent νǫ given in (13) takes the same value as
the exponent that describes the effects of weak anisotropy
about the Heisenberg fixed point of the XXZ chain [10].
In contrast, our order parameter exponent βǫ does not
have a direct counterpart in the XXZ chain.
Our study has focused on one space dimension. Let

us briefly comment on random quantum Ashkin-Teller
models in higher dimensions. The crucial step in our un-
derstanding of the strong-coupling regime was the trans-
formation defined in eqs. (2–7) from the original spins to
the product variable. This transformation is purely local
and can be performed in the same way in any space di-
mension. We therefore believe that the basic features of
the phase diagram in higher dimensions will be similar to
the one dimensional case. In particular, for small ǫ, we
expect a direct transition between the ferromagnetic and
paramagnetic phases while a partially ordered product
phase is expected to intervene between them for large ǫ.
Obtaining quantitative results in higher dimensions will
be significantly more complicated than in one dimension.
First, the Hamiltonian is not self-dual in d > 1, thus the
phase diagram is not symmetric under the exchange of
transverse fields and interactions. Second, the SDRG can
only be implemented numerically in d > 1 because the
decimation steps change the topology of the lattice. This
work remains as a task for the future.
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Appendix A: SDRG recursion relations

A single step of the SDRG consists in identifying the
largest local energy scale in the Hamiltonian and pertur-
batively integrating out the corresponding high-energy
excitations. This is done using the projection technique
described, e.g., in Ref. [31]. The Hilbert space is di-
vided into a low-energy subspace and a high-energy sub-
space. Any wave function ψ can be decomposed as
ψ = ψ1 + ψ2 with ψ1 in the low-energy subspace and
ψ2 in the high-energy subspace. This allows us to write
the Schroedinger equation in matrix form

(

H11 H12

H21 H22

)(

ψ1

ψ2

)

= E

(

ψ1

ψ2

)

(A1)

with Hij = PiHPj . Here, P1 and P2 project on
the low-energy and high-energy subspaces, respectively.
Eliminating ψ2 from these two coupled equations gives
H11ψ1 +H12(E −H22)

−1H21ψ1 = Eψ1. Thus, the effec-
tive Hamiltonian in the low-energy Hilbert space is

Heff = H11 +H12(E −H22)
−1H21 . (A2)

The second term can now be expanded in inverse powers
of the large local energy scale.
The quantum Ashkin-Teller Hamiltonian has four com-

peting local energy scales, viz., Ji,Ki, hi, and gi rather
than two. We therefore generalize the usual SDRG
scheme by considering the largest and second-largest en-
ergies in a local cluster to define the SDRG step. In the
strong-coupling regime, ǫ > 1, the largest local energy is
always either a four-spin interaction or a two-spin field.
In total, there are four possible steps.
(a) The largest local energy is a two-spin field gi. The

second largest energy in the three-site cluster of sites
i − 1, i, i + 1 is a four-spin interaction, either Ki−1 or
Ki. Let us assume that it is Ki for definiteness. In
this case, the low-energy Hilbert space is spanned by
states for which (ηi, σi, σi+1) = (→, ↑, ↑) or (→, ↓, ↓).
H11 and H22 contain all terms in the Hamiltonian that
do not flip the spins ηi, σi, σi+1; their leading terms are
−Kiσ

z
i σ

z
i+1 − giη

z
i . All terms that flip at least one of

the variables ηi, σi, σi+1 are contained in H12 and H21.
Specifically,

H12 = P1[− Ji−1η
z
i−1η

z
i − Jiη

z
i η
z
i+1 − hiσ

x
i − hi+1σ

x
i+1

− hiσ
x
i η

x
i − hi+1σ

x
i+1η

x
i+1

− Ji−1σ
z
i−1σ

z
i η
z
i−1η

z
i − Jiσ

z
i σ

z
i+1η

z
i η
z
i+1]P2 .(A3)

H21 takes the same form but with P1 and P2 exchanged.
We now insert H12 and H21 into (A2) and approximate

the denominator E−H22 by −2gi or −2Ki depending on
which of the spins (ηi, σi, σi+1) is flipped. The resulting
effective Hamiltonian has the same form (8) as the initial
one, but with one fewer site. The arrangement of the
renormalized energies J̃eff and h̃eff between the remaining
sites is shown in Fig. 2 and their values are given in (9).
(b) Exactly the same SDRG step is carried out if the

largest local energy is the four-spin interaction Ki, and
the second-largest energy in the two-site cluster of sites
i and i + 1 is a two-spin field, either gi or gi+1.
Steps (a) and (b) are the dominant SDRG steps for

ǫ≫ 1. More precisely, most steps are of types (a) or (b)
if ǫ is larger than the width of the h and J distributions
(on a logarithmic scale). In the opposite case, strong
disorder and not too large ǫ, most SDRG steps are site
and bond decimations of types (c) and (d).
(c) The largest energy in the system is the two-spin

field gi, and the second largest energy in the local cluster
of sites i− 1, i and i+ 1 is the field hi. In this case, the
low-energy Hilbert space is spanned by all states having
(ηi, σi) = (→→). H11 and H22 contain all terms in the
Hamiltonian that do not flip ηi and σi, with the leading
terms being −giηxi − hiσ

x
i − hiη

x
i σ

x
i . All terms that flip

ηi and/or σi are part of H12 and H21. Specifically,

H12 = P1[−Ki−1σ
z
i−1σ

z
i −Kiσ

z
i σ

z
i+1

− Ji−1η
z
i−1η

z
i − Jiη

z
i η
z
i+1

− Ji−1η
z
i−1η

z
i σ

z
i−1σ

z
i − Jiη

z
i η
z
i+1σ

z
i σ

z
i+1]P2 .(A4)

and H21 takes the same form but with P1 and P2 ex-
changed. After inserting this into (A2) and approximat-
ing the denominator E − H22 by −2gi − 2hi or −4hi
depending on which spins are flipped, site i is eliminated
(i.e., both σi and ηi are decimated). The effective inter-
action energies between the neighboring sites i − 1 and
i+ 1 are given in (10).
(d) The largest local energy is a four-spin interaction

Ki, and the second largest energy in the cluster con-
sisting of sites i and i + 1 is the interaction Ji. The
low-energy Hilbert space is spanned by states having
(ηi, ηi+1, σi, σi+1) = (↑↑↑↑) or (↑↑↓↓) or (↓↓↑↑) or (↓↓↓↓).
After projection into the low-energy Hilbert space, the
two sites i and i+ 1 can thus be represented by a single
site with variables σeff and ηeff . H11 and H22 contain
all terms in the Hamiltonian that do not flip ηi, ηi+1, σi
or σi+1. The leading terms are −Kiσ

z
i σ

z
i+1 − Jiη

z
i η
z
i+1 −

Jiσ
z
i σ

z
i+1η

z
i η
z
i+1. In contrast, H12 and H21 consist of the

terms that flip ηi, ηi+1, σi and/or σi+1. This gives

H12 = P1[− hiσ
x
i − hi+1σ

x
i+1 − giη

x
i − gi+1η

x
i+1

− hiη
x
i σ

x
i − hi+1η

x
i+1σ

x
i+1]P2 . (A5)

Inserting this into the effective Hamiltonian (A2) as be-
fore yields the transverse field heff and two-spin field geff
acting on the cluster variables σeff and ηeff . Their values
are given in (11).
Note that the SDRG steps (c) and (d) are identical

to the site and bond decimations employed in the weak-
coupling (ǫ < 1) analysis of Refs. [19, 21].
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Appendix B: Multicritical point

The multicritical point separating the two-phase and
three-phase regions is located at δ = 0, ǫ = 1. In this
appendix, we sketch the derivation of the SDRG flow on
the self-duality line δ = 0 for ǫ > 1 but close to the
multicritical point.
Let us begin with a qualitative discussion. For ǫ ≈ 1

and strong disorder, initially almost all SDRG steps are
site decimations (c) or bond decimations (d), thus the
RG flow is identical to that of the random transverse-field
Ising chain. Under these steps, ǫ increases rapidly. When
the typical ln ǫ reaches the width of the ln J and ln h
distributions, the character of the SDRG flow changes.
Now, most steps are “mixed” decimations of types (a)
and (b). Under these steps, the magnetization rapidly
drops to zero while the polarization (product order pa-
rameter) stops decreasing and reaches a nonzero asymp-
totic value. Thus, the RG scale at which ln ǫ reaches the
width of the ln J and lnh distributions determines the
correlation length and the polarization.
For a quantitative analysis of this SDRG flow, we start

from the recursion relations for the coupling strengths
ǫJ,i and ǫh,i defined by (10) and (11). Written in terms
of logarithms, they read

ln ǫ̃h = ln ǫh,i + ln ǫh,i+1 + ln[(1 + ǫJ,i)/2] (B1)

ln ǫ̃J = ln ǫJ,i−1 + ln ǫJ,i + ln[(1 + ǫh,i)/2] . (B2)

We follow the ǫ-flow from ln ǫ ≪ 1 to ln ǫ ∼ P−1
0 , R−1

0

where P0 and R0 are the inverse widths of the ln J and
lnh distributions. Two regimes need to be distinguished,
ln ǫ < 1 and ln ǫ > 1.
For ln ǫ < 1, we expand in δ(ǫ) = ln ǫ ≈ ǫ − 1, and

equations (B1) and (B2) simplify to

δ̃
(ǫ)
h = δ

(ǫ)
h,i + δ

(ǫ)
h,i+1 +

1

2
δ
(ǫ)
J,i , (B3)

δ̃
(ǫ)
J = δ

(ǫ)
J,i−1 + δ

(ǫ)
J,i +

1

2
δ
(ǫ)
h,i . (B4)

The recursions can be understood as special cases of the
general recursion x̃i = xi−1 + xi+1 + Y xi with Y = 1/2
[32]. The flow of variables governed by such recursions
close to the infinite-randomness fixed point (of the ran-
dom transverse-field Ising chain) was studied in detail
by Fisher [10]. He found that the typical x scales like
ΓφY = [ln(ΩI/Ω)]

φY with decreasing SDRG energy scale
Ω. The exponent φY is given by φY = [1+(5+4Y )1/2]/2.
(In contrast to (16), we need to use the “asymmetric” ver-
sion of Fisher’s results because all our δ(ǫ) > 0.) Thus,
in the first regime (ln ǫ < 1), the typical ln ǫ scales as

ln ǫtyp ≈ Γφ1/2 ln ǫ0 , φ1/2 =
1

2

(

1 +
√
7
)

(B5)

In the second regime, ln ǫ > 1, we can approximate the
recursions (B1) and (B2) for δ(ǫ) = ln ǫ by

δ̃
(ǫ)
h = δ

(ǫ)
h,i + δ

(ǫ)
h,i+1 + δ

(ǫ)
J,i , (B6)

δ̃
(ǫ)
J = δ

(ǫ)
J,i−1 + δ

(ǫ)
J,i + δ

(ǫ)
h,i . (B7)

0 100 200 300 400 500 600
Γ

0

1

2

3

4

5

<
ln

(ε
)>

1/
2

εI

1.010
1.005
1.002
1.001

FIG. 6. (Color online) 〈ln(ǫ)〉1/2 vs. Γ for four different sys-
tems on the self-duality line htyp = Jtyp close to the multi-
critical point (w = 8 and ǫI = 1.001, 1.002, 1.005 and 1.01).
Each curve stems from a single long chain of 2.5 × 107 sites.
The solid lines are fits of the data in the range 〈ln ǫ〉 < 0.5 to
〈ln ǫ〉 = C(Γ− Γ0)

φ1/2 with φ1/2 ≈ 1.823, see eq. (B5).

These recursions are of the same type as (B3) and (B4),
but with Y = 1. Thus, in the second regime, ln ǫ scales
as

ln ǫtyp ∼ Γφ1 , φ1 = 2 . (B8)

To test the predictions (B5) and (B8), we implemented
the strong-disorder renormalization group numerically.
Figure 6 shows (ln ǫtyp)

1/2 as a function of Γ for systems
located on the self-duality line htyp = Jtyp. We employed

identical power-law distributions PI(J) = J−1+1/w/w
and RI(h) = h−1+1/w/w for the interactions (0 < J < 1)
and transverse fields (0 < h < 1), with w being a measure
of the disorder. The coupling strength is uniform and
close to the multicritical value ǫI = 1. The figure shows
that the data in the range 〈ln(ǫ)〉 > 1 lie on straight
lines, i.e., they follow (B8) as predicted. For 〈ln(ǫ)〉 < 1
the data curve downward suggesting a smaller exponent.
In fact, the data in the range 0 < 〈ln(ǫ)〉 < 0.5 can
be very well fitted with functions of the form 〈ln ǫ〉 =
C(Γ− Γ0)

φ1/2 , in agreement with (B5).
Let us now combine the two regimes. We consider a

(bare) system close to the multicritical point, 0 < ln ǫI ≪
1, with strong initial disorder, i.e., the widths of the bare
distributions of ln J and lnh are large, P−1

I = R−1
I ≫ 1.

Under repeated site and bond decimations (SDRG steps
c and d), P−1

0 = R−1
0 = P−1

I Γ while the typical ln ǫ scales

as ln ǫ ∼ Γ2(ln ǫI)
2/φ1/2 once ln ǫ > 1. Setting ln ǫ = P−1

0

gives the crossover SDRG scale

Γx =
1

PI(ln ǫI)
2/φ1/2

. (B9)

The correlation length is given by the length scale corre-
sponding to Γx,

ξ ∼ ℓx ∼ Γ2
x ∼ (ln ǫI)

−4/φ1/2 ≈ (ǫI − 1)−4/φ1/2 . (B10)
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The correlation length exponent νǫ thus takes the value
νǫ = 4/φ1/2 as given in (13). The product order pa-
rameter (polarization) Mp can be found by noting that
σ-clusters are not decimated anymore once Γ > Γx. Mp

is thus given by its value at Γx.

Mp = n(Γx)µ(Γx) ∼ Γ−2+φ0
x ∼ (ln ǫI)

2(2−φ0)/φ1/2

(B11)

where n(Γ) and µ(Γ) are the number and moment of
clusters surviving at SDRG scale Γ. Using φ0 = [1 +√
5]/2 yields the order parameter exponent βǫ given in

(13).
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