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We study pairing in low-density neutron matter including the screening interaction due to the
exchange of particle-hole and RPA excitations. As bare force we employ the effective low-momentum
interaction Vlow k, while the Fermi-liquid parameters are taken from a phenomenological energy
density functional (SLy4) which correctly reproduces the equation of state of neutron matter. At
low density, we find screening, i.e., pairing is reduced, while at higher densities, we find anti-
screening, i.e., pairing is enhanced. This enhancement is mostly due to the strongly attractive
Landau parameter f0. We discuss in detail the critical temperature Tc in the limit of low densities
and show that the suppression of Tc predicted by Gor’kov and Melik-Barkhudarov can only be
reproduced if the cutoff of the Vlow k interaction is scaled with the Fermi momentum. We also
discuss the effect of non-condensed pairs on the density dependence of Tc in the framework of the
Nozières-Schmitt-Rink theory.

I. INTRODUCTION

Neutron stars provide a unique laboratory with an in-
terplay of a wide range of phenomena. The physics of
the inner crust of neutron stars, where a dilute gas of
unbound neutrons coexists with nuclear clusters, is par-
ticularly interesting [1]. In this work, we focus on the
neutron gas, since its superfluid properties are crucial
for the understanding of astrophysical observables such
as pulsar glitches or neutron-star cooling. Glitches are
the observed sudden increase in the rotational frequency
of the pulsars, followed by a long relaxation time and
usually they are linked to the neutron superfluidity in
the inner crust [2–4], in particular, to the unpinning of
the vortices. After the initial rapid cooling via neutrino
emissions, the cooling rate of the neutron star is very de-
pendent on the physics of the crust. The superfluidity of
the neutrons in the crust of the star strongly suppresses
the specific heat and hence influences the cooling rate
[5, 6]. In addition, neutron superfluidity allows for novel
neutrino emission processes via Cooper pair breaking and
formation that affect the cooling rate of the star close to
the transition temperature [7].

Even the modelling of uniform matter is theoretically
very challenging due to the uncertainties in the nuclear
interactions. In neutron stars, the attractive interaction
is provided by the two-body interaction, and the most
important channels for neutron pairing turn out to be
the 1S0 channel at low densities and therefore occuring
in the inner crust, while in the core, the neutrons pair
in the triplet 3P2 − 3F2 channel. Protons can also pair,
although a description of proton superfluidity is compli-
cated by the asymmetry of matter and the resulting cou-
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pling of the protons to the denser background [8]. In
addition to being crucial for the physics of neutron stars,
pairing between nucleons plays a very important role in
the spectra of finite nuclei, as well as in description of
neutron rich nuclei close to the drip line.

A reliable description of pairing at all densities in in-
finite matter is still an open question, although the su-
perfluidity in stars has been studied since the early work
of Migdal [9] and Ginzburg and Kirzhnits [10, 11] and
is needed to explain observations such as the long relax-
ation time after a glitch [12]. For a recent review, the
reader is referred to [13]. The simplest starting point
for the study of pairing is the superfluid gap equation
within the BCS approximation that uses the free-space
two-nucleon interaction as input and a free spectrum for
the single-particle energies. However, there is enough
evidence that one needs to go beyond this approxima-
tion [8, 14–19]. Medium corrections to the single-particle
energy and to the free-space interaction change the gap
drastically.

In this work, we re-visit the issue of building an in-
duced interaction that will modify the free space two-
body interaction responsible for pairing in the 1S0 chan-
nel in uniform neutron matter. In the past, several at-
tempts have been made to include medium corrections
to the interaction [20–24]. Most of these calculations use
many-body methods analogous to the well-known exam-
ple of screening in an electron gas [25], subject to various
approximations. Because of the exponential dependence
of the gap on the interaction, the final results are always
affected by the details. In view of the persistent un-
certainties, of some mistakes in Ref. [23] (see Ref. [24]),
and of the simplifying approximation made in Ref. [24]
to replace the 3 particle−1 hole (3p1h) matrix element
entering the induced interaction by its average value, we
believe that this problem has not yet been fully solved,
even within the given theoretical framework.

As input, we use the free-space renormalized two-body
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interaction, Vlow k, evolved from the AV18 two-body po-
tential. The same interaction is also used for the 3p1h
couplings entering the induced interaction. The main ad-
vantage of using Vlow k is that non-perturbative features
present in the bare interaction, such as the short-range
repulsion that arises from the hard-core and the repul-
sive tensor, are softened. The low-momentum effective
interaction depends on the renormalization scale (or cut-
off) Λ, while the free-space two-body observables such
as scattering phase shifts and energies are independent
of Λ. However, in principle the renormalization group
running generates also induced three- and higher-body
forces. In addition, in a many-body calculation, one usu-
ally resorts to approximations, which may not hold for all
situations. Therefore, when only the free-space evolved
two-body interaction is used as input in a many-body cal-
culation, the results may depend on the cutoff and this
dependence gives not only an estimate of the importance
of the missing 3N force but also indicates the importance
of the missing many-body terms that may become rele-
vant [26].

For the induced interaction, except at extremely low
densities, it is necessary to go beyond the exchange of
simple particle-hole excitations. Following Ref. [24], we
sum the particle-hole bubble series (random-phase ap-
proximation, RPA) within the Landau approximation
and keep only the lowest order (L = 0) Landau pa-
rameters in the particle-hole interaction. In Ref. [24],
as in preceding studies [21, 23], the Landau parame-
ters were computed microscopically, including the in-
duced interaction in a self-consistent manner (so-called
Babu-Brown theory [27]). However, the resulting Lan-
dau parameters, in particular F0, were much smaller than
what one obtains from phenomenological energy-density
functionals such as the Skyrme SLy4 or the Gogny D1N
parameterizations, which have both been fitted to the
neutron-matter equation of state. Therefore, we follow a
more pragmatic but probably more reliable strategy here,
namely to determine the Fermi-liquid parameters (Lan-
dau parameters and effective mass) directly from these
phenomenological interactions.

The medium corrected interaction is then used in the
BCS gap equation and the transition temperature is cal-
culated. We note that our results show screening at low
densities and anti-screening at high densities. This is dif-
ferent from the results of Cao et al. in Ref. [24], where
they predict screening for all densities. Our results for
screening, e.g., Fig. 12, are compatible with Quantum
Monte-Carlo (QMC) results [28–30] which rule out the
extremely strong screening predicted in earlier calcula-
tions [20]. Unfortunately, QMC results are not available
in the density range where we find anti-screening.

Apart from the induced interaction, there are other
effects that may modify the BCS results for the transi-
tion temperature. If the Fermi momentum kF lies ap-
proximately between 1/|a| ∼ 0.05 fm−1 and 1/re ∼ 0.4
fm−1, where a is the neutron-neutron (nn) scattering
length and re the effective range, neutron matter is in a

strong-coupling situation, in which pair correlations ap-
pear already in the normal phase and modify the critical
temperature Tc [31]. This effect is crucial for the un-
derstanding of the BCS-BEC crossover as it exists in ul-
tracold Fermi gases or in symmetric nuclear matter [32],
where one can pass from Cooper pairs to a Bose-Einstein
condensate (BEC) of dimers (deuterons). For a recent
review article, see [33]. The large value of |a| indicates
that the nn interaction is almost able to produce a bound
state, and in low-density neutron matter the nn Cooper-
pair wave function indeed looks almost like a bound-state
wave function [34–36]. In fact, one can reach a situation
similar to the unitary limit, which is the case of a contact
interaction with |a| → ∞ (i.e., 1/|a| � kF � 1/re). The
relevance of BEC-BCS cross-over physics for the descrip-
tion of dilute neutron matter was pointed out in many
works, e.g. [29, 30, 34–37].

Note that, although the strong-coupling situation is
only reached at densities below ∼ 0.01 times nuclear sat-
uration density, it is phenomenologically relevant. Neu-
tron matter with such low densities is present between
the clusters in the inner crust of neutron stars at average
baryon densities just above the neutron-drip density of
∼ 2.5×10−4 fm−3 [38, 39]. Since in this region the dilute
neutron gas fills almost the entire volume, it represents a
sizable contribution to the average baryon density even
if its density is a few thousand times smaller than the
density inside the clusters.

In the unitary limit, the Nozières-Schmitt-Rink (NSR)
theory of pair correlations in the normal phase [31] pre-
dicts a reduction of the transition temperature Tc from
the BCS result ∼ 0.5EF (EF being the Fermi energy) to
∼ 0.22EF [40]. These numbers do not include screening
effects, but as shown recently [41], the inclusion of screen-
ing on top of the NSR effect leads to good agreement with
results from experiments with ultracold atoms. In a pre-
vious work [37], we had studied neutron matter in the
framework of the NSR theory. In the present paper, we
will extend that work to see how the NSR correction is
changed by the induced interaction.

This paper is organised as follows: in Sec. II, we re-visit
the BCS gap equation and set up the induced interaction.
The effect of the induced interaction on the transition
temperature is discussed in Sec. III. At low densities,
one expects a reduction in Tc by a factor of (4e)−1/3,
which is the Gor’kov-Melik-Barkhudarov (GMB) result
[42], and this region is studied in detail in Sec. IV. Fi-
nally, we turn our attention to the correlations within
the NSR approach in Sec. V. A summary of our results
is presented in Sec. VI. Some of the details of the calcu-
lations have been moved to appendices to facilitate ease
of reading. Numerical results for the matrix elements
of the screened pairing interaction are provided in the
supplemental material [43].
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II. FORMALISM

A. Gap equation and induced interaction

In BCS theory, the 1S0 pairing gap ∆ in neutron mat-
ter is determined by the gap equation

∆(k) = − 2

π

∫ ∞
0

dq q2V0(k, q)
∆(q) tanh

(E(q)
2T

)
2E(q)

. (1)

Here, V0(k, q) = 〈k|V1S0
|q〉 denotes the nn interaction in

the 1S0 partial wave for in- and outgoing momenta q and
k, Eq =

√
(ε(q)− µ)2 + ∆(q)2 is the quasiparticle energy

with ε(q) = q2/2m∗, m∗ is the neutron effective mass, µ is
the effective chemical potential including the mean-field
energy shift, and T is the temperature. Except in some
range of low densities, neutron matter is in the weak-
coupling limit, in the sense that ∆(kF ) � µ, implying
µ ≈ k2F /2m∗, with the Fermi momentum kF = (3π2ρ)1/3

determined by the neutron number density ρ. Equation
(1) with Vlow k as nn interaction has been solved, e.g., in
Ref. [44].

The critical temperature Tc is the highest temperature
for which Eq. (1) has a non-trivial solution. At T = Tc,
one can neglect ∆(q) in E(q), so that Eq. (1) reduces to
a linear eigenvalue equation

φ(k) = − 2

π

∫ ∞
0

dq q2V0(k, q)
tanh

( ξ(q)
2Tc

)
2ξ(q)

φ(q) , (2)

with ξ(q) = ε(q)−µ. We will also write this as |φ〉 = K|φ〉.
Hence, in order to find Tc, we diagonalize the integral
operator with the kernel

K(k, q) = −V0(k, q)
tanh

( ξ(q)
2T

)
2ξ(q)

, (3)

and Tc is the temperature where the largest eigenvalue is
equal to unity. In weak coupling, Tc is directly related to
the gap at T = 0 by Tc = 0.57 ∆T=0(kF ).

It is widely accepted that an important correction to
BCS theory consists in adding to the bare interaction in
Eq. (1) the contribution of the induced interaction Vind
due to the exchange of density and spin-density fluctua-
tions. In particular, in the weakly interacting limit, this
leads to the famous Gor’kov-Melik-Barkhudarov (GMB)
correction, which reduces the gap and the critical tem-
perature by approximately a factor of two compared to
the BCS result [42]. In terms of Feynman diagrams, this
correction can be represented as in Fig. 1 (a). Note that
the dotted interaction lines are meant to represent the an-
tisymmetrized interaction. This is very important since
the dominant 1S0 interaction acts only between neutrons
of opposite spin and therefore cannot contribute to the
shown diagram. However, if the outgoing lines are ex-
changed in both the interaction vertices, one obtains a
diagram to which it contributes.

In nuclear physics, except at extremely low density (see
Sec. IV), one is never in a weakly interacting regime.

−q′,−σ′ q′, σ′

−q,−σ q, σ

p−k
σ′
1

p
σ1

Ṽj1s1l1l′1

Ṽj2s2l2l′2

(a)

−q′,−σ′ q′, σ′

−q,−σ q, σ

p1−k
σ′
1

p1

σ1

p2−k
σ′
2

p2

σ2

Ṽj1s1l1l′1

Ṽj2s2l2l′2

RPA

(b)

FIG. 1: Feynman diagrams representing the induced interac-
tion. The wiggly line in diagram (b) is meant to include the
RPA bubble summation.

Therefore, the simple particle-hole bubble exchanged in
Fig. 1 (a) is modified by the residual particle-hole interac-
tion as shown in Fig. 1 (b). The wiggly line representing
the particle-hole interaction is meant to include the RPA
bubble summation to all orders.

Throughout this article, “diagram (a)” and “diagram
(b)” refer to the diagrams shown in Fig. 1 (a) and (b).
When calculating the diagrams, we make the usual ap-
proximation to neglect the energy transfer (static approx-
imation) which can be justified by the observation that
the most important contribution to pairing comes from
scattering of particles near the Fermi surface, so that all
in- and outgoing particles have energies close to the Fermi
energy εF = k2F /2m

∗.

B. Diagram (a): single-bubble exchange

Let us first discuss the vertices coupling the particles
to the particle-hole excitation, represented as dotted lines
in Fig. 1. We assume a general (possibly non-local) in-
teraction which is expanded in partial waves. Using the
notation of the left part of Fig. 2, the partial-wave ex-
pansion of the interaction reads

〈k1, σ1;k2, σ2|V |k′1, σ′1;k′2, σ
′
2〉 =∑

s,ms,m′s

∑
l,l′,ml

∑
j

Csms
1
2σ1

1
2σ2

C
sm′s
1
2σ
′
1

1
2σ
′
2
C
jmj

lmlsms
C
jmj

l′m′lsm
′
s

× (4π)2il
′−lY ∗lml

(ΩQ)Yl′m′l(ΩQ′)〈Q|Vsll′j |Q′〉 , (4)
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k′
1, σ

′
1 k′

2, σ
′
2

k1, σ1 k2, σ2

σ′
1

σ1

σ′
2 σ2

p− k p

FIG. 2: Elements of Feynman diagrams to clarify the nota-
tion. Left: particle-particle interaction. Right: particle-hole
propagator.

with

Q =
k1 − k2

2
, Q′ =

k′1 − k′2
2

, (5)

m′l = ml +ms −m′s , mj = ml +ms . (6)

For the Clebsch-Gordan coefficients, we follow the nota-
tion of the book by Varshalovich [45].

Then it is straight-forward to obtain for the diagram
(a) the following expression [the factor (−1) comes from
the closed Fermion loop]:

Va(q, q′) = (−1)
1

4π

∑
σσ′

C00
1
2σ

1
2−σ

C00
1
2σ
′ 1
2−σ′

∫
dΩq

4π

∫
dΩq′

4π

∫
d3p

(2π)3
n(p− k)− n(p)

ε(p)− ε(p− k)

×
∑
s1ms1

∑
s2ms2

∑
l1l′1ml1

∑
l2,l′2,ml2

∑
j1j2

Cs1ms1
1
2σ1

1
2−σ

C
s1m

′
s1

1
2σ
′
1

1
2−σ′

Cs2ms2
1
2σ

1
2σ
′
1
C
s2m

′
s2

1
2σ
′ 1
2σ1

C
j1mj1

l1ml1s1ms1
C
j1mj1

l′1m
′
l1s1m

′
s1
C
j2mj2

l2ml2s2ms2
C
j2mj2

l′2m
′
l2s2m

′
s2

× (4π)4il
′
1−l1+l′2−l2Y ∗l1ml1

(ΩQ1
)Yl′1m′l1(ΩQ′1)Y ∗l2ml2

(ΩQ2
)Yl′2m′l2(ΩQ′2)〈Q1|Ṽs1l1l′1j1 |Q

′
1〉〈Q2|Ṽs2l2l′2j2 |Q

′
2〉 , (7)

with the following abbreviations:

k = q− q′ , (8)

Q1 =
q + p

2
, Q′1 =

q′ − k + p

2
,

Q2 =
q + k− p

2
, Q′2 =

q′ − p

2
,

(9)

σ1 = ms1 + σ , σ′1 = ms2 − σ , (10)

m′s1 = ms2 − σ − σ′ , m′s2 = ms1 + σ + σ′ , (11)

m′l1 = ml1 +ms1 −m′s1 , m′l2 = ml2 +ms2 −m′s2 ,
(12)

mj1 = ml1 +ms1 , mj2 = ml2 +ms2 . (13)

The tilde in Ṽ indicates that the matrix element is
antisymmetrized, i.e., multiplied by a factor of two in
the surviving channels. For the occupation numbers n(p)
and n(k−p) entering the integral in Eq. (7), we use the
step function n(p) = θ(kF − p), which is a very good
approximation as long as we are in the weak-coupling
limit (∆, T � µ). Notice that then

lim
k→0

n(p− k)− n(p)

ε(p)− ε(p− k)
= m∗δ(p− kF ) , (14)

which is useful when evaluating Eq. (7) for q = q′, espe-
cially in the case q = q′ = 0.

C. Separation of S = 0 and S = 1 contributions

It is instructive to split Eq. (7) into contributions
from particle-hole excitations having total spin S = 0

(density waves) and S = 1 (spin-density waves). In
order to do this, consider the particle-hole propaga-
tor shown in the right part of Fig. 2, which is given
by G0(p)G0(p − k)δσ1σ2δσ′1σ′2 with G0 the uncorrelated
single-particle Green’s function. This expression appears
also in diagram (a) if we formally introduce a summation
over σ2 and σ′2. The spin part can be decomposed using
the completeness relation of the Pauli matrices σ

δσ1σ2
δσ′1σ′2 = 1

2 (δσ1σ′1δσ2σ′2 + σσ′1σ1
· σσ2σ′2) , (15)

where the two terms correspond, respectively, to S = 0
and S = 1. Likewise, this decomposition can also be
written in terms of Clebsch-Gordan coefficients as

δσ1σ2
δσ′1σ′2 =∑

S,mS

(−1)
1
2−σ′1CSmS

1
2σ1

1
2−σ′1

(−1)
1
2−σ′2CSmS

1
2σ2

1
2−σ′2

. (16)

In the calculation of Va(q, q′), it is clear that in the S = 1
case each of the three spin projections mS of the particle-
hole excitation must give the same contribution. We can
therefore compute the S = 1 contribution by restricting
ourselves to themS = 0 term, or, equivalently, by keeping
only the Pauli matrix σz in the second term of Eq. (15),
and multiplying the result by three. This amounts to the
replacement

δσ1σ2δσ′1σ′2 →
1
2δσ1σ′1δσ2σ′2

[
1 + 3 (−1)1−σ1−σ2

]
. (17)

In this way, we arrive at an alternative expression for
diagram (a):
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Va(q, q′) = (−1)
1

4π

∑
σσ′

C00
1
2σ

1
2−σ

C00
1
2σ
′ 1
2−σ′

∫
dΩq

4π

∫
dΩq′

4π

∫
d3p

(2π)3
n(p− k)− n(p)

ε(p)− ε(p− k)

×
∑
s1ms1

∑
s2ms2

∑
l1l′1ml1

∑
l2,l′2,ml2

∑
j1j2

Cs1ms1
1
2σ1

1
2−σ

C
s1m

′
s1

1
2σ1

1
2−σ′

Cs2ms2
1
2σ

1
2σ2

C
s2m

′
s2

1
2σ
′ 1
2σ2

C
j1mj1

l1ml1s1ms1
C
j1mj1

l′1m
′
l1s1m

′
s1
C
j2mj2

l2ml2s2ms2
C
j2mj2

l′2m
′
l2s2m

′
s2

× (4π)4il
′
1−l1+l′2−l2Y ∗l1ml1

(ΩQ1
)Yl′1m′l1(ΩQ′1)Y ∗l2ml2

(ΩQ2
)Yl′2m′l2(ΩQ′2)〈Q1|Ṽs1l1l′1j1 |Q

′
1〉〈Q2|Ṽs2l2l′2j2 |Q

′
2〉

× 1

2

[
1 + 3 (−1)1−ms1−ms2

]
, (18)

with the same abbreviations k, Qi, Q
′
i, m

′
li, and mji as

before [Eqs. (8), (9), (12), and (13)] but:

σ1 = ms1 + σ , σ2 = ms2 − σ , (19)

m′s1 = ms1 + σ − σ′ , m′s2 = ms2 − σ + σ′ , (20)

D. Diagram (b): RPA bubble summation

Let us now turn to diagram (b), which includes the
RPA bubble summation. In the present work, we will
restrict ourselves to the Landau approximation and keep
only the lowest-order (L = 0) Landau parameters. Then
the particle-hole interaction takes the form f + gσ1 ·σ2,
which allows one to sum the RPA bubble series separately
in the S = 0 and S = 1 channels. The resulting particle-
hole interactions are then

fRPA(k) =
f0

1− f0Π0(k)
, gRPA(k) =

g0
1− g0Π0(k)

,

(21)
where f0 and g0 are the Landau parameters for S = 0
and S = 1, respectively, and

Π0(k) = −2

∫
d3p

(2π)3
n(p− k)− n(p)

ε(p)− ε(p− k)
(22)

is the static (ω → 0) limit of the usual Lindhard function
Π0(k, ω).

It is convenient to introduce the dimensionless Landau
parameters F0 = N0f0 and G0 = N0g0, where N0 =
m∗kF /π2 is the density of states at the Fermi surface
(including the neutron-matter degeneracy factor of two),

and the dimensionless Lindhard function Π̃0 = Π0/N0.
Then, Eq. (21) can be rewritten as

fRPA(k) =
F0/N0

1− F0Π̃0(k)
, gRPA(k) =

G0/N0

1−G0Π̃0(k)
.

(23)
At zero temperature, the Lindhard function can be given
in closed form [25],

Π̃0(k) =
1

2

[
−1 +

1− k̃2/4
k̃

ln

∣∣∣∣∣1− k̃/21 + k̃/2

∣∣∣∣∣
]
, (24)

with k̃ = k/kF .

When computing diagram (b), we use again the trick
explained in the derivation of Eq. (18) and compute the
S = 1 contribution as three times the mS = 0 term, for
which σ′1 = σ1 and σ′2 = σ2:

Vb(q, q
′) =

1

4π

∑
σσ′

C00
1
2σ

1
2−σ

C00
1
2σ
′ 1
2−σ′

∫
dΩq

4π

∫
dΩq′

4π

∫
d3p1
(2π)3

n(p1 − k)− n(p1)

ε(p1)− ε(p1 − k)

∫
d3p2
(2π)3

n(p2 − k)− n(p2)

ε(p2)− ε(p2 − k)

×
∑
s1ms1

∑
s2ms2

∑
l1l′1ml1

∑
l2,l′2,ml2

∑
j1j2

Cs1ms1
1
2σ1

1
2−σ

C
s1m

′
s1

1
2σ1

1
2−σ′

Cs2ms2
1
2σ

1
2σ2

C
s2m

′
s2

1
2σ
′ 1
2σ2

C
j1mj1

l1ml1s1ms1
C
j1mj1

l′1m
′
l1s1m

′
s1
C
j2mj2

l2ml2s2ms2
C
j2mj2

l′2m
′
l2s2m

′
s2

× (4π)4il
′
1−l1+l′2−l2Y ∗l1ml1

(ΩQ1
)Yl′1m′l1(ΩQ′1)Y ∗l2ml2

(ΩQ2
)Yl′2m′l2(ΩQ′2)〈Q1|Ṽs1l1l′1j1 |Q

′
1〉〈Q2|Ṽs2l2l′2j2 |Q

′
2〉

×
[
fRPA(k) + 3 (−1)1−ms1−ms2gRPA(k)

]
, (25)

with the same abbreviations k, σi, m
′
si, m

′
li, and mji as before [Eqs. (8), (19), (20), (12), and (13)] but:

Q1 =
q + p1

2
, Q′1 =

q′ − k + p1

2
,

Q2 =
q + k− p2

2
, Q′2 =

q′ − p2

2
,

(26)
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the present work, obtained from different phenomenological
effective interactions: Skyrme parameterization SLy4 (solid
lines), and Gogny D1N (short dashes) and D1 (long dashes)
parameterizations.

III. ANTI-SCREENING DUE TO THE RPA

A. Parameters

For the nn interaction in the particle-particle chan-
nel, we use the low-momentum interaction Vlow k from
Ref. [46], obtained from the AV18 interaction by a renor-
malization group evolution (using a smooth Fermi-Dirac
regulator with εFD = 0.5) to a final cutoff of Λ = 2 fm−1.

For the purpose of comparing with Ref. [23], we also
perform calculations with the Gogny force, using the D1
parameterization [47] and the more recent D1N parame-
terization [48]. For a comparison of the matrix elements
of the Gogny force with those of Vlow k, and the corre-
sponding pairing gaps without screening, see Ref. [49].
The explicit expressions for the partial-wave expansion
of the Gogny force are given in Appendix A.

Concerning the Fermi-liquid parameters, we do not at-
tempt to compute them from the microscopic theory, but
we take more phenomenological results from the SLy4
parameterization of the Skyrme functional [50] or from
the D1N parameterization of the Gogny force [48]. The
explicit formulas are given in Appendix B, and the re-
sulting Fermi-liquid parameters m∗/m, F0, and G0 are
shown in Fig. 3. Since both the SLy4 and the D1N effec-
tive interactions have been fitted to the neutron-matter
equation of state, it is not surprising that they give al-
most identical results for the Landau parameter F0 at low
densities. But also the G0 values are quite close to each
other. Above kF ∼ 1 fm−1, however, the Landau param-
eters of SLy4 are clearly smaller (in absolute value) than
those of D1N. Note also that SLy4 systematically yields
a smaller effective mass m∗ than D1N. For a comparison
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FIG. 4: Convergence of the induced interaction with respect
to variation of the maximum angular momentum jmax used in
the partial wave expansion of the bare interaction. The figure
shows the diagonal matrix elements for kF = 0.8 fm−1. Upper
thin curves: results for diagram (a), lower thin curves: results
for diagram (b), thick curves: sum (a)+(b). The bare interac-
tion in this example is Vlow k, and the Fermi-liquid parameters
are those of SLy4.

with Ref. [23], we also used the D1 parameterization of
the Gogny force [47], the resulting Fermi-liquid parame-
ters are also shown in Fig. 3.

B. Induced interaction

In order to calculate the induced interaction in prac-
tice, we restrict the partial-wave expansion in Eq. (4) to
some maximum angular momentum, j ≤ jmax. The mul-
tidimensional integrals in Eqs. (7) or (18), and (25) are
computed using Monte-Carlo integration. Data files con-
taining tables of the pairing interaction with and without
the induced interaction are provided in the supplemental
material [43].

First, we have to check that convergence w.r.t. jmax

has been reached. This is indeed the case for jmax =
3, as can be seen in Fig. 4. As one can see from this
figure, for the example kF = 0.8 fm−1, the net effect of
the sum of diagrams (a) and (b) is attractive, i.e., the
strong repulsion generated by diagram (a) is more than
compensated for by the attractive diagram (b).

This result is in contrast to previous studies [23, 24]
where it was found that the contribution of diagram (b)
is attractive but not strong enough to compensate for
the repulsion generated by diagram (a). Let us there-
fore analyse our result in more detail. It is known that
the exchange of S = 0 excitations (density fluctuations)
is attractive and that of S = 1 excitations (spin-density
fluctuations) is repulsive [24, 51]. This is also the case in
our calculation, as shown in Fig. 5, again for the example
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FIG. 5: Induced pairing interaction due to the exchange of
S = 0 (dashed lines) and S = 1 (dotted lines) excitations.
The thin lines represent the contributions of diagrams (a)
only, and the thick lines are the sums of diagrams (a) and
(b). The thick solid line is the sum of S = 0 and S = 1
contributions. The parameters are the same as in Fig. 4.

kF = 0.8 fm−1. If there was only the single bubble ex-
change [diagram (a)], the repulsive contribution of S = 1
excitations would be three to four times larger than the
attractive one of S = 0 excitations. However, the inclu-
sion of the RPA [diagram (b)] acts differently in the cases
S = 0 and S = 1 because the Landau parameters have
opposite signs. In the S = 0 case, since F0 < 0, the ef-
fect of diagram (a) is enhanced, while in the S = 1 case,
since G0 > 0, the effect of diagram (a) is reduced. There-
fore, with the inclusion of the RPA, the attraction due
to the exchange of density waves can finally win against
the repulsive effect of the spin-density waves.

C. Critical temperature

We can now use the induced interaction Vind = Va+Vb
and replace the bare interaction V0 in the gap equation
(1) by V0 + Vind. The resulting critical temperature Tc
as a function of the Fermi momentum kF is shown in
Fig. 6. A sample of the results is also listed in Table I.
The corresponding pairing gaps ∆(kF ) at T = 0 can be
obtained, to a very good approximation, by multiplying
Tc with 1.76. The dashed line represents the result ob-
tained with the bare interaction Vlow k. The maximum
critical temperature is reached at kF ≈ 0.8 fm−1. When
one includes the induced interaction due to diagram (a)
alone, pairing is very strongly suppressed, as shown by
the dotted line. Finally, when including diagrams (a) and
(b), one finds that the critical temperature is lowered at
low density, but increased at high density. The change
from screening to anti-screening is at kF ≈ 0.73 fm−1,
consistent with our results discussed in Sec. III B where
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T
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FIG. 6: Critical temperature Tc as a function of the Fermi
momentum kF , obtained with the Vlow k interaction (Fermi-
liquid parameters from the Skyrme force SLy4). Dashes: re-
sult obtained using only the bare interaction; dots: result ob-
tained including diagram (a); solid line: full result including
also diagram (b).

TABLE I: Critical temperature as a function of the Fermi
momentum kF , obtained with Vlow k interactions and Fermi-

liquid parameters from SLy4. T
(bare)
c is obtained with the

bare interaction, while T
(screened)
c includes the effect of Vind =

Va + Vb. The columns marked Λ = 2 fm−1 correspond to the
parameters given in Sec. III A, while for the columns marked
Λ = 2.5 kF , a Vlow k interaction with a density dependent
cutoff and a different regulator was used, see Sec. IV B.

Λ = 2 fm−1 Λ = 2.5 kF

kF T
(bare)
c T

(screened)
c T

(bare)
c T

(screened)
c

(fm−1) (MeV) (MeV) (MeV) (MeV)
0.08 0.0230 0.0211 0.0221 0.0135
0.2 0.212 0.167 0.206 0.128
0.4 0.752 0.523 0.743 0.488
0.6 1.27 1.02 1.27 1.03
0.8 1.48 1.68 1.48 1.70
1.0 1.18 1.94 1.18 1.90
1.2 0.485 0.964 0.474 0.789
1.3 0.184 0.352
1.4 0.0323 0.0489

we found that at 0.8 fm−1 the attractive effect of S = 0
excitations is stronger than the repulsive effect of S = 1
excitations. Whether the net effect of the induced in-
teraction is attractive (i.e., anti-screening) or repulsive
(i.e. screening), depends of course on the density and
on the values of the Landau parameters. With decreas-
ing density, the RPA bubbles of diagram (b) become less
important and therefore the repulsive effect of diagram
(a) wins. This explains why, at very low density, the
full result and the result obtained with only diagram (a)
become equal, as one can also see in Fig. 6.

To check how sensitive our results are to the details of
the model, we repeated the calculation with the D1N and
D1 Gogny forces. In these cases, the same interaction is
used for the bare pairing force, for the vertices entering
the induced interaction diagrams (a) and (b), and for the
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the Fermi-liquid parameters.

Fermi-liquid parameters. The results are shown in Fig. 7.
Of course, since the 1S0 matrix elements of the differ-
ent interactions are not the same, there is already some
difference at the level of the bare interaction [49]: the
maximum is slightly shifted and the gap survives up to
higher density. However, the effect of the induced inter-
action is qualitatively the same as in Fig. 6, i.e., the gap
is reduced at low density and increased at high density.
The change from screening to anti-screening happens at
about the same density as with Vlow k (with Fermi-liquid
parameters from SLy4) in Fig. 6, and compared to the
Vlow k results the anti-screening effect at high density is
even stronger with both the D1N and the D1 Gogny in-
teractions.

IV. THE LOW-DENSITY LIMIT

As one sees from Fig. 6, with the Vlow k interaction
with a fixed cutoff of 2 fm−1, screening gets weak at low
density and finally at kF . 0.1 fm−1 one recovers the
BCS result. However, at kF � 1/|a|, the GMB result
should be valid, predicting a reduction of Tc by a factor of
(4e)−1/3 ≈ 0.45. Therefore, let us study the low-density
limit in more detail.

A. Failure of the weak coupling formula

As we have seen, the contribution of diagram (b) be-
comes negligible at low density. Concerning diagram
(a), it seems natural to concentrate on matrix elements
Va(q, q′) with q, q′ ' kF . If kF becomes small, this means
that also q and q′ and hence all the momenta Q1 etc.
that appear in Eq. (7) become small. Therefore, we can
replace

〈Qi|Ṽsilil′iji |Q
′
i〉

q,q′,kF→0−−−−−−−→ 2V0(0, 0) δsi0 δli0 δl′i0 δji0
(27)

(the factor of two accounts for the antisymmetrization of

Ṽ ), and Eq. (7) simplifies tremendously to

Va(q, q′) ≈ −2πN0|V0(0, 0)|2〈Π̃0〉 . (28)

In this expression, we have used the angle-averaged Lind-
hard function

〈Π̃0〉 =
1

2

∫ 1

−1
d cos θ Π̃0

(√
q2 + q′ 2 − 2qq′ cos θ

)
, (29)

see appendix C. In particular, we get

Va(kF , kF ) ≈ 2πN0|V0(0, 0)|2 1
3 ln 4e . (30)

Following well-known weak-coupling arguments [25],
the gap and critical temperature should be proportional
to e1/[2πN0V0(kF ,kF )]. If we replace V0 by V0 + Va in the
approximation given in Eq. (30), we find that the gap and
the critical temperature should indeed be reduced by the
factor (4e)−1/3, in contradiction to our numerical results
which show that at low density Tc is not modified at all
by screening. Obviously the weak-coupling formula does
not apply in the present case, although we are clearly in
a weak coupling situation since Tc � εF . Note that there
are a couple of cases in nuclear physics where the weak
coupling formula is known to fail [52].

When using the weak coupling formula, one assumes
that the kernel K(k, q) given in Eq. (3) is sharply peaked
at q = kF and that this peak gives the dominant contri-
bution to the integral in the gap equation. However, we
will show that the contribution of the peak is not domi-
nant at low density, and this is the reason why the weak
coupling formula fails in this case.

Remember that the critical temperature is given by
the temperature where the largest eigenvalue η of the
kernel K(k, q) given in Eq. (3) is equal to unity. The
corresponding eigenvector |φ〉 can be found by numerical
diagonalization, its representation in momentum space,
φ(q) = 〈q|φ〉, is a smooth function of q which has ap-
proximately the shape of V0(q, kF ). If we normalize the
eigenvector to 〈φ|φ〉 = (2/π)

∫
dq q2|φ(q)|2 = 1, we can

write the eigenvalue η as

η = 〈φ|K|φ〉 =
4

π2

∫
dq q2

∫
dk k2φ(k)K(k, q)φ(q) . (31)

To measure the importance of the peak of the kernel at
q = kF , we can look at this integral as a function of its
upper limit qmax,

Iη(qmax) = − 4

π2

∫ qmax

0

dq q2φ(q)
tanh

( ξ(q)
2T

)
2ξ(q)

×
∫ ∞
0

dk k2φ(k)V (k, q) . (32)

At T = Tc, we know that Iη → 1 for qmax → ∞ since
η = 1. For the weak coupling formula to be valid,
the main contribution to the integral should come from
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culated with the Vlow k interaction m∗ from the Skyrme force
SLy4) at the respective critical temperatures.

q ≈ kF , i.e., Iη should be close to the step function
θ(qmax − kF ). In Fig. 8 we show the behavior of Iη for

two cases, kF = 1.45 fm−1 (dashes) and kF = 0.012 fm−1

(solid line). In both cases, we are in the weak-coupling
limit, in the sense that Tc/EF is very small (of the or-
der of 10−4). In the case kF = 1.45 fm−1, we see that
about 80% of the integral come from momenta close to
kF , so that in this case Tc is indeed determined to a
large extent by V (kF , kF ). But in the low-density case,
kF = 0.012 fm−1, the situation is completely different.
Although there is again a sharp rise of Iη at q ≈ kF (vis-
ible in the zoom), its contribution to the total integral is
less than 10%. The largest contribution to the integral
comes from momenta that are considerably larger than
kF .

Let us now look at the matrix elements V (q, kF ) for
kF = 0.012 fm−1 with and without screening, which are
displayed in Fig. 9. The screening correction is limited
to the tiny region q . 0.05 fm−1 ∼ 4kF , because of
the strong momentum dependence of the angle-averaged
Lindhard function. But as we have seen before, this small
region contributes only about 10% to the integral in the
gap equation, and therefore the screening correction has
practically no effect on the gap or Tc.

The observation that the screening effect disappears
at low density is not a singular feature of our calcula-
tion, but it can also be found in the existing literature
[24]. However, as we will discuss below, there are other
problems with the low-density limit. Taking these into
account, we will eventually retrieve the GMB result.

B. Failure of perturbation theory and
density-dependent cutoff

When calculating diagrams (a) and (b), we use the bare
interaction V perturbatively to describe the vertex cou-
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FIG. 9: Matrix elements V (q, kF ) of the bare (Vlow k,
dashes) and of the screened (solid line) interaction for kF =
0.012 fm−1. For comparison, we display also the screened in-
teraction obtained with the analytical approximation Eq. (28)
(dots, almost indistinguishable from the solid line). The
screening correction is so tiny that it is almost invisible on
the big graph, see the inset for a zoom. The thin vertical line
indicates q = kF .

FIG. 10: Higher-order ladder diagrams in the 3p1h vertices
which are not included in the present work.

pling the particles to the particle-hole excitations. Since
we are using renormalized interactions whose matrix ele-
ments decrease rapidly with increasing relative momenta
Qi and Q′i, which are typically of the order of kF , this
may be a good approximation at higher densities. How-
ever, for small Qi and Q′i, as they appear at low densities,
we know from the large value of the nn scattering length
a that the perturbative treatment must fail [53, 54].

When looking at the historical work by GMB [42], one
observes that they compute the correction in a different
way. Namely, instead of using the potential V in the
dashed interaction vertices of diagram (a), they use a/m.
This amounts to including, at least approximately, the
resummation of ladder diagrams as shown in Fig. 10.

In contrast to the Gogny interaction, the
renormalization-group evolved Vlow k interaction gives
us the additional freedom to change the cutoff Λ. On
the one hand, by lowering the cutoff, the interaction
gets obviously “more perturbative”. In this sense, it is
tempting to lower the cutoff as much as possible. In
fact, for q, q′ < Λ and Λ → 0, the matrix elements get
more and more attractive and flow towards the constant



10

-600

-400

-200

 0

 0  0.01  0.02  0.03  0.04  0.05

V
(q

, 
k

F
) 

  
(M

eV
 f

m
3
)

q   (fm
-1

)

kF = 0.012 fm
-1

Λ = 0.03 fm
-1

screened
Vlow k
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2.5 kF (and with an exponential instead of Fermi-Dirac regu-
lator, see text).

a/m as

V0(q, q′) ≈
(m
a
− 2mΛ

π

)−1
. (33)

This means that the contribution of higher-order lad-
der diagrams gets progressively included, via the renor-
malization group flow, in the two-body matrix elements,
while the loop integrals become suppressed, and as a re-
sult, it should be possible to work with a Born approx-
imation to the T matrix at low cutoffs. On the other
hand, one of course must not lower the cutoff below the
relevant momentum scale of the order of kF .

The cutoff dependence of the gap (without screen-
ing corrections) was investigated in Ref. [55]. Numer-
ically, we obtain cutoff independent results for Tc at
the BCS level in the whole range of densities for Λ &
2.5 kF , if we use an exponential regulator of the form
exp(−(k2/Λ2)nexp) with nexp = 5. (With the Fermi-

Dirac regulator and with εFD = 0.5 fm−1 that we used
before we would need somewhat larger cutoffs.)

So, let us see what we find when we choose instead of
a constant cutoff Λ = 2 fm−1 the lowest possible cutoff
for each value of kF , i.e., Λ = 2.5 kF .

As an example, let us consider as in Fig. 9 the case
kF = 0.012 fm−1. If we evolve the cutoff to the lowest
possible value for this kF , i.e., to Λ = 2.5 kF = 0.03 fm−1,
we obtain the matrix elements V (q, kF ) shown in Fig. 11.
As in Fig. 9, the dashed line represents Vlow k without
screening and the solid line has screening included. The
most obvious difference between Figs. 9 and 11 is that,
when the cutoff is lowered, the Vlow k matrix elements
(dashed lines) get more attractive, cf. Eq. (33). How-
ever, the renormalization group flow does not only en-
sure that the low-energy scattering in free space remains
unchanged, but also the gap and Tc at the BCS level
(i.e., without screening) remain the same, as mentioned
above. But the results with screening change. Now, the
modification of the interaction due to screening (differ-
ence between the solid and the dashed lines in Fig. 11)
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FIG. 12: Reduction of the critical temperature due to the
screening correction Vind = Va + Vb as a function of kF , ob-
tained with the constant cutoff Λ = 2 fm−1 (dashes) and with
the density-dependent cutoff Λ = 2.5 kF (solid line), respec-
tively.

extends over the whole momentum range up to ∼ Λ, and
therefore the screening will reduce Tc, contrary to what
happened in the case Λ = 2 fm−1.

Since the results for Tc obtained without the screening
correction is the same as the one we obtained before for
Λ = 2 fm−1, we can concentrate on the correction of Tc
due to screening. In Fig. 12, we therefore display the
ratio of Tc with screening to Tc without screening as a
function of kF . The red dashes correspond to the results
shown already in Fig. 6, obtained with a constant cutoff
Λ = 2 fm−1, and we clearly see that the effect of the
screening correction vanishes at low density, as explained
in Sec. IV A. The new results obtained with the variable
cutoff 2.5 kF are shown as the blue solid line. We see
that now the reduction of Tc due to screening survives at
low densities, and in the limit kF → 0 it indeed seems to
approach the factor (4e)−1/3 ≈ 0.45 predicted by GMB.
Note that the original GMB paper [42] considers kF |a| �
1, i.e., in the case of neutron matter, kF � 0.05 fm−1.

V. EFFECT OF THE
NOZIÈRES-SCHMITT-RINK CORRECTION

A. Brief summary of the formalism

In our previous work [37], we had studied neutron mat-
ter within the NSR approach using only the free-space
renormalized effective interaction V0. In the present
work, we will revisit the inclusion of preformed pairs
above Tc, including the induced interaction Vind shown
in Fig. 1. For the sake of completeness, we summarize
briefly the key ideas and formulas of the NSR approach.
For more details, we refer the reader to Ref. [37].

Within the NSR approach, for a given chemical poten-
tial µ, the density of the interacting neutrons is enhanced
by the pair correlations that build up as a precursor ef-
fect to the superfluid phase transition already above Tc.
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Therefore, the total density of neutrons, ρtot, can be writ-
ten as

ρtot = ρ0 + ρcorr . (34)

The uncorrelated neutron density ρ0 is given by

ρ0 = 2

∫
d3k

(2π)3
f(ξ(k)) , (35)

where f(ξ) = 1/(eβξ + 1) is the Fermi-Dirac distribution
function (with β = 1/T ) and the factor of 2 arises due
to the spin degeneracy. The correlated density, ρcorr, in
the imaginary-time formalism [25], is calculated to first
order in the single-particle self-energy Σ as

ρcorr = 2

∫
d3k

(2π)3
1

β

∑
ωn

(
G0(k, ωn)

)2
× [Σ(k, iωn)− Re Σ(k, ξ(k))] , (36)

where ωn are the fermionic Matsubara frequencies and
G0 = 1/(iωn − ξ(k)) is the uncorrelated single-particle
Green’s function. The subtraction of the on-shell self-
energy in the square bracket of Eq. (36) is absent in the
original NSR approach. It takes into account the fact
that G0 includes already the in-medium quasiparticle en-
ergy ξ(k) which therefore must not be shifted by the
self-energy [32, 56].

Let us consider the first term without the subtraction.
Σ(k, iωn) is calculated within the ladder approximation,
i.e.,

Σ(k, iωn) =

∫
d3K

(2π)2
1

β

∑
ωN

G0(K− k, ωN − ωn)

×
〈
K
2 − k

∣∣T (K, iωN )
∣∣K
2 − k

〉
, (37)

where T (K, iωN ) is the in-medium T matrix for the
bosonic Matsubara frequency ωN and total momentum
K. The T -matrix is subsequently expanded in a partial
wave basis and we pick out only the s-wave contribution.
Following the steps outlined in [37] and analytically con-
tinuing to real ω, one obtains for the correlated density
within the NSR approach:

ρcorr,1 = − ∂

∂µ

∫
K2dK

2π2

∫
dω

π
g(ω) Im Tr log

(
1−V G(2)

0

)
.

(38)
Here, g(ω) = 1/(eβω − 1) is the Bose function, the

trace is taken w.r.t. the relative momentum q, G
(2)

0 =
Q(K, q)/(ω−K2/4m∗−q2/m∗+2µ) is the angle-averaged
(since we consider only the s wave) retarded two-particle
Green’s function, with Q(K, q) the Pauli-blocking factor
1−f(ξ(K/2−q))−f(ξ(K/2 +q)) averaged over the an-

gle between K and q. Working in the basis where V G
(2)

0

is diagonal, one can write Eq. (38) as

ρcorr,1 = − ∂

∂µ

∫
K2dK

2π2

∫
dω

π
g(ω)

×
∑
ν

Im log(1− ην(K,ω)) , (39)
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FIG. 13: Dependence of Vind on the momentum K of the
center of mass. For a density kF = 0.2 fm−1 (left panels),
the K-dependence is extremely weak even for momenta K
exceeding 2kF . For kF = 0.8 fm−1 (upper right panel), the K
dependence is somewhat stronger but still too weak to make
a significant contribution.

where ην are the (complex) eigenvalues of V G
(2)

0 .
However, as mentioned below Eq. (36), one needs to

correct for the shift of the quasiparticle energies that
comes from the real part of the single-particle self-energy.
Following [37], we approximate Σ(k, ξ(k)) by the first-
order (Hartree-Fock) self-energy and finally arrive at the
following correction:

ρcorr,2 =
∂

∂µ

∫
K2dK

2π2

2

π

∫
q2dq g

(
K2

4m∗ + q2

m∗ − 2µ
)

× V (q, q)Q(K, q), (40)

which is added to Eq. (39).
In Ref. [37], the interaction V that was used in

Eqs. (39) and (40) was the Vlow k interaction obtained
from AV18 via the free-space renormalization group evo-
lution. But it seems straight-forward to include in addi-
tion the medium corrections from diagrams (a) and (b),
i.e., to use V = V0 + Vind. The only complication is that
so far we calculated Vind only for a pair at rest, while we
should now take into account the finite center of mass
momentum K of the pair.

To obtain the screening correction Vind for finite K,
some minor modifications of Eqs. (7) and (25) are neces-
sary. Details are given in Appendix D. We have checked
that, at least for T = Tc, the contributions to the inte-
grals in Eqs. (39) and (40) come only from K . 2kF . As
seen in Fig. 13, numerically it turns out that the K de-
pendence of Vind is very weak for K < 2kF in the range
of kF where the NSR correction can be expected to be
important. We will therefore neglect this K dependence
and use in Eqs. (39) and (40), the screening correction
calculated for K = 0.

There are a couple more points that need to be dis-
cussed. For instance, now one has two different den-
sities, the uncorrelated one, ρ0, and the corrected one,
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FIG. 14: The un-subtracted correlated density ρcorr, 1 as a
function of the Fermi momentum k0F with and without the
screening correction, calculated at the respective critical tem-
peratures Tc. Here, the black solid lines and the red dashed
lines show the results for the two cutoffs of Λ = 2.0 fm−1 and
Λ = 2.5 k0F . The thin lines contain only V0, while the thick
lines include the induced interactions. The inset in the figure
magnifies the cutoff dependence in ρcorr, 1 at low densities.
The Fermi-liquid parameters are calculated using the SLy4
interaction.

ρtot. The question arises which density one should use in
the calculation of the induced interaction Vind. Since Vind
is computed with uncorrelated propagators and occupa-
tion numbers, it seems more appropriate to take only the
uncorrelated density ρ0 into account in the calculation
of Vind. From the derivation of Eqs. (39) and (40) it
is also clear that the derivatives ∂/∂µ should be taken
with the interaction Vind kept constant (and the effective
mass m∗, too). This points to fundamental problems of
the present approach, which is clearly not a fully consis-
tent treatment of both particle-particle and particle-hole
fluctuations. Nevertheless, we expect to get at least a
rough idea about the change of the NSR effect when the
pair correlations are modified by screening.

B. Results

Before discussing the critical temperature as a func-
tion of density, let us look at the density correction. The
un-subtracted correlated density, ρcorr,1 as a function of
the Fermi-momentum corresponding to the uncorrelated
density ρ0, denoted here as k0F = (3π2ρ0)1/3, is shown in
Fig. 14. The black solid lines and the red dashed lines
represent two different cutoff choices, a constant cutoff
Λ = 2.0 fm−1 and a density dependent cutoff Λ = 2.5 k0F .
The thin lines show the correlated density ρcorr,1 with
only the free-space interaction V0. Analogous to Fig. 5 of
Ref. [37], we see that ρcorr,1 with only V0 is independent of
the cutoff. With the inclusion of the induced interaction
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FIG. 15: Subtracted correlated density ρcorr as a function of
k0F with and without screening, calculated at the respective
critical temperatures. See Fig. 14 for details.

(thick lines) we note that the cutoff dependence of ρcorr,1
is again negligible, except at very low densities (see in-
set), where we found stronger screening with the variable
cutoff compared to the fixed cutoff (cf. Fig. 12). In addi-
tion, up to k0F ∼ 0.7 fm−1, the correlated density ρcorr,1
with the induced interaction is smaller than the corre-
lated density without the induced interaction, consistent
with the earlier observation that the induced interaction
screens V0. However, in the range of Fermi-momenta
where the induced interaction anti-screens V0, the cor-
related density ρcorr,1 is larger than the corresponding
quantity without the induced interaction.

Let us now turn our attention to the correlated den-
sity with the first-order (Hartree-Fock) subtraction, ρcorr.
The dependence of ρcorr on k0F is shown in Fig. 15. As
in Fig. 14, the black solid lines and the red dashed lines
show results for the two different cutoffs: the constant
cutoff Λ = 2.0 fm−1 and the density dependent cutoff
Λ = 2.5 k0F , respectively. For low k0F , we see that the
correlated density with the inclusion of the induced in-
teraction (thick lines) is smaller than in the V0-only case
(thin lines) which is consistent with the screening of V0
by Vind and similar to the trend seen in Fig. 14. However,
what is surprising is that even in the region where Vind
anti-screens V0, the correlated density gets smaller with
the inclusion of Vind compared to the V0-only case. Fur-
ther, one notices strong cutoff dependence in the low k0F
region if one compares the solid black line with the red
dashed line, both with and without the inclusion of the
induced interaction. Both these observations are com-
pletely different from Fig. 14 and are clearly the effect of
the Hartree-Fock subtraction. For the density dependent
cutoff, at low-densities, this subtraction should get better
as the interaction gets more perturbative at smaller cut-
offs. However, at high densities, where the subtraction
ρcorr,2 is almost of the same magnitude as ρcorr,1 itself,
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FIG. 16: Tc versus kF : (Left panel) Results with fixed cutoff
Λ = 2 fm−1; (Right panel) density dependent cutoff 2.5 kF .
The green dashed-dotted lines are the full results including
the induced interaction Vind and the correlated density ρcorr
in the NSR framework. For comparison, we also show the
BCS result (only V0 and ρ0, black solid lines) and the results
obtained with the induced interaction Vind but without the
NSR correction (red dashed lines).

the Hartree-Fock approximation is not precise enough to
give a reliable result for the subtracted ρcorr. Hence,
the suppression of the correlated density for higher k0F
in Fig. 15, once the induced interaction is included, is
probably unphysical. Fortunately, in this region, ρcorr is
completely negligible compared to ρ0.

Now we are in the position to discuss the final results
for the critical temperature Tc as a function of kF , dis-
played in Fig. 16. Note that in the NSR framework, Tc as
a function of µ is computed as usual, and only the relation
between µ and kF (and ρ) is changed. Here, kF denotes
the Fermi momentum corresponding to the total density
including ρcorr, i.e., kF = (3π2ρtot)

1/3 (green dashed-
dotted lines). As a consequence, the presence of the cor-
related density ρcorr shifts the curve slightly to the right.
In order to make easy comparisons, we also show the BCS
result (solid line) and the results obtained with Vind but
without the NSR correction (red dashed lines). In both
panels, we note that the pair correlations lower the tran-
sition temperature compared to the one with screening
alone at the same kF . However, the trends already ob-
served with the medium corrections (Figs. 6 and 12), i.e.,
screening at low densities and anti-screening at high den-
sities, remain unchanged, since the NSR effect is much
weaker than the screening or anti-screening effect of Vind.

Please notice that the relation ∆T=0(kF ) = 1.76Tc for
a given kF , mentioned in Sec. III C, is not valid for the
NSR results.

VI. CONCLUSIONS

It has been known for a long time that screening cor-
rections have a very strong effect on the superfluid tran-
sition temperature of neutron matter. Also the fact that
the RPA, diagram (b), reduces the effect of diagram (a),
has been known before [24]. However, in Ref. [24] the ef-
fect of diagram (b) was too weak to overcome the strong
screening generated by diagram (a), while we find that,
around n & 0.01− 0.02 fm−3, the net effect of Vind is at-
tractive and screening turns into anti-screening. A simi-
lar effect was found in Ref. [21], but only at much higher
densities (n & 0.07 fm−3). There are three main differ-
ences between our calculation and that of Ref. [24]. First,
we are using Vlow k while in [24] the Brückner G matrix
was used in the vertices. Second, while we keep the full
momentum dependence of the non-local interaction, the
vertices in [24] were replaced by an average matrix ele-
ment. Probably the most important difference, however,
is the choice of the Landau parameters. Here, we take
them from a phenomenological energy density functional
(SLy4). Since this functional was fitted to QMC results
for the neutron matter equation of state, we assume that
the Landau parameters are rather well determined. The
anti-screening effect arises primarily from the enhance-
ment of the attractive density (S = 0) fluctuations due
to the strongly negative f0 parameter. In [24], on the
contrary, the Landau parameters were obtained follow-
ing the so-called Babu-Brown theory as explained in [21].
This results in particular in a much smaller (less nega-
tive) value of the f0 parameter, and as a consequence, the
density fluctuations are not strong enough to compensate
for the repulsive effect of the spin-density (S = 1) fluc-
tuations.

We addressed in some detail the problem of the low
density limit. When a constant (density-independent)
potential V is used in the vertices of diagram (a), the
screening effect disappears at low density, although from
the weak-coupling formula one would conclude that the
gap should be reduced by the factor (4e)−1/3 predicted by
GMB [42]. We explained why the weak-coupling formula
fails in this particular case. We then observed that GMB
used the full T matrix instead of the potential V in the
vertices of diagram (a). This allowed us to finally recover
the GMB result, namely by using for each density a Vlow k
interaction evolved to a cutoff Λ that scales with kF . In
this way, one ensures that, on the one hand, one does
not cut the relevant degrees of freedom (q . kF ), and
on the other hand, the Born term is already a reasonable
approximation to the full T matrix at momenta of the
order of q ∼ kF .

In the last part of the paper we discussed the effect
of preformed pairs on the critical temperature Tc in the
NSR framework. In spite of some cutoff and regulator de-
pendence in the detailed study of the correlated density
ρcorr, one can clearly see that due to ρcorr the critical
temperature Tc for a given density is slightly reduced.
But this effect is much less important than the induced
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interaction. Compared to ultracold atoms in the uni-
tary limit or even on the BEC (a > 0) side of the BCS-
BEC crossover, neutron matter remains more or less in
a weakly coupled regime at all densities.

There remain obviously many open questions. For in-
stance, as discussed in [24], the reduction of the quasi-
particle residue Z < 0 can lead to a reduction of Tc, and
this effect has not been included in the present study.
Another point that clearly needs to be improved is the
Landau approximation in the RPA. In principle, it is only
valid for momentum transfer k � kF , but in the induced
interaction, the relevant range of momentum transfers is
0 ≤ k ≤ 2kF . In the framework of Skyrme interactions it
is actually straight-forward to solve the RPA beyond the
Landau approximation, and this issue will be addressed
in a future study.

Concerning the meaning of the density dependent cut-
off introduced in Sec. IV B, one might wonder how this
is related to the so-called functional renormalization-
group approach in which one solves flow equations in
the medium, integrating out all momenta except the
Fermi surface. Such approaches have been used to in-
clude screening corrections in a non-perturbative way for
neutron matter [57] and ultracold atoms [58, 59]. In the
context of the small cutoff, one should also mention that
lowering the cutoff induces three- and higher-body inter-
actions. These are neglected in Vlow k since it is obtained
for two particles in free space. A better approach in this
respect would be the in-medium similarity renormaliza-
tion group [60], which allows one to include many-body
effects at least approximately into the effective two-body
interaction.

Because of the extreme sensitivity of the gap and the
critical temperature to the details of the effective inter-
action, it seems likely that large theoretical uncertainties
will remain. Maybe astrophysical observations of neutron
stars can help to decide which theory is correct.

Appendix A: Partial wave expansion of the Gogny
force

We expand the Gogny force as given in Ref. [47] into
partial waves, neglecting the spin-orbit term as in [23].
The resulting matrix elements in the nn channel read:

〈Q|Vls|Q′〉 =
1

4π

∑
i=1,2

[Wi −Hi + (−1)S(Mi −Bi)]

× (
√
πµi)

3e−(Q
2+Q′ 2)µ2

i /4il(QQ
′µ2
i /2) (A1)

where il(z) =
√
π/2zIl+1/2(z) is a modified spherical

Bessel function of the first kind [61]: i0(z) = sinh(z)/z,
etc. The antisymmetrized matrix elements are then ob-
tained by 〈Q|Ṽls|Q′〉 = [1+(−1)l+s]〈Q|Vls|Q′〉. The den-
sity dependent contact term of the Gogny force does not
contribute since it acts only in the neutron-proton chan-
nel.

Concerning the values of µi, Wi, Hi, Bi, and Mi, we
use either the parameterization D1 [47] to compare with
Ref. [23] or the more recent parameterization D1N [48].

Appendix B: Fermi-liquid parameters

In this work, we use the Fermi-liquid parameters from
the SLy4 parameterization of the Skyrme functional [50]
or from the D1N parametrization of the Gogny force [48].
The explicit expressions in terms of the Skyrme-force pa-
rameters ti, xi (i = 0 . . . 3), and σ read [62]

1

m∗
=

1

m
+ 1

4 [t1(1− x1) + 3t2(1 + x2)]ρ , (B1)

f0 = 1
2 t0(1− x0) + 1

4 [t1(1− x1) + 3t2(1 + x2)]k2F

+ 1
24 t3(1− x3)(1 + σ)(2 + σ)ρσ , (B2)

g0 = 1
2 t0(x0 − 1) + 1

4 [t1(x1 − 1) + t2(1 + x2)]k2F

+ 1
12 t3(x3 − 1)ρσ . (B3)

In the case of the Gogny force, one obtains the following
expressions for the Fermi-liquid parameters [23]:

1

m∗
=

1

m
+

m√
πkF

∑
i=1,2

µi(Wi + 2Bi −Hi − 2Mi)

× zie−zii1(zi) , (B4)

f0 =
∑
i=1,2

(
√
πµi)

3

2
[(2Wi +Bi − 2Hi −Mi)

− (Wi + 2Bi −Hi − 2Mi)e
−zii0(zi)] , (B5)

g0 =
∑
i=1,2

(
√
πµi)

3

2
[(Bi −Mi)− (Wi −Hi)e

−zii0(zi)] ,

(B6)

where zi = k2Fµ
2
i /2.

Appendix C: Angle-averaged Lindhard function

For q, q′ 6= 0, the general explicit expression for the
angle-averaged Lindhard function defined in Eq. (29)
reads

〈Π̃0〉 = −1

3
+

k2F
48qq′

[F (2− x−) + F (2 + x−)

− F (2− x+)− F (2 + x+)] , (C1)

with F (x) = x2(6 − x) ln |x| and x± = |q ± q′|/kF . In
the special case of interest q = q′ = kF mentioned in
the main text this gives 〈Π̃0〉 = − 1

3 ln 4e ≈ −0.795. The
expression for the cases q 6= q′ = 0 or q′ 6= q = 0 reads

〈Π̃0〉 =
x2 − 4

8x
artanh

(x
2

)
− 1

2
, (C2)

with x = q/kF or q′/kF , respectively. In the special case

q = q′ = 0, one obtains 〈Π̃0〉 = −1. For q � kF or

q′ � kF , 〈Π̃0〉 tends to zero.
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Appendix D: Computation of the screening
corrections for pairs with finite total momentum

In Fig. 1 and the corresponding Eqs. (7) and (25), we
have considered from the beginning a pair at rest (with
respect to the medium). However, for the NSR correc-
tion, one needs pairs with finite total momentum K. In
order to compute the screening corrections Vind = Va+Vb
for K 6= 0, one has to change the definitions of the vec-
tors Q1, Q′1, Q2, and Q′2 that appear in Eqs. (7) and
(25). For diagram (a), one has to replace Eq. (9) by

Q1 =
q + p

2
− K

4
, Q′1 =

q′ − k + p

2
− K

4
,

Q2 =
q + k− p

2
+

K

4
, Q′2 =

q′ − p

2
+

K

4
.

(D1)

For diagram (b), the definition (26) has to be replaced
by

Q1 =
q + p1

2
− K

4
, Q′1 =

q′ − k + p1

2
− K

4
,

Q2 =
q + k− p2

2
+

K

4
, Q′2 =

q′ − p2

2
+

K

4
.

(D2)

However, for diagram (b), this is not sufficient, because
we used the isotropy to replace the sum over the three
spin projections mS = −1, 0, 1 of the S = 1 particle-hole
excitation by the contribution of mS = 0, multiplied by
three. But for K 6= 0, the isotropy is lost and therefore
the contributions of the three spin projections will not be
equal any more. Nevertheless, after summation over mS ,
the final result for Vb can only depend on K = |K| and
not on the direction of K. Hence, we can average over the
angle of K. By doing so, we have restored the isotropy
and it is therefore again sufficient to compute only the
contribution of mS = 0 and to multiply the result by
three.
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