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Abstract—We consider the decoding of LDPC codes in presence
of non-Gaussian noise, especially a set ofǫ-mixture models.
For each of these models, the optimal LLRs are presented. We
study the performance degradation due to the use of incorrect
LLR in presence of a given noise model. Without modifying the
existing LDPC decoder, we propose robust initial LLR which
require minimum knowledge about the underlying noise model
and are computationally less complex. Since BER simulations are
computationally heavy, we use density evolution to comparethe
thresholds of different LLRs.

I. I NTRODUCTION

In communication systems, noise is usually modeled as a
Gaussian process. However some systems experience interfer-
ence which is better characterised as impulsive noise.

One example of such an environment is co-channel interfer-
ence in reuse-1 OFDM systems such as 802.16d/e and LTE. In
reuse-1 cellular systems, the main source of interference is the
use of same sub-carriers at the same time in the neighboring
cells/sectors. In 802.16d/e, the base stations are frequency
synchronised and hence the subcarriers of the interfering user
will fall exactly on the subcarrier of the desired user. The
fraction of affected sub carriers depends on number of users,
the geographical distance between the desired user and the
interfering user, the channel between them and the channel
between desired user and the base station. Hence only some of
the subcarriers will be affected by the co-channel interference.
Such noise will appear as impulsive noise in the frequency
domain.

Several models have been proposed for the impulsive noise
in the literature. The most commonly used model is the
Middleton class A model [1] which is composed of the mixture
of a Rayleigh distribution for the impulse amplitude with
Poisson distribution for occurrence of the impulses. A first
order approximation of the Middleton model is anǫ-Gaussian
mixture model[2].

Another candidate for modelling impulsive noise are the
symmetric alpha stable noise models. [3] proposes to use
Cauchy-Gaussian(CGM) mixture model, which inspite of be-
ing simple can capture the algebraic tail. CGMs can be used
to fit the Middleton Class B impulsive noise model, which
includes alpha-stable noise as a special case [4].
Theǫ-mixture model with the contaminating pdf being double
exponential is a limiting case of the Mertz model, which is

used to model impulsive noise in a telephone plant [5].
Low Density Parity-Check (LDPC) codes, invented by

Gallager[6], achieve near capacity performance in a wide class
of channels. In the present work, we consider the decoding of
the LDPC codes in presence of the above mentioned noise
models.

Several approaches have been proposed in the literature for
decoding of turbo codes. In presence of impulsive noise if the
initial LLR (Log-likelihood Ratio)s are generated using the
Gaussian assumption the performance degradation is signifi-
cant [7]. If the true noise pdf is known, we can construct the
initial LLRs based on the pdf. However, there are 3 different
noise models available for the impulsive noise and even if the
pdf is known estimation of the other parameters of the pdf is
not an easy task.

Several robust1 LLRs in presence of the above mentioned
models have been studied in the literature in the context of
turbo decoding without incorporating change in the existing
decoders. In [8], authors propose Parametric-Cauchy LLR
(PC-LLR) which was based on the Cauchy-Gaussian mixture
model. [9] reduces the complexity of PC-LLR by applying the
generalised likelihood principle [10].

We analyse the different initial LLRs for LDPC codes
using the density evolution technique. The organisation ofthe
paper is as follows: In Section II, we discuss the different
noise models. Section III discusses different optimal initial
LLRs. In Section IV we use density evolution to analyse the
performance of the optimal LLRs in different noise models, in
section V we study the performance of different robust LLRs
and also propose a new LLR and finally in Section VI, we
present conclusions.

II. I MPULSIVE NOISE MODELS

In this section we present the different noise models that
we consider in this paper
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1Robust is used to mean that the LLRs do not need the knowledge of the
underlying pdf and all its parameters



Contaminated Laplacian PDF(CL)
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Contaminated Cauchy PDF(CC)
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Since the variance is not defined for the Cauchy pdf, as an
alternate estimate of noise power,we chose Geometric-Signal-
to-Noise Ratio (GSNR). GSNR is defined as [7]

GSNR =
1

2Cg

(

A

S0

)2

(4)

where Cg = eCe = 1.78 is the exponential of the Euler
constantCe = 0.5772. Here,S0 is the geometric power of
symmetricα-stable pdf. To keep the GSNR of the Cauchy
pdf and the Gaussian pdf, we chooseγ= σnb√

2Cg

[8].

Hence all the three noise models can be represented as :

fn(x) =
1 − ǫ

2πσ2
1

e
− x2

2σ2
1 + ǫH (5)

whereH is any symmetric pdf. The considered choices of
H are Gaussian, Laplacian and Cauchy pdfs.

As seen from (5) theǫ-mixture model has four unknowns

• The contaminating pdfH
• The varianceσ1 Gaussian part of the pdf
• The variance(or equivalent parameter)σnb of the contam-

inating heavy-tailed pdf
• Percentage of samplesǫ from the heavy-tailed pdf

For the co channel interference scenario, since all the factors
are time varying,ǫ and σnb are time varying, hence difficult
to estimate. The fraction of subcarriersǫ affected can range
from 0 ≤ ǫ < 0.5 with values greater than 0.3 occurring
with very low probability. Chosen ranges for parameters are
1.0 ≤ σ2

nb ≤ 4.0 and0 < ǫ ≤ 0.3. We assume the knowledge
of σ2

1 .

III. O PTIMAL INITIAL LLRS

Let xk be the kth transmitted M-QAM symbol.nk be
samples from any of the above mentioned noise pdfsfn. At
the receiver the received symbolyk is yk = xk +nk. Let
S = s0, s1, .., sn, where n = 2M − 1, be the set of all
M-QAM constellation points.s+

j is subset of S containing
constellation points with 1 in thejth position s−j is subset
of S containing constellation points with 0 in thejth position
The log-likelihood ratio of thejth coded bit in thekth symbol
is defined as

L(yk,j) = log

(
∑

xk∈s
+
j

fn(yk − xk)
∑

xk∈s
−
j

fn(yk + xk)

)

(6)

where fn(x) can be any of the above mentioned noise
models. The expressions for LLRs in presence of the above
mentioned noise models for BPSK modulation can be written
as follows:

Gaussian LLR (GLLR)

Consideringfn(x) = 1√
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Contaminated Gaussian LLR (CGLLR)

If the assumed noise pdf has distribution as in (1), then the
optimal LLR for this noise is

LCG(yk) = log











1−ǫ√
2πσ2

1

e
−

(yk−1)2

2σ2
1 + ǫ√

2πσ2
nb

e
−

(yk−1)2

2σ2
nb

1−ǫ√
2πσ2

1

e
−

(yk+1)2

2σ2
1 + ǫ√

2πσ2
nb

e
−

(yk+1)2

2σ2
nb











(8)

Contaminated Laplacian LLR (CLLLR)

Considering (2) as the noise, optimal LLR is

LCL(yk) = log
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Contaminated Cauchy LLR (CCLLR)

LCC(yk) = log
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(10)

is the optimal LLR if (3) is the assumed noise pdf.
Fig. 1 illustrates the ineffectiveness of the GLLR in the

considered noise models. Assumed noise model is contami-
nated Gaussian noise withσ2

nb = 4.0 andǫ = 0.1. The ideal
LLR in this case would be CGLLR with the true parameters.
We use regular (3,6) LDPC convolutional codes [11],[12]
with memory length of 1025 for simulation. The decoding
algorithm used is belief propagation with 100 iterations. From
Fig. 1 it is clear that GLLR cannot be used for the considered
noise models.
We shall study the performance of other optimal LLRs when
the assumed noise pdf is not the same as the pdf assumed
for the LLR. E.g. let us assume that the actual noise pdf is
Contaminated Gaussian pdf with parametersσ2

nb = 4.0 andǫ
= 0.1. We would like to quantify the performance degradation
when we use CLLLR or CCLLR instead of CGLLR, which
is the optimal LLR in this case. BER simulations for all
the combinations of noise and LLRs would take a lot of
time. Performance of the LDPC codes can also be analysed
using the density evolution. We shall use density evolution
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Fig. 1. Contaminated Gaussian noise,ǫ = 0.1, σ2

nb
= 4.0, regular (3,6)

LDPC convolutional codes withms = 1025. Decoding algorithm is belief
propagation with iterations = 100. The threshold for regular (3,6) LDPC
convolutional codes is at 2.45 dB shown by the vertical line.

for comparing the performance of different LLRs for a given
noise pdf.

IV. D ENSITY EVOLUTION

For the LDPC codes, it has been observed that as the
blocklength tends to infinity, arbitrarily low probabilityof error
can be achieved if the variance of the noise is less than a
certain value, called the threshold. If the variance of noise is
more than the threshold, the probability of error will be greater
than a positive constant. Richardson and Urbanke calculated
the threshold for a variety of channels [13],[14] for message
passing algorithms, using density evolution.
Calculating thresholds for most channels other than Binary
Erasure Channel(BEC) is a computationally expensive task.
[15] proposed discrete density evolution for reducing the
computational complexity of density evolution technique.The
Extrinsic Information Transfer(EXIT) charts[16] are based on
the assumption that the the extrinsic information exchanged
between the two decoders has a Gaussian distribution. Density
evolution technique does not make any assumption about the
distribution of the messages passed between the check nodes
and bit nodes. Pdfs of the initial LLRs in presence of the
ǫ−mixture noise models will most likely not be Gaussian.
Fig.2 shows the initial pdf of LLRs when the input noise is
Contaminated Laplacian and CLLLR is used for decoding. The
parameters of the pdf areσ2

nb = 4.0 andǫ = 0.1

THRESHOLDS FOR THEǫ-MIXTURE MODELS

Density evolution can be used to find the maximum variance
of channel noise which is likely to be corrected by a particular
ensemble using the message-passing algorithm. For the above
mentioned models, we define threshold as following: For a
given ensemble with block length→ ∞, for a fixedσnb , ǫ
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0.02

0.04
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L(y
k
)

p(
L(
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Fig. 2. Pdf of the CLLLR for Contaminated Laplacian noise with parameters
ǫ = 0.1, σ2

nb
= 4.0 , σ2

1
= 0.5

and a candidate LLR, the threshold is defined as:

σ∗
1 = max(σ1) : lim

iterations→∞
Pb(σ1) → 0

We have tabulated thresholds for regular (3,6) LDPC codes
for different combinations of the above mentioned LLR and
noises. Since our main objective is to compare different LLRs,
the thresholds are accurate up to only two decimal places
after the decimal point. All tables contain theEb

N0

∗
in dB

corresponding toσ∗
1

The approximate thresholds for Contaminated Gaussian
noise are as below:

TABLE I
APPROXIMATE THRESHOLDS FORCONTAMINATED GAUSSIAN(CG)NOISE

σ2

nb
ǫ LCG LCL LCC

1 0.1 1.25 1.26 1.29
1 0.3 1.68 1.75 1.94
2 0.1 1.84 1.86 1.90
2 0.3 4.43 4.65 5.05
4 0.1 2.46 2.49 2.53
4 0.3 7.99 8.45 9.14

TABLE II
APPROXIMATE THRESHOLDS FORCONTAMINATED LAPLACIAN NOISE

σ2

nb
ǫ LCG LCL LCC

1 0.1 1.22 1.20 1.23
1 0.3 1.59 1.45 1.54
2 0.1 1.63 1.59 1.61
2 0.3 3.21 2.99 3.06
4 0.1 2.04 2.01 2.02
4 0.3 5.03 4.79 4.89

From Table I, the threshold for CGLLR in presence of
contaminated Gaussian noise withσ2

nb = 4.0 andǫ = 0.1 is
2.45 dB. Fig.1 shows that the simulation of the regular (3,6)
LDPC convolutional codes with same noise parameters and
CGLLR is quite close to the calculated threshold at BER =
10−5.
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Fig. 3. L(yk)vs yk for different optimal initial LLRs

TABLE III
APPROXIMATE THRESHOLDS FORCONTAMINATED CAUCHY NOISE

σ2

nb
ǫ LCL LCC

1 0.1 1.49 1.40
1 0.3 2.41 2.07
2 0.1 1.68 1.63
2 0.3 3.22 2.99
4 0.1 1.91 1.89
4 0.3 4.28 4.15

As seen from Table I, CLLLR and CCLLR are within 1.5
dB from CGLLR, which is the optimal LLR for Contaminated
Gaussian noise. From Table II it is seen that CGLLR and
CCLLR are within 1 dB from CLLLR. Hence in the CG
and CL noises, all the three optimal LLRs show a maximum
degradation about 1 dB. However, in CC noise, for some of
the σ2

nb and ǫ combinations thePb does not tend to zero as
iterations→ ∞. Hence we could not find threshold in these
cases. As seen from Fig.3 the shape ofLG(yk) vs yk is a
straight line. Hence larger values ofyk are assigned higher
reliability. While in case of CCLLRyk → ∞ , L(yk) → 0,
i.e, larger values ofyk are given lower reliability. So GLLR
does not perform well in these noise cases. In case of CGLLR
we see thatyk → ∞, L(yk) is a straight line. So it does not
perform well in heavier tailed pdf like contaminated Cauchy.
So from Table I, II and III we can conclude that, either CLLLR
or CCLLR with the correct parameter values can be used in
the other noise cases too with some performance degradation.

V. ROBUST INITIAL LLRS

In this section we shall study the performance of some of the
LLRs which do not need the true value of the parameters of the
underlying noise pdf. We assume that out of the 4 parameters
of the ǫ-mixture models, onlyσ2

1 can be estimated. Hence we
study other alternative LLRs which need true value ofσ2

1 . In
[8] the author proposes Parametric Cauchy LLR by fixing the
parameters of CCLLR.

Parametric Cauchy LLR (PCLLR)

LPC(yk) = log
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(11)

[9] reduces the dependence onγ and ǫ in (10) by using the
generalised likelihood principle.

Generalised Likelihood Metric (GLR)

LGLR(yk) = log

(

1
π(yk−1)2

1
π(yk+1)2

)

(12)

Hence GLR does not need any of the 4 afore mentioned
parameters. However seen from (12) it is clear that whenyk →
±1, LGLR(yk) → ∞. Since knowledge ofσ1 is assumed, [17]
reintroducesσ1 into (12) as shown below.

Parametric Generalised Log Likelihood Ratio (PGLLR)

LPG(yk) = log

(

P (yk/xk = 1)

P (yk/xk = −1)

)

(13)

where
t = 1

πσ2

P (yk/xk = i) = 1
π(yk−i)2 , 0 < 1

π(yk−i)2 < t

P (yk/xk = i) = t , 1
π(yk−i)2 > t

for i∈{1,−1}
Here t limits the value of numerator and the denominator

in (13). It was shown in [17] that PGLLR is has better
performance than GLR, so we consider only PGLLR. We
present the approximate thresholds in dB for all the three
noise models in presence of PCLLR and PGLLR. In each case,
PCLLR and PGLLR are compared with the optimal LLR for
the given noise with true parameters.

TABLE IV
APPROXIMATE THRESHOLDS FORPCLLR AND PGLLR IN

CONTAMINATED GAUSSIAN(CG), CONTAMINATED LAPLACIAN (CL) AND

CONTAMINATED CAUCHY(CC) NOISES

CG CL CC
σ2

nb
ǫ LPC LPG LPC LPG LPC LPG

1 0.1 1.55 2.21 1.46 2.11 1.58 2.20
1 0.3 2.07 2.79 1.67 2.38 2.15 2.74
2 0.1 2.04 2.59 1.77 2.36 1.78 2.37
2 0.3 4.97 4.89 3.08 3.47 3.01 3.45
4 0.1 2.53 2.95 2.11 2.63 2.01 2.56
4 0.3 9.13 9.15 4.89 5.26 4.15 4.41

Table IV shows the thresholds for PCLLR and PGLLR.
Comapring with Table I, II and III, it is seen that PGLLR is
within 1.5dB from CGLLR, within 0.5 dB from CLLLR and
within 0.3 dB from CCLLR. PCLLR and PGLLR don’t need
the knowledge of the thick-tailed pdf,ǫ and σ2

nb. Moreover
PGLR has a simpler expression than PCLLR.
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PGLLR-2

In (13),which is a modification of (12),σ2
1 is used as a

limiting value. We propose another method of incorporating
σ2

1 in (12).

LPG−2(yk) = log

( 1
π(yk−1)2+σ2

1

1
π(yk+1)2+σ2

1

)

Threshold comparison for PGLR and PGLR-2 for Contam-
inated Laplacian and Contaminated Cauchy noises is given in
Table VII.

TABLE V
COMPARISON OF APPROXIMATE THRESHOLDS BETWEENLPG AND

LPG−2 FOR CONTAMINATED LAPLACIAN NOISE

Cont. Lap Cont Cauchy
σ2

nb
ǫ LPG LPG−2 LPG LPG−2

1 0.1 2.11 2.09 2.20 1.90
1 0.3 2.38 2.06 2.74 2.39
2 0.1 2.36 2.10 2.37 2.08
2 0.3 3.47 3.33 3.45 3.20
4 0.1 2.63 2.39 2.56 2.29
4 0.3 5.26 4.99 4.41 4.33

We can see that the threshold of PGLR-2 is better than
PGLR by about 0.1-0.3 dB. From Table II,IV and V, we
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Fig. 4. BER comparison for CLLLR,PCLLR,PGLLR and PGLLR-2 for CL
noise with parametersǫ = .1, σ2

nb
= 4.0, regular (3,6) LDPC convolutional

codes withms = 1025

see that BER curves shown in Fig. 4 are consistent with
the approximate threshold values presented for CL noise with
parametersǫ = 0.1,σ2

nb = 4.0.

VI. CONCLUSIONS

In the co-channel interference scenario, the approach of
robust LLRs is only one of many options and certainly subop-
timal. However, this approach does not need any modification
of the existing LDPC decoders and the only parameter needed

by the LLRs is the variance of the Gaussian noise. Without
requiring any estimation of the interference pdfs and their
parameters, the thresholds of the robust LLR are within 0.5-
1 dB in all the three considered noise models for regular
(3,6) LDPC codes. For iterative interference cancellation, these
LLRs can be used as replacement of the standard GLLR to
improve the initial iterations. Although we have considered
only LDPC codes in this paper, the proposed LLRs can be
used for other iterative decoders too.
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