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Abstract—We consider the decoding of LDPC codes in presence used to model impulsive noise in a telephone plant [5].
of non-Gaussian noise, especially a set of-mixture models. Low Density Parity-Check (LDPC) codes, invented by
For each of these models, the optimal LLRs are presented. We 4|1ager[6], achieve near capacity performance in a widetl
study the performance degradation due to the use of incorrdc . .
LLR in presence of a given noise model. Without modifying the of channels. In the_ present work, we consider the ‘?'e°°d'”9_°f
existing LDPC decoder, we propose robust initial LLR which the LDPC codes in presence of the above mentioned noise
require minimum knowledge about the underlying noise model models.
and are computationally less complex. Since BER simulatianare Several approaches have been proposed in the literature for
computationally heavy, we use density evolution to comparéhe  jecoding of turbo codes. In presence of impulsive noisesif th
thresholds of different LLRs. - Lo . .

initial LLR (Log-likelihood Ratio)s are generated usingeth

Gaussian assumption the performance degradation is signifi
cant [7]. If the true noise pdf is known, we can construct the

In communication systems, noise is usually modeled asiratial LLRs based on the pdf. However, there are 3 different
Gaussian process. However some systems experience iinterieise models available for the impulsive noise and everef th
ence which is better characterised as impulsive noise. pdf is known estimation of the other parameters of the pdf is

One example of such an environment is co-channel interfet an easy task.
ence in reuse-1 OFDM systems such as 802.16d/e and LTE. IiSeveral robudtLLRs in presence of the above mentioned
reuse-1 cellular systems, the main source of interferentteei models have been studied in the literature in the context of
use of same sub-carriers at the same time in the neighboriagho decoding without incorporating change in the exggstin
cells/sectors. In 802.16d/e, the base stations are freguedecoders. In [8], authors propose Parametric-Cauchy LLR
synchronised and hence the subcarriers of the interfeseg u(PC-LLR) which was based on the Cauchy-Gaussian mixture
will fall exactly on the subcarrier of the desired user. Thmodel. [9] reduces the complexity of PC-LLR by applying the
fraction of affected sub carriers depends on number of usegsneralised likelihood principle [10].
the geographical distance between the desired user and thé/e analyse the different initial LLRs for LDPC codes
interfering user, the channel between them and the chanusing the density evolution technique. The organisatiotihef
between desired user and the base station. Hence only sompagfer is as follows: In Section Il, we discuss the different
the subcarriers will be affected by the co-channel interiee. noise models. Section Il discusses different optimaliahit
Such noise will appear as impulsive noise in the frequentyRs. In Section IV we use density evolution to analyse the
domain. performance of the optimal LLRs in different noise modets, i

Several models have been proposed for the impulsive nogertion V we study the performance of different robust LLRs
in the literature. The most commonly used model is thend also propose a new LLR and finally in Section VI, we
Middleton class A model [1] which is composed of the mixtureresent conclusions.
of a Rayleigh distribution for the impulse amplitude with
Poisson distribution for occurrence of the impulses. A first
order approximation of the Middleton model is aGaussian
mixture model[2].

Another candidate for modelling impulsive noise are th€ontaminated Gaussian PDF(CG)
symmetric alpha stable noise models. [3] proposes to use

I. INTRODUCTION

Il. IMPULSIVE NOISE MODELS

In this section we present the different noise models that
we consider in this paper

Cauchy-Gaussian(CGM) mixture model, which inspite of be- 1« 7;_22 € —2;@ 1
ing simple can capture the algebraic tail. CGMs can be used fo(n) = \/ﬁe Lt \/T(ﬂbe " @)

to fit the Middleton Class B impulsive noise model, which
includes alpha-stable noise as a special case [4].
Thee—mle[ur(-e mOd.ellv_V'th the contaminating pdf being dF)Ub!e 1Robust is used to mean that the LLRs do not need the knowlefities o
exponential is a limiting case of the Mertz model, which isnderlying pdf and all its parameters

2 2
whereo;, > o7.



Contaminated Laplacian PDF(CL) where f,,(x) can be any of the above mentioned noise
models. The expressions for LLRs in presence of the above
mentioned noise models for BPSK modulation can be written

1—e —2% -/l )
fl(l‘) = 626 202 4 € . e \/Z (2) as follows:
V2T V2 Gaussian LLR (GLLR)

Contaminated Cauchy PDF(CC) L -
Consideringf, (x) = me 1,
1—e —2% €y 2y
(z) = 0f 4 T 3 Le(ye) = —5 (7)
B R I =53

Since the variance is not defined for the Cauchy pdf, as glqntaminated Gausﬁén LLR (CGLL_R) o _
alternate estimate of noise power,we chose GeometricaBign If the assumed noise pdf has distribution as in (1), then the

to-Noise Ratio (GSNR). GSNR is defined as [7] optimal LLR for this noise is
1 A 2 - _(yk*21)2 _(yk;1)2
GSNR = 5= (—) @ Le o™ od 4t
2Co 15 Loa(y) = log RSt TRy
where C, = ¢“ = 1.78 is the exponential of the Euler le o= 207 4 e o 297,
constantC, = 0.5772. Here,S, is the geometric power of Vanat V2oL, 8
symmetric a-stable pdf. To keep the GSNR of the Cauchy 8)
pdf and the Gaussian pdf, we chooge% [8]. Contaminated Laplacian LLR (CLLLR)
Hence all the three noise models can be represented as : Considering (2) as the noise, optimal LLR is
1—e —=22 _ =12 — 2 ye—1
falz) = =—e¢ ™% +cH (5) e Pl
27T0'% \/271'0’% QUib
. _ _ _ Lew(yr) = log - -
where H is any symmetric pdf. The considered choices of 1o ) . /%Iywl\
H are Gaussian, Laplacian and Cauchy pdfs. ,/sze ot 2agybe
C)
As seen from (5) the-mixture model has four unknowns Contaminated Cauchy LLR (CCLLR)
« The contaminating pdff
« The variancer; Gaussian part of the pdf 2
« The variance(or equivalent parametey) of the contam- 1—¢ e*% n ey
inating heavy-tailed pdf V2ol (4 —1)%)
| Ing vy-tal p LCC(yk) _ lOg 1 — (10)

« Percentage of samplesfrom the heavy-tailed pdf -

— 2
1—¢ 207

. . . e _|_ I o NN
For the co channel interference scenario, since all therfact /2102 (72 +(yx+1)%)

are time varyinge and_crm7 are time yarying, hence difficult s the optimal LLR if (3) is the assumed noise pdf.
to estimate. The fraction of subcarriersaffected can range Fig. 1 illustrates the ineffectiveness of the GLLR in the

from 0 < ¢ < 0.5 with values greater than 0.3 occurringconsidered noise models. Assumed noise model is contami-
with very low probability. Chosen ranges for parameters afgted Gaussian noise with, = 4.0 ande = 0.1. The ideal
1.0 < 07, < 4.0 and0 < e < 0.3. We assume the knowledgey | R in this case would be CGLLR with the true parameters.
of of. We use regular (3,6) LDPC convolutional codes [11],[12]
with memory length of 1025 for simulation. The decoding
algorithm used is belief propagation with 100 iterationsrf
Fig. 1 itis clear that GLLR cannot be used for the considered
noise models.
We shall study the performance of other optimal LLRs when
) k ] ' 4 the assumed noise pdf is not the same as the pdf assumed
M-QAM constellation points.s| is subset of S containing for the LLR. E.g. let us assume that the actual noise pdf is
constellation points with 1 in thg*" position s; is subset contaminated Gaussian pdf with parametets = 4.0 ande
of S containing constellation points with 0 in th&" position = 0.1, We would like to quantify the performance degradation
The log-likelihood ratio of thg*" coded bit in thet*" symbol \hen we use CLLLR or CCLLR instead of CGLLR, which
is defined as is the optimal LLR in this case. BER simulations for all
D pest fnlye — k) the combinations of noise and LLRs would take a lot of
L(yr,;) = log < . ) (6) time. Performance of the LDPC codes can also be analysed
2impesy Inlye +2k) using the density evolution. We shall use density evolution

I, OPTIMAL INITIAL LLRS

Let z; be the k*" transmitted M-QAM symbol.n; be
samples from any of the above mentioned noise pgfsAt
the receiver the received symbg). is yi. = zp +ng. Let
S = sg,81,..,5,, Wheren = 2™ — 1, be the set of all
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Fig. 1. Contaminated Gaussian noise= 0.1, 02, = 4.0, regular (3,6) Fig. 2. Pdf of the CLLLR for Contaminated Laplacian noisehniarameters
LDPC convolutional codes withns = 1025. Decodmg algorithm is belief ¢=0.1, g’ =40 g’l =05

propagation with iterations = 100. The threshold for regui&6) LDPC
convolutional codes is at 2.45 dB shown by the vertical line.

and a candidate LLR, the threshold is defined as:

for comparing the performance of different LLRs for a given of =maz(oy):  lim Py(o1) — 0
nOise pdf iterations— oo
We have tabulated thresholds for regular (3,6) LDPC codes
IV. DENSITY EVOLUTION for different combinations of the above mentioned LLR and

noises. Since our main objective is to compare different§ LR

For the LDPC codes, it has been observed that as W\ % thresholds are accurate up to only two decimal places
blocklength tends to infinity, arbitrarily low probabilitf error after the decimal point. All tables contain thﬁk in dB
can be achieved if the variance of the noise is less tharb@rrespondlng tor*
1

certain value, called the threshold. If the variance of@dss o approximate thresholds for Contaminated Gaussian
more than the threshold, the probability of error will beajer noise are as below:

than a positive constant. Richardson and Urbanke calcllate

the threshold for a variety of channels [13],[14] for messag TABLE |
passing algorithms, using density evolution. APPROXIMATE THRESHOLDS FORCONTAMINATED GAUSSIAN(CG)NOISE
Calculating thresholds for most channels other than Binary oan | € | Leg | Ler | Lec

01| 125 | 1.26 | 1.29
03| 168 | 1.75 | 1.94
01| 184 | 186 | 1.90
. 443 | 4.65 | 5.05
01| 246 | 249 | 253
03] 799 | 845 | 9.14

Erasure Channel(BEC) is a computationally expensive task.
[15] proposed discrete density evolution for reducing the
computational complexity of density evolution techniqiibe
Extrinsic Information Transfer(EXIT) charts[16] are bdsen

the assumption that the the extrinsic information exchédnge
between the two decoders has a Gaussian distribution. ensi TABLE Il
APPROXIMATE THRESHOLDS FORCONTAMINATED LAPLACIAN NOISE
evolution technique does not make any assumption about the
distribution of the messages passed between the check nodes
and bit nodes. Pdfs of the initial LLRs in presence of the
e—mixture noise models will most likely not be Gaussian.
Fig.2 shows the initial pdf of LLRs when the input noise is
Contaminated Laplacian and CLLLR is used for decoding. The
parameters of the pdf are?, = 4.0 ande = 0.1

BIBIN N |
o
w

q

FNFNENIENIFENFINCY S

€ | Leg | Lew | Leco
01| 122 1.20 1.23
0.3 1.59 1.45 1.54
0.1 1.63 1.59 1.61
03| 321 2.99 3.06
01| 2.04 2.01 2.02
0.3 | 5.03 4.79 4.89

S

THRESHOLDS FOR THE-MIXTURE MODELS .
From Table I, the threshold for CGLLR in presence of

Density evolution can be used to find the maximum variancentaminated Gaussian noise witfj, = 4.0 ande = 0.1 is
of channel noise which is likely to be corrected by a particul 2.45 dB. Fig.1 shows that the simulation of the regular (3,6)
ensemble using the message-passing algorithm. For the abo®PC convolutional codes with same noise parameters and
mentioned models, we define threshold as following: For @GLLR is quite close to the calculated threshold at BER =
given ensemble with block lengths oo, for a fixedo,, , ¢ 1072,



Parametric Cauchy LLR (PCLLR)

8 1—ceLr 4
6 2|---CLLLR _—
3|—GLLR 01 U7 4 e —
4| CCLLR V2702 m((1.06)%+(yr—1
! , Lpc(yr) = log RS
0.7 7 252 0.3%1.06
~ ? """“"""“"r"',"m""‘z‘; \/2770’%6 o + m((1.06)%+(yx+1)%)
i ] (11)
)
e et o T POy [9] reduces the dependence grande in (10) by using the
-2 . 4
generalised likelihood principle.
4 1 Generalised Likelihood Metric (GLR)
_6 4
T -1
-6 -5 -4 -3 -2 -1 )9 1 2 3 4 5 6 Lerr(yr) = log <%> (12)
k m(yx+1)2
Fig. 3. L(yx)vs vy for different optimal initial LLRs Hence GLR does not need any of .the 4 afore mentioned
parameters. However seen from (12) it is clear that when-
TABLE Il +1, Larr(yr) — oo. Since knowledge of; is assumed, [17]
APPROXIMATE THRESHOLDS FORCONTAMINATED CAUCHY NOISE reintroducesr; into (12) as shown below.
o‘be € Ler | Leco . . . .
1 T o1l 149 | 140 Parametric Generalised Log Likelihood Ratio (PGLLR)
1 | 03] 241 | 2.07
2 | 01] 168 | 1.63 Plus/ n
2 | 03] 322 | 2.99 Yk/ Ty =
2 [01] 1.91 [ 189 Lpa(yx) = log (—P(yk/xk — _1)> (13)
4 [ 03] 428 | 415
where
1=
Plye/zr =) = rimyz + 0 < srme <t
As seen from Table I, CLLLR and CCLLR are within 1.5 Plye/op = i) =1 (vk—1)? (7 ‘)2 s,
dB from CGLLR, which is the optimal LLR for Contaminated ' m(yr—1)?

. . L for ie{1, -1}
Gaussian noise. From Table Il it is seen that CGLLR and S .
CCLLR are within 1 dB from CLLLR. Hence in the CG . Heret limits the value of numerator and the denominator

in (13). It was shown in [17] that PGLLR is has better

and CL noises, all the three optimal LLRs show a maximu rformance than GLR, so we consider only PGLLR. We
degradation about 1 dB. However, in CC noise, for some gfesent the approximate thresholds in dB for all the three

5 -
the o, and e combinations thef}, does not tend fo zero a5 0ise models in presence of PCLLR and PGLLR. In each case,

iterations— oo. Hence we could not find threshold in theS%CLLR and PGLLR are compared with the optimal LLR for
cases. As seen from Fig.3 the shapelof(yx) vs yr Is a the given noise with true parameters.

straight line. Hence larger values gf are assigned higher
reliability. While in case of CCLLRy;, — oo , L(yx) — 0, TABLE IV
i.e, larger values ofy;, are given lower reliability. So GLLR APPROX'gATETHRE(Z'EC;LDO?OFPCLLRA'ED PG'—'-R'(“(':L)

. . NTAMINATED GAUSSIAN , NTAMINATED LAPLACIAN AND
does not perform well in the_se noise cases. In case of CGLLR CONTAMINATED CAUCHY (CC)NOISES
we see thay, — oo, L(yk) is a straight line. So it does not s or =
perform well in heavier tailed pdf like contaminated Cauchy Trc | Lo T Trc [ Loo T Trc | Lro
So from Table I, Il and 11l we can conclude that, either CLLLR 01| 155 | 2.21 | 1.46 | 2.11 | 158 | 2.20
or CCLLR with the correct parameter values can be used in 03| 207 | 279 | 167 | 238 | 215 | 2.74
the other noise cases too with some performance degradation

q

bbNNHng
© m
N

. 204 | 259 | 177 | 236 | 178 | 2.37
03| 497 | 489 | 3.08 | 347 | 3.01 | 3.45
01| 253 | 295 | 211 | 263 | 201 | 2.56
03| 913 | 915 | 489 | 526 | 415 | 441

V. ROBUSTINITIAL LLRS

In this section we shall study the performance of some of the
LLRs which do not need the true value of the parameters of theTable IV shows the thresholds for PCLLR and PGLLR.
underlying noise pdf. We assume that out of the 4 paramet€&@smapring with Table I, Il and llI, it is seen that PGLLR is
of the e-mixture models, only? can be estimated. Hence wewithin 1.5dB from CGLLR, within 0.5 dB from CLLLR and
study other alternative LLRs which need true valuerdf. In  within 0.3 dB from CCLLR. PCLLR and PGLLR don't need
[8] the author proposes Parametric Cauchy LLR by fixing thtbe knowledge of the thick-tailed pdé, and o2,. Moreover
parameters of CCLLR. PGLR has a simpler expression than PCLLR.



PGLLR-2 by the LLRs is the variance of the Gaussian noise. Without

In (13),which is a modification of (12)¢2 is used as a réquiring any estimation of the interference pdfs and their

o2 in (12). dB in all the three considered noise models for regular
L (3,6) LDPC codes. For iterative interference cancellatibese
I _ Tlyn—1)2+o2 LLRs can be used as replacement of the standard GLLR to
re—2(yk) = log S E— improve the initial iterations. Although we have considere
T(Yk oy

_ only LDPC codes in this paper, the proposed LLRs can be
Threshold comparison for PGLR and PGLR-2 for Contamysed for other iterative decoders too.

inated Laplacian and Contaminated Cauchy noises is given in
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VI. CONCLUSIONS

In the co-channel interference scenario, the approach of
robust LLRs is only one of many options and certainly subop-
timal. However, this approach does not need any modification
of the existing LDPC decoders and the only parameter needed



