
Reoptimization of Path Vertex Cover Problem

Mehul Kumar, Amit Kumar(�), and C. Pandu Rangan

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

{mehul,amitkr,rangan}@cse.iitm.ac.in

Abstract. Most optimization problems are notoriously hard. Consider-
able efforts must be spent in obtaining an optimal solution to certain
instances that we encounter in the real world scenarios. Often it turns
out that input instances get modified locally in some small ways due
to changes in the application world. The natural question here is, given
an optimal solution for an old instance IO, can we construct an optimal
solution for the new instance IN , where IN is the instance IO with some
local modifications. Reoptimization of NP-hard optimization problem
precisely addresses this concern. It turns out that for some reoptimiza-
tion versions of the NP-hard problems, we may only hope to obtain an
approximate solution to a new instance. In this paper, we specifically
address the reoptimization of path vertex cover problem. The objective
in k-path vertex cover problem is to compute a minimum subset S of the
vertices in a graph G such that after removal of S from G there is no
path with k vertices in the graph. We show that when a constant num-
ber of vertices are inserted, reoptimizing unweighted k-path vertex cover
problem admits a PTAS. For weighted 3-path vertex cover problem, we
show that when a constant number of vertices are inserted, the reop-
timization algorithm achieves an approximation factor of 1.5, hence an
improvement from known 2-approximation algorithm for the optimiza-
tion version. We provide reoptimization algorithm for weighted k-path
vertex cover problem (k ≥ 4) on bounded degree graphs, which is also an
NP-hard problem. Given a ρ-approximation algorithm for k-path vertex
cover problem on bounded degree graphs, we show that it can be reopti-
mized within an approximation factor of (2− 1

ρ
) under constant number

of vertex insertions.

Keywords: Reoptimization · Approximation algorithms · Path vertex
cover

1.1 Introduction

Most combinatorial optimization problems are NP-hard. Efficient algorithms to
find an optimal solution for such problems are not known. By efficient, we mean
running in time polynomial in the input size. Hence, we resort to approximation
algorithms which aim to efficiently provide a near-optimal solution. For mini-
mization problems, a ρ-approximation algorithm (ρ > 1) efficiently outputs a

ar
X

iv
:1

90
4.

10
71

9v
1

 [
cs

.D
S]

 2
4

A
pr

 2
01

9

2 M. Kumar et al.

solution of cost at most ρ times the optimum, where ρ is called the approxima-
tion ratio. A family of (1+ε) approximation algorithms (∀ε > 0) with polynomial
running times is called a polynomial time approximation scheme (PTAS).

In many practical applications, the problem instance can arise from small
perturbations in the previous instance of an optimization problem. A naive ap-
proach is to work on the new problem instance from scratch using known ρ-
approximation algorithm. But, with some prior knowledge of the solution for
old instance, can we perform better? The computational paradigm of reopti-
mization addresses this question.

We consider the case where one has devoted a substantial amount of time
to obtain an exact solution for the NP-hard optimization problem. Now, the
goal is to reoptimize the solution whenever the modified instance is known. A
reoptimization problem Reopt(π) can be built over any optimization problem π.
An input instance for Reopt(π) is a triple (IN , IO, OPT (IO)), where IO is an
old instance, IN is a modified instance and OPT (IO) is an optimal solution for
π on IO.

Suppose IN is a hard instance obtained via some perturbations in IO and as-
sume that we have an optimal solution of IO. The natural question is, can we find
an optimal solution of IN? In general this may not be the case and we specifically
show in Lemma 3 that, if the optimization problem is path vertex cover and
the perturbation is a single vertex insertion, then even possessing OPT (IO) does
not help to find an optimal solution for IN efficiently, unless P = NP . Hence,
the objective of an efficient algorithm for Reopt(π) is to either achieve a better
approximation ratio or improve the running time of the known approximation
algorithm. In this paper, the optimization problem we consider for reoptimiza-
tion is the path vertex cover problem. This problem has its applications in traffic
control and secure communication in wireless networks [7]. We briefly explain
the optimization problem below:

A path of order k in a graph is a simple path containing k vertices. For a given
graph G = (V,E), S ⊆ V is a feasible k-path vertex cover iff every path of order k
in G contains at least one vertex from S. The problem of finding a feasible k-path
vertex cover on a graph is known as k-path vertex cover problem (k-PV CP).
This problem has two variants: weighted and unweighted. The goal in unweighted
k-PV CP is to find a feasible subset of minimum cardinality whereas in weighted
k-PV CP , the objective is to find minimum weighted subset of vertices that
covers all the paths of order k or more.

1.2 Related Work and Contributions

For any fixed integer k ≥ 2, the k-path vertex cover problem (k-PV CP) is
known to be NP-complete for an arbitrary graph G and also it’s NP-hard to
approximate it within a factor of 1.3606, unless P=NP [2]. However, unweighted
and weighted k-path vertex cover problems on trees have polynomial time algo-
rithms [2] [3]. The problem has been studied in [6] as k-path traversal problem
which presents a log(k)-approximation algorithm for the unweighted version. For

Reoptimization of Path Vertex Cover Problem 3

k = 2, the k-PV CP corresponds to the conventional vertex cover problem. The
3-PV CP is a dual problem to the dissociation number of the graph. Dissociation
number is the maximum cardinality of a subset of vertices that induce a sub-
graph with maximum degree at most 1. [8] provides a 2-approximation algorithm
for weighted 3-PV CP and there is a 3-approximation algorithm for 4-PV CP
[4].

For the reoptimization version, G. Ausiello et al. present an algorithm for
reoptimizing unweighted vertex cover problem. Following the approach in [5],
section 2 shows that reoptimization of unweighted k-PV CP admits a PTAS
under the constant number of vertex insertions. In section 3.1, we extend the
reoptimization paradigm for weighted vertex cover problem in [5] to weighted
k-PV CP . As a use case for the subroutine in section 3.1, we show in section 3.2
that weighted 3-PV CP can be reoptimized with an approximation factor of 1.5
under constant number of vertex insertions. In section 3.3, we present an algo-
rithm for reoptimization version of weighted k-PV CP (k ≥ 4) on bounded degree
graphs under constant number of vertex insertions. For a given ρ-approximation
algorithm for weighted k-PV CP (k ≥ 4), this algorithm achieves an approxima-
tion ratio of (2 − 1

ρ) for such graphs. In Appendix A, we present the hardness
results. In Appendix B, we present n and k-approximation algorithms that are
used in our algorithm for weighted k-PV CP (k ≥ 5).

1.3 Preliminaries

In this paper, the graphs we consider are simple undirected graphs. A graph G
is a pair of sets (V,E), where V is the set of vertices and E is the set of edges
formed by unordered pairs of distinct vertices in V . For a vertex v ∈ V , we denote
the set of neighbours of v in G by NG(v), where NG(v) = {u ∈ V | (u, v) ∈ E}.
For any S ⊆ V , we define NG(S) to be the neighbouring set of S in G, where
NG(S) ⊆ (V −S) and ∀u ∈ NG(S) ∃v ∈ S such that (u, v) ∈ E. For any S ⊆ V ,
we use G[S] to represent the subgraph induced on the vertex set S in G. Let
V (G) and E(G) denote the vertex set and edge set of G respectively. A degree
of a vertex is the number of edges incident on it. We use ∆(G) to denote the
maximum degree of the vertices in graph G. In the case of weighted graphs, with
every vertex we associate a positive weight function f : V → R+. For any v ∈ V ,
let w(v) be the weight of the vertex and for any subset S ⊆ V , the weight of the
subset w(S) is

∑
v∈S w(v). Size of a graph is defined as the number of vertices

in it. A constant-size graph is a graph where number of vertices are constant
and independent of input parameters of the algorithm. Two graphs are said to
be disjoint if they do not share any common vertices.

Let G = (V,E) and GA = (VA, EA) be two graphs where V ∩ VA = φ. Given
a set of attachment edges Ea ⊆ (V × VA), insertion of GA into G yields the
undirected graph G′ = (V ′, E′), where V ′ = V ∪ VA and E′ = E ∪ EA ∪ Ea.
Thus, a constant number of vertex insertions can be realized as a constant-size
graph insertion. We define a vertex insertion in G as a special case of graph
insertion where the inserted graph GA is a single vertex v /∈ V [G]. In general,

4 M. Kumar et al.

we denote OPT (G) as the optimal solution and ALG(G) as the solution output
by an algorithm for the corresponding problem on G.

Let π denote the optimization problem and Reopt(π) is the reoptimization
version of it. The π we consider in this paper is the k-path vertex cover problem.
The input instance of Reopt(π) is a triple (GO, GN , OPT (GO)), where GO is the
old graph, GN is the new graph and OPT (GO) is an optimal solution for π on
GO. Let Aρ(π) be a known ρ-approximation algorithm for π. For the algorithms
we give, the equality statements are considered as assignment from right to left.

2 Reoptimization of unweighted k-PV CP

Let π be unweighted k-PV CP . We consider the reoptimization version Reopt(π)
where a constant-size graph GA = (VA, EA) is inserted to the old graph GO =
(VO, EO) to yield the new graph GN = (VN , EN). Let |VA| = c. For a given ε,
we design an algorithm Unwtd-kpath for Reopt(π) that outputs ALG(GN) as a
solution.

Algorithm 1 Unwtd-kpath(GO, GN , OPT (GO), ε)

1: VA = V (GN)− V (GO)
2: c = |VA|
3: m = dc/εe
4: S1 = V (GN)
5: for each subset X of V (GN) where |X| ≤ m do
6: if(X covers all k-paths in GN and |X| < |S1|)
7: S1 = X

8: S2 = OPT (GO) ∪ VA
9: ALG(GN) = min(|S1|, |S2|)

10: return ALG(GN)

Theorem 1. Unwtd-kpath for Reopt(π) under constant-size graph insertion
admits a PTAS.

Proof. Since OPT (GN)∩V (GO) and OPT (GO)∪VA is a feasible k-path vertex
cover on GO and GN respectively, we get

|OPT (GO)| ≤ |OPT (GN)| ≤ |OPT (GO)|+ c · · · (1)

If OPT (GN) has size at most m, it would have been found in step 7 of Unwtd-
kpath. We know,

|ALG(GN)| ≤ |OPT (GO)|+ c = |S2|

and S2 is picked when |OPT (GN)| ≥ m ≥ c
ε . Thus, approximation factor for

ALG(GN) using inequality (1) and above observation is,

|ALG(GN)|
|OPT (GN)|

≤ |OPT (GO)|+ c

|OPT (GN)|
≤ |OPT (GN)|+ c

|OPT (GN)|
≤ 1 + ε

Reoptimization of Path Vertex Cover Problem 5

Further, we analyze the runtime. Enumerating all possible k-paths in a graph of n
vertices takes O(nk) time. Thus for a given set X, we can decide in polynomial
time whether all paths of order k are covered by the set. There are O(nm)
subsets of size at most m, where n = |VN |. The runtime of the algorithm is
O(nm ·nk) = O(n

c
ε ·nk), and hence a valid PTAS. Note that the runtime can be

improved by using color coding algorithm for finding a k-path [1], which runs in
O(2knO(1)) time.

3.1 Subroutine for Reoptimzation of Weighted k-PV CP

Let πk be weighted k-PV CP . Aρ(πk) be a known ρ-approximation algorithm
for πk. In reoptimization version of the problem Reopt(πk), a new graph GN is
obtained by inserting a graph GA to GO.

Definition: A family F = {F1, F2, · · · , Fψ}, where ψ = |F| and of subsets of VN
is called a good family if it satisfies the following two properties:

• Property 1: ∃ Fi ∈ F such that Fi ⊆ OPT (GN) and,

• Property 2: ∀ Fi ∈ F, Fi covers all the k-paths which contains at-least one
vertex from V (GA) in graph GN .

We give below a generic algorithm that works on the good family F. This
family of sets will be constructed in different ways for different problems. The
details are provided in the respective sections.

An algorithm for Reopt(πk) constructs the good family F and feeds it to the
subroutine Construct-Sol. The algorithm Construct-Sol iteratively prepares a
solution Si for each set Fi ∈ F. The inputs to the algorithm Construct-Sol are:
modified graph GN , inserted graph GA, old optimal solution OPT (GO)), a good
family F and Aρ(πk).

Algorithm 2 Construct-Sol(GN , GA, OPT (GO),F, Aρ(πk))

1: for i = 1 to |F| do
2: S1

i = OPT (GO) ∪ Fi
3: G′ = GN [(VN − V (GA))− Fi]
4: Run Aρ(πk) on G′ and denote the output set as S2

i

5: S2
i = S2

i ∪ Fi
6: Si = minWeight(S1

i , S
2
i)

7: ALG(GN) = minWeight(S1, S2, . . . , S|F|)
8: return ALG(GN)

Lemma 1. If OPT (G) is an optimal solution for weighted k-PV CP for G, then
for any S ⊆ OPT (G), w(OPT (G[V − S])) ≤ w(OPT (G))− w(S).

6 M. Kumar et al.

Proof. If F is a feasible k-path cover for G[V], then for any V ∗ ⊆ V , F ∩ V ∗ is
a feasible k-path cover for G[V ∗].

OPT (G)−S is a feasible solution for G[V −S] because (V −S)∩OPT (G) =
OPT (G) − S. Since S ⊆ OPT (G), w(OPT (G) − S) = w(OPT (G)) − w(S).
Hence, w(OPT (G[V − S])) ≤ w(OPT (G))− w(S).

Theorem 2. The algorithm Construct-Sol outputs a solution ALG(GN) with

an approximation factor of (2− 1
ρ), running in O(|V (GN)|2 ·ψ ·T (Aρ(πk), GN))

steps, where ρ is the approximation factor of a known Aρ(πk).

Proof. A graph GA is inserted to GO to yield the new graph GN . By property
1 of the good family F, the optimal solution for GN must include at least one
set in F = {F1, . . . , Fψ}, where ψ = |F|. Thus, at least one Si(1 ≤ i ≤ ψ) is
prepared by the subroutine.

Let OPT (GN)i be the optimal solution which includes Fi and not (V (GA)−
Fi). We prepare ψ number of solutions for the graph GN .

S1
i is a feasible k-path cover for GN , where feasibility follows from property

2 of the family. We can write the following inequalities:

w(OPT (GO)) ≤ w(OPT (GN)i)

w(S1
i) = w(OPT (GO) ∪ Fi) ≤ w(OPT (GO)) + w(Fi)

From above two inequalities,

w(S1
i) ≤ w(OPT (GN)i) + w(Fi) · · · (1)

Another solution S2
i is prepared. From Lemma 1 and construction of S2

i , we
can write the following inequality:

w(S2
i) ≤ ρ(w(OPT (GN)i)− w(Fi)) + w(Fi) · · · (2)

Since ρ > 1, adding (ρ− 1)× (1) and (2), we get

(ρ− 1)w(S1
i) + w(S2

i) ≤ (2ρ− 1)(w(OPT (GN)i))

Minimum weighted subset between S1
i and S2

i is chosen to be Si. Then,

(ρ− 1)w(Si) + w(Si) ≤ (2ρ− 1)(w(OPT (GN)i))

=⇒ ∀i ∈ [1, ψ], w(Si) ≤ (2− 1

ρ
)(w(OPT (GN)i)) · · · (3)

We have prepared a set of ψ number of solutions that is, {S1, S2, · · · , Sψ}.
By definition of OPT (GN)i and property 2 of good family F, we get that, if
Fi ⊆ OPT (GN), then w(OPT (GN)i) = w(OPT (GN)). By the property 1 of F,
there exists an Fi such that Fi ⊆ OPT (GN)i. Hence, the following inequality
for such an i holds true:

w(Si) ≤ (2− 1

ρ
)(w(OPT (GN)i)) = (2− 1

ρ
)(w(OPT (GN)))

Reoptimization of Path Vertex Cover Problem 7

We know, ∀i ∈ [1, ψ], w(ALG(GN)) ≤ w(Si). So,

w(ALG(GN)) ≤ (2− 1

ρ
)(w(OPT (GN)))

Thus, algorithm Construct-Sol outputs a solution with an approximation factor
of (2 − 1

ρ). Note that step 3 of the algorithm takes O(|VN |2) time. Moreover,

if the running time of Aρ(πk) on input graph GN is T (Aρ(πk), GN), then the

running time of algorithm Construct-Sol is O(|V (GN)|2 · ψ · T (Aρ(πk), GN)).

3.2 Reoptimization of weighted 3-PV CP

Let π3 be weighted 3-PV CP . A constant-size graph GA = (VA, EA) is inserted
to GO to yield the new graph GN = (VN , EN). Let T (A2(π3), GN) denote the
runtime of 2-approximation algorithm [8] for π3. Let |VN | = n.

Algorithm 3 Wtd-3pathGI(GN , GA, OPT (GO), A2(π3))

1: F = φ
2: for all X ⊆ (VA = V (GA)) and X is a 3-path cover for GA do
3: VI = Set of isolated v in GA[VA −X] and NGN (v) ∩ V (GO) 6= φ
4: EI = Set of isolated (u, v) in GA[VA−X] and NGN ({u, v})∩V (GO) 6= φ
5: for all (u, v) ∈ EI do
6: X = X ∪NGO ({u, v})
7: Y = NGN (VA)−X
8: for all Y ′ ⊆ Y , |Y ′| ≤ |VI | do
9: if(Y − Y ′) is a 3-path cover for GN [VI ∪ Y]

10: X ′ = X ∪ (Y − Y ′)
11: X ′ = X ′ ∪NGO (Y ′)
12: F = F ∪ {X ′}
13: return Construct-Sol(GN , GA, OPT (GO),F, A2(π3))

Theorem 3. Algorithm Wtd-3path is a 1.5 approximation for Reopt(π3) under
constant-size graph insertion.

Proof. The algorithm works in 3 phases to construct the good family F. The
algorithm prepares a subset X for each feasible 3-path cover X for GA because
the optimal solution for GN must contain one subset among the feasible X’s.
In the first phase, if an edge in GA[VA −X] has a neighbour in GO, it must be
included in X.

Let Y = NGN (VA) − X. In the second phase , GN [VI ∪ Y] is made free
from all 3-paths by removing a feasible subset Y − Y ′. In the third phase, the
neighbours of the vertices in Y ′ are included in X ′ because such a neighbour will
form 3-path with the vertices in Y ′ and VI .

8 M. Kumar et al.

Since we consider all feasible subsets X and feasible Y − Y ′ for the cor-
responding X, the constructed family F satisfies both the properties of good
family. Thus from Theorem 2 and A2(π3), we get the desired approximation.
Further, we analyze the running time. Let c = |V (GA)|. The maximum cardi-
nality of Y is n. Then, the steps 3 to 12 in the algorithm run in O(n3nc+1)
because |Y ′| ≤ c. Thus |F| ∈ O(c2 · 2c · nc+4). Hence the algorithm Wtd-3path
runs in O(nc+6 · 2c · T (A2(π3), G)).

3.3 Reoptimization of weighted k-PV CP (k ≥ 4) for
bounded degree graphs

A graph free from 2-paths contains only isolated vertices. A graph that does not
have any 3-path contains isolated vertices and isolated edges. But, in the case of
graphs that are free from k-paths (k ≥ 4), star graph is a possible component.
As the number of subsets needed to be considered for preparation of F would
be exponential in the vertex degree, we restrict the reoptimization of weighted
k-PV CP (k ≥ 4) to bounded degree graphs. Lemma 3 in Appendix A shows
that the problem on bounded degree graphs is NP-complete.

The local modification which we consider for reoptimization is constant-size
graph insertion. Let GO = (VO, EO) be the old graph. Given GO, constant-size
graph GA = (VA, EA) and attachment edges Ea, the new graph GN = (VN , EN)
is obtained. Let |VN | = n and |VA| = c. Let the maximum degree of the graph
GN be ∆. We use Pk(G,V ′) to denote the collection of k-paths in graph G con-
taining at least one vertex from V ′ ∩ V (G). For a set of vertices V ′, a graph is
said to be V ′-connected graph if every connected component in the graph con-
tains at least one vertex from V ′. Let Aρ(πk) be a ρ-approximation algorithm
for weighted k-PV CP (πk) and T (Aρ(πk), GN) be the running time of Aρ(πk)
on GN .

Definition: We define a variation of BFS on a graph G, where traversal starts
by enqueuing a set of vertices V ′ instead of a single root vertex. Initially, all the
vertices in V ′ are at the same level and unvisited. Now the unvisited nodes are
explored in breadth first manner. In this variation, we obtain the BFS forest
for the input (G,V ′), where the vertices of V ′ are at level 1 and the subsequent
levels signify the order in which the vertices are explored.

Consider the BFS forest obtained from VA in GN . We use Li to denote the
set of vertices at level i (i ≥ 0) of the BFS forest. Let Sj =

⋃j
i=0 Li, where

L0 = φ and L1 = VA. Then Li = NGN (Si−1) for i ≥ 2. Note that this BFS
forest has |VA| number of disjoint BFS trees, where the trees have distinct root
vertices from VA.

Lemma 2. In a BFS forest obtained after performing BFS traversal from a
set of vertices VA ⊆ V in a graph G = (V,E) having no k-paths, the number of

vertices at each level is at most |VA|∆(∆− 1)d
k−5
2 e.

Reoptimization of Path Vertex Cover Problem 9

Proof. Consider the case when BFS is performed from a single vertex set VA =
{v1} to obtain a BFS tree. For any level i, |Li| ≤ ∆(∆ − 1)i−2. Thus the
statement holds true for i ≤ dk−12 e. For the case when i > dk−12 e, let j =

i− dk−32 e. We claim that there exists a vertex v in Lj such that v is a common
ancestor for all the vertices in Li. Assume to contrary that the claim is false.
If |Li| = 1 the claim is trivially true. Otherwise we have two distinct vertices
vx and vy ∈ Li such that they have the lowest common ancestor in Lj′ , where
1 ≤ j′ ≤ j − 1 = i − dk−12 e. This imposes a path 〈vi, · · · v, · · · vj〉 of order

dk−12 e+ 1 + dk−12 e ≥ k. But it contradicts the fact that G has no paths of order

k or more. Hence |Li| ≤ ∆(∆− 1)i−j−1 = ∆(∆− 1)d
k−5
2 e.

Now, when BFS is performed for the case when |VA| > 1, the BFS forest
obtained has |VA| number of disjoint BFS trees where each tree satisfies the
above argument. Hence the number vertices in each level in the BFS forest is

at most |VA|∆(∆− 1)d
k−5
2 e

Algorithm 4 Construct-F (X,V, L, level, VA, GN ,F, k)

1: F = F ∪ {X ∪ L}
2: if level ≥ k − 1
3: return F

4: b = (|VA|∆(∆− 1)d
k−5
2
e)

5: for each non-empty subset V ′ of L and |V ′| ≤ b do
6: if GN [V ∪ V ′] is a k-path free VA-connected graph

7: X ′′ = X ∪ (L− V ′)
8: V ′′ = V ∪ V ′
9: L′′ = NGN (V ′′)−X ′′

10: F = Construct-(X ′′, V ′′, L′′, level + 1, VA, GN ,F, k)

11: return F

Algorithm 5 Wtd-kpath(GN , GA, OPT (GO), Aρ(πk), k)

1: Initialization: F = φ, level = 1, X = φ and V = φ.
2: F = Construct-F (X,V, V (GA), level, V (GA), GN ,F, k)
3: ALG(GN) = Construct-Sol(GN , GA, OPT (GO),F, Aρ(πk))
4: return ALG(GN)

Theorem 4. Algorithm Wtd-kpath is a (2 − 1
ρ) approximation for Reopt(πk)

under graph insertion and runs in O(nO(1) · 2k(∆+1)b · T (Aρ(πk), GN)), where

b = |VA|∆(∆− 1)d
k−5
2 e and ((∆+ 1)b) ∈ O(log n).

Proof. We first prove that for every call to the function
Construct-F (X,V, L, level, VA, GN ,F, k), the following invariants on V , X and
L are maintained:

10 M. Kumar et al.

• V ⊆ Slevel and GN [V] is a k-path free VA-connected graph.
• X is the set of neighbours of V in GN [Slevel]
• L is the set of neighbours of V in graph GN that are also in Llevel+1, i.e
L = NGN (V)− Slevel.

The above invariants trivially hold true during the first call to the function
Construct-F . Assuming the invariants to be true during a call to Construct-
F , we show that the subsequent recursive calls maintain the invariants. Note
that the parameter ′level′ is incremented to level + 1 during the recursive call.
GN [V ∪ V ′] = GN [V ′′] is a k-path free VA-connected subgraph in GN . Also,
V ′′ ⊆ Slevel+1 because V ⊆ Slevel and L ⊆ Llevel+1. The invariance property of
X and L implies X ′′ = X∪(L−V ′) is the set of neighbours of V ′′ in GN [Slevel+1].
From previous observation about X ′′ and V ′′, we get that L′′ = NGN (V ′′)−X ′′ is
the set of neighbours of V ′′ in GN which are also in Llevel+2. Thus, the invariants
are maintained.

Note that X covers all the paths in Pk(GN [Slevel], VA). X ∪ L is a k-path
cover for GN because the paths in Pk(GN , VA) − Pk(GN [Slevel], VA) contain at
least one vertex from L. Thus, {X ∪L} is included in F to satisfy property 2 of
good family.

By Lemma 2, it is sufficient to consider non empty subsets V ′ of size at most

(|VA|∆(∆−1)d
k−5
2 e) from subsequent level L to construct V ′′. For each recursive

call, the case when V ′ or L is empty is handled in the step 1. A VA-connected
graph that has no k-paths will have a maximum level of k−1 in the BFS forest.
The algorithm explores all feasible subsets V ′ for each level ≤ k − 1. Thus
the property 1 of good family holds true for F, because the family includes all
possibilities for {X ∪ L} that covers Pk(GN , VA). Thus, the constructed family
F is indeed a good family.

Let RT (l) be the running time of the function Construct-F , where l is the
parameter ′level′. Let C = Σi=b

i=1

(
∆b
i

)
. Observe that |L| ≤ (∆ · b) due to the

construction of L′′ in the previous recursion. As we are choosing sets of size at
most b from L, we get the recursion RT (l) = O(nO(1) ·Ck ·RT (l+1)) for 1 ≤ l ≤
(k− 1) and RT (k) = O(nO(1)). Thus step 6 in Wtd-kpath runs in O(nO(1) ·Ck)
time. In each function call, |F| is incremented by one element. Thus, |F| ≤ 2kb

because |V ′′| ≤ b for each level. Note that C ≤ 2b∆. Hence using Theorem 2,
the algorithm Weighted-kpath runs in O(nO(1) · Ck · 2kb · T (Aρ(πk), GN)) =
O(nO(1) · 2k(∆+1)b · T (Aρ(πk), GN)) and achieves the desired approximation.

Using 3-approximation algorithm for weighted 4-PV CP [4] and Theorem 4,
we get the following corollary:

Corollary 1. Algorithm Wtd-kpath is a 5
3 approximation for Reopt(π4) under

constant-size graph insertion, where (∆) ∈ O(1) and Aρ(π4) is A3(π4).

In Appendix B, we present approximation algorithms for weighted k-path vertex
cover problem. The n-approximation algorithm runs in O(2knO(1)) time, where
n is the size of input graph. The k-approximation algorithm is a primal dual
based algorithm. Using Theorems 5 and 6 of Appendix, we get the following
corollaries:

Reoptimization of Path Vertex Cover Problem 11

Corollary 2. Algorithm Wtd-kpath is a (2 − 1
n) approximation for Reopt(πk)

under constant-size graph insertion, where (∆) ∈ O(1) and Aρ(πk) is An(πk).

Corollary 3. Algorithm Wtd-kpath is a (2 − 1
k) approximation for Reopt(πk)

under constant-size graph insertion, where (∆) ∈ O(1) and Aρ(πk) is Ak(πk).

Note that the algorithm only explores the vertices till level k− 1 that is, the
vertices in the set Sk−1. Thus |F| is at most 2|Sk−1|. Therefore the algorithm
will also run efficiently for the scenarios where the graph GA is attached to a
′sparse′ part of GO, that is for |Sk−1| ∈ O(log n).

Corollary 4. Algorithm Wtd-kpath is a (2 − 1
ρ) approximation for Reopt(πk)

under graph insertion, where |Sk−1| ∈ O(log n).

4 Concluding Remarks

In this paper, we have given a PTAS for reoptimization of unweighted k-PV CP
under constant number of vertex insertions. When constant-size graph is inserted
to the old graph, we have presented 1.5-approximation algorithm for reoptimiza-
tion of weighted 3-PV CP . Restricting our inputs to bounded degree graphs, we
have presented 5

3 - approximation for reoptimization of weighted 4-PV CP under
constant-size graph insertion. For the reasons we mentioned in Section 3.3, our
technique for reoptimization of weighted k-PV CP (k ≥ 4) cannot be extended
to arbitrary graphs. Hence, reoptimization of weighted k-PV CP (k ≥ 4) for ar-
bitrary graphs under constant number of vertex insertions is an intriguing open
problem.

Acknowledgment

We thank Narayanaswamy N S for enlightening discussions on the problem.

12 M. Kumar et al.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding: a new method for finding simple
paths, cycles and other small subgraphs within large graphs. In: Proceedings of
the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada. pp. 326–335 (1994)

2. Bresar, B., Kardos, F., Katrenic, J., Semanisin, G.: Minimum k-path vertex cover.
Discrete Applied Mathematics 159(12), 1189–1195 (2011), https://doi.org/10.
1016/j.dam.2011.04.008

3. Bresar, B., Krivos-Bellus, R., Semanisin, G., Sparl, P.: On the weighted k-path
vertex cover problem. Discrete Applied Mathematics 177, 14–18 (2014), https:
//doi.org/10.1016/j.dam.2014.05.042

4. Camby, E., Cardinal, J., Chapelle, M., Fiorini, S., Joret, G.: A primal-dual 3-
approximation algorithm for hitting 4-vertex paths. In: 9th International Collo-
quium on Graph Theory and Combinatorics, ICGT. p. 61 (2014)

5. Escoffier, B., Bonifaci, V., Ausiello, G.: Complexity and approximation in reopti-
mization (02 2011), https://doi.org/10.1142/9781848162778_0004

6. Lee, E.: Partitioning a graph into small pieces with applications to path transver-
sal. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2017. pp. 1546–1558 (2017), https://doi.org/10.1137/
1.9781611974782.101

7. Novotný, M.: Design and analysis of a generalized canvas protocol. In: Information
Security Theory and Practices. Security and Privacy of Pervasive Systems and
Smart Devices, 4th IFIP WG 11.2 International Workshop, WISTP 2010, Passau,
Germany, April 12-14, 2010. Proceedings. pp. 106–121 (2010), https://doi.org/
10.1007/978-3-642-12368-9_8

8. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover p3
problem. Theor. Comput. Sci. 412(50), 7044–7048 (2011), https://doi.org/10.
1016/j.tcs.2011.09.013

9. Uehara, R.: Np-complete problems on a 3-connected cubic planar graph and their
applications (1996)

10. Vazirani, V.V.: Approximation algorithms. Springer (2001), http:

//www.springer.com/computer/theoretical+computer+science/book/

978-3-540-65367-7

https://doi.org/10.1016/j.dam.2011.04.008
https://doi.org/10.1016/j.dam.2011.04.008
https://doi.org/10.1016/j.dam.2014.05.042
https://doi.org/10.1016/j.dam.2014.05.042
https://doi.org/10.1142/9781848162778_0004
https://doi.org/10.1137/1.9781611974782.101
https://doi.org/10.1137/1.9781611974782.101
https://doi.org/10.1007/978-3-642-12368-9_8
https://doi.org/10.1007/978-3-642-12368-9_8
https://doi.org/10.1016/j.tcs.2011.09.013
https://doi.org/10.1016/j.tcs.2011.09.013
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7

Reoptimization of Path Vertex Cover Problem 13

Appendix

A Reductions

Lemma 3. Minimum unweighted k-path vertex cover problem on graphs with
maximum degree ∆(G) ≥ 3 is NP-complete.

Proof. k-path vertex cover is in NP as enumerating over all paths of order k
would verify a k-path vertex cover instance, where run time of verification is
O(nk). We will show it is NP-hard by reducing vertex cover problem for cubic
graphs to it, which is known to be NP-complete [9]. Applying the same reduction
given in Theorem 1 of [2], for the input instance of a cubic graph G we get the
reduced graph instance G′. Since the proof of reduction given in Theorem 2 of
[2] is independent of the ∆(G) and ∆(G′) = ∆(G) + 1 = 4, hence the reduction
implies NP-hardness for k-path vertex cover on bounded degree graphs too.

Corollary 5. Minimum weighted k-path vertex cover for bounded degree graphs
is NP-hard.

Lemma 4. Unless P = NP , reoptimization under vertex insertion of k-path
vertex cover problem for bounded degree graphs (π) does not admit a polynomial
time optimal algorithm.

Proof. Let Oracle A output optimal solution for Reopt(π) under vertex insertion
for bounded degree graphs. Given oracle access to A, we design a polynomial
time algorithm B to obtain an optimal solution for problem π on an arbitrary
non-empty graph G = (V,E). Here |V | = n.

Algorithm 6 B(π,G)

1: Let 〈v1, . . . vn〉 be an arbitrary sequence of V (G)
2: G1 = (V1, E1) = ({v1}, φ)
3: ALG(G1) = φ
4: for i from 2 to n do
5: Gi = {Vi, Ei}
6: Eai = {(u, vi) | u ∈ V (Gi−1) and (u, vi) ∈ E(G)}
7: Gi = (Vi−1 ∪ {vi}, Ei−1 ∪ Eai)
8: ALG(Gi) = A(Gi−1, Gi, ALG(Gi−1))

9: return ALG(Gn)

We will claim by the principle of mathematical induction that ALG(Gi)
is the optimal solution for Gi, where 1 ≤ i ≤ n. For the base case of G1 =
({v1}, φ), φ is the optimum for G1. For the inductive step, assume ALG(Gi−1)
is optimum for Gi−1. Since Gi = (Vi−1 ∪ {vi}, Ei−1 ∪ Eai) for vi /∈ V [Gi−1]
and Eai ⊆ (V [Gi−1] × {vi}), the change is a valid vertex insertion. Therefore,

14 M. Kumar et al.

algorithm A(Gi−1, Gi, ALG(Gi−1) indeed outputs the optimal solution for Gi as
ALG(Gi), thus proving the induction hypothesis. Next, we claim that Gn = G.
Clearly V (Gn) = V (G), thus we only need to show E(Gn) = E(G). ∀ e ∈ E(Gn),
Eai is the only set which contributes to E(Gn), enforcing e ∈ E(G). For any
(vi, vj) ∈ E(G) such that vi comes before vj in the vertex sequence, in the jth

iteration of loop (vi, vj) ∈ Eaj , thus (vi, vj) ∈ E(Gn). Thus the algorithm B
outputs OPT (G). All steps in the algorithm B are polynomial in input size.
Hence, we obtain a polynomial time Turing reduction from π to Reopt(π) under
vertex insertion. Thus, the proof of Lemma follows since π is known to be an
NP-complete problem (refer Lemma 3 in Appendix A).

B Approximation algorithms for weighted k-PV CP

In this section, we give the approximation algorithms for weighted k-PV CP (πk)
on input graph G = (V,E). Here, |V | = n and subroutine getKPath(G) outputs
a path of order k in G if it is present and φ otherwise.

Algorithm 7 Approx-Alg(πk, G)

1: V ′ = V (G)
2: ALG(G) = φ
3: P = getKPath(G[V ′])
4: while (P 6= φ) do
5: vm = minimum weight vertex in P
6: ALG(G) = ALG(G) ∪ {vm}
7: V ′ = V ′ − {vm}
8: P = getKPath(G(V ′))

9: return ALG(G)

Theorem 5. Algorithm Approx-Alg achieves n-approximation for πk on graph
G = (V,E) and runs in O(2knO(1)) time, where n is |V |.

Proof. In the ith iteration of while loop, we find a k-path, Pi, by calling subrou-
tine getKPath. Let the vertex with minimum weight in Pi be vim. Since, OPT (G)
must include at least one vertex from Pi, implying w(vim) ≤ w(OPT (G)), where
OPT (G) is an optimal solution for πk. Algorithm Approx-Alg always termi-
nates because |ALG(G)| is at most n − k + 1. The while loop continues to run
till ALG(G) is a feasible k-path vertex cover.

w(ALG(G)) =

|ALG(G)|∑
n=1

w(vim) ≤
|ALG(G)|∑
n=1

w(OPT (G)) ≤ (n−k+ 1)w(OPT (G))

Thus, Algorithm Approx-Alg achieves n-approximation for the problem πk on
G. The function getKPath(G) uses color coding algorithm for finding a path

Reoptimization of Path Vertex Cover Problem 15

on k vertices [1] and runs in O(2knO(1)). Hence, algorithm Approx-Alg runs in
time O(2knO(1)).

Theorem 6. There is a k-approximation algorithm for weighted k-PV CP (πk)
for graph G = (V,E).

Proof. Let Pk be the collection of all k-paths in a graph G. Note that |Pk| is
at most nk. For each vertex v ∈ V , we denote subset vP to be the collection of
k-paths containing v. πk is a special case of set cover problem where Pk is the
universe of elements and VP = {vP |v ∈ V } is family of subsets. Since each path
contains exactly k vertices, the frequency of the element is k in the family of
subsets. Thus, we have k-approximation algorithm from Theorem 15.3 in [10].

	Reoptimization of Path Vertex Cover Problem

