
Rational Secret Sharing with Honest Players over an
Asynchronous Channel

William K. Moses Jr. and C. Pandu Rangan
Department of Computer Science and Engineering

Indian Institute of Technology Madras, Chennai, India
Email: wkmjr3@gmail.com, prangan55@gmail.com

Abstract

We consider the problem of rational secret sharing introduced by Halpern and Teague [5], where the players
involved in secret sharing play only if it is to their advantage. This can be characterized in the form of preferences.
Players would prefer to get the secret than to not get it and secondly with lesser preference, they would like as
few other players to get the secret as possible. Several positive results have already been published to efficiently
solve the problem of rational secret sharing. However, only a handful of papers have touched upon the use of
an asynchronous broadcast channel, and in those papers, either the protocol involved cryptographic primitives
[3] or else the protocol required the dealer to be interactively involved [10]. However, [13] did handle such a
case through the use of an honest minority of players, but in their paper, they had placed a restriction on the
number of honest players that could take part in relation to the total number number of players active in the
protocol.

In our paper, we propose an m-out-of-n rational secret sharing scheme which can function over an asyn-
chronous broadcast channel without the use of cryptographic primitives and with a non-interactive dealer. This
is possible because our scheme uses a small number, k + 1, of honest players. The protocol is resilient to coali-
tions of size up to k and furthermore it is ε-resilient to coalitions of size up to m − 1. The protocol will have
a strict Nash equilibrium with probability Pr( k+1

n
) and an ε-Nash equilibrium with probability Pr( n−k−1

n
).

Furthermore, our protocol is immune to backward induction.
Later on in the paper, we extend our results to include malicious players as well.
We also show that our protocol handles the possibility of a player deviating in order to force another player

to get a wrong value. This type of deviation was discussed and handled by Asharov and Lindell [2] by increasing
the number of rounds. However, our protocol handles this in what we believe to be a more time efficient manner.

1 Introduction

1.1 Background

The classical problem of m-out-of-n secret sharing deals with distributing information about a secret to
several players and then having them cooperate and work together in order to reconstruct that secret.
More specifically, if m or more players come together, then no matter which players they are, they should
be able to correctly reconstruct the secret. However, if less than m players come together, then they
should not be able to reconstruct the secret. A solution to this problem came in the form of Shamir secret
sharing [14]. Suppose we wanted it such that a minimum of at least m players must come together in
order for a secret to be reconstructed. Then what we would do is construct a polynomial, F(x), of degree
m− 1 and make F(0) the secret. We would then distribute a pair of values (y,F(y)) to each player where
y is a different value for each player. If at least m players participate in the protocol, then by Lagrange’s
interpolation formula, they can reconstruct the secret.

The rational version of this classical problem alters the type of players involved in the game. In the
classical version, players were either honest or malicious. However, in the rational version, players are
rational, which means that they will only play the game if it is in their best interests to do so. In this
scenario, we make a few assumptions about the players. First, that players prefer to learn the secret rather
than not learn it. Secondly, that players prefer as few others as possible to learn the secret. With these two
assumptions in mind, the problem ceases to be one of merely protecting honest players from the trickery
of malicious players, and starts to be one of protecting every player from every other player and moreover,
incentivizing every player to participate. With this new setting, we need a new solution concept in order
to judge the effectiveness of protocols. This concept comes in the form of Nash equilibrium. A game is in
Nash equilibrium if every player is playing her best response to every other player’s best response.

In the rational setting, Shamir’s scheme, which previously worked, proves unsuccessful as shown below.
Suppose that m∗ players actually play an m-out-of-n Shamir secret sharing game.
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If m∗ < m, then Nash equilibrium. But the secret is not reconstructed.
If m∗ = m, then not a Nash equilibrium. At this point, if a player decides not to send her share,
then she ends up with everyone else’s share and is able to reconstruct the secret while the others cannot.
If m∗ > m, then Nash equilibrium. Even if a player does not send her share, the remaining players
would. However, this is unstable because if enough people decide not to send their share, then this case
degenerates to the previous case where m∗ = m, which is not a Nash equilibrium.

Due to the unstable Nash equilibrium when m∗ > m and non-Nash equilibrium when m∗ = m, it is
ill advised to use Shamir’s secret sharing as is in the rational setting. Several protocols have been devised
to solve this problem [5, 4, 1, 10, 9, 8, 7, 6, 11, 13, 2, 3], but only a handful have actually dealt with
rational secret sharing using an asynchronous broadcast channel. These include Maleka et al.’s result [10]
and Fuchsbauer et al.’s result [3], and Ong et al.’s result [13]. However, we contest that we can remove
the interactive dealer [10] and cryptographic primitives [3] at the cost of assuming that a few of the par-
ticipating players must be honest, but we believe that this is a reasonable assumption when the number is
small, as in our scheme. This idea of assuming a small minority of honest players with a rational majority
was first introduced by Ong et al. [13] and enabled them to obtain very strong results in rational secret
sharing. They were able to also address the use of asynchronous broadcast channels, however their method
differs from ours. Also, our protocol is able to handle coalitional deviations, which is one of the future
directions of work mentioned in [13].

A rational secret sharing scheme consists of two algorithms, the dealer’s algorithm and the player’s
algorithm. The dealer’s algorithm is used to distribute shares to each of the players. In our scheme, the
dealer’s algorithm is only used once before the start of play. The player’s algorithm is used by the players
in order to interpret the information of their own shares as well as the information sent by other players
and prescribes a set of actions to follow in order to progress the game. When we refer to the protocol in
our paper, we are referring to the player’s algorithm for the most part.

1.2 Our results

Our protocol is an m-out-of-n secret sharing scheme which utilizes an asynchronous broadcast channel,
involves a non-interactive dealer, and does not use any cryptographic primitives. Depending on the number
of honest players k+ 1 participating in the protocol, the protocol is resilient to coalitions of size up to and
including k and furthermore it is ε-resilient to coalitions of size up to and including m− 1. Choosing the
right value of k really depends on how many honest players you believe to be active in the network and
allows for a good tradeoff, more the number of players you believe play honestly, better the protection
against coalitions.

In Asharov and Lindell’s work [2], they talked about the concept of Ufi -independence of any player
i and it’s impossibility in the case of synchronous and asynchronous networks. Ufi of a player refers to
the utility gained by the player i when deviating in order to force another player to obtain a wrong value
as the secret. Ufi -dependence reflects how well a protocol deals with this utility of a player i. In order
to handle Ufi -dependence in non-simultaneous channels, they proposed a mechanism wherein they add
a number of completely fake rounds to the protocol. In the case of 2-out-of-2 secret sharing using their
mechanism, if the second player tries to deviate and achieve Ufi in a completely fake round, the first player
will know and hence both players will achieve their respective U−i , i.e. the utility gained when a player
does not get the secret. In this scenario, the second player stands to gain nothing from deviating in a
completely fake round and the fact that she does not know which rounds are completely fake acts as a
deterrent to her. The probability of deviating and fooling the other player becomes E(r)−f

E(r) , where f is the
number of completely fake rounds and E(r) is the expected number of rounds (including the completely
fake rounds). To achieve better protection, we need to increase the number of completely fake rounds
in the protocol. This leads to a longer expected time. In our protocol, we can achieve the same sort of
deterrent because despite a player’s deviation, the honest players will always reveal the game to be real
or fake. The only way that this will fail is if the deviating player manages to beat the authentication of
the message. For information theoretic message authentication which uses log 1

β bits, the probability of
beating the authentication is β. By trading off between linear time and logarithmic number of bits, we
are able to handle the Ufi -dependence of any player i while reducing the expected running time of the
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protocol.
Furthermore, our protocol is immune to backward induction.

1.3 Related Work

Work has already been done in the area of asynchronous broadcast by [10], [3], and [13]. In [10], the
authors suggested that by modifying their protocol and using repeated games with an interactive dealer,
it was possible to have a working protocol for asynchronous broadcast. Our protocol makes use of repeated
games, however it does not require an interactive dealer. In [3], the authors proposed a working protocol
for synchronous broadcast using cryptographic primitives and also extended their results to asynchronous
broadcast as well by modifying their protocol. Our protocol does not require any cryptographic primitives
but is instead information theoretically secure. In [13], the authors proposed a working protocol for
synchronous broadcast using the idea of an honest minority with rational majority and in the process
obtained very good results both in terms of expected number of rounds taken to finish the protocol as well
as in terms of the equilibrium used. They further extended this model to asynchronous broadcast, still
maintaining good results. However, in their protocol, it is required that the subset of honest players is a
random subset of k = ω(log n), where n, the total number of players, is sufficiently large. Our protocol
only places the restriction that k < m < n , where k + 1 players are honest in an m-out-of-n secret
sharing scheme. The difference between the schemes is that in order for theirs to work properly, n must be
sufficiently large, but ours will work for small groups of players as well as large groups. Furthermore, they
gained an exact notion of equilibrium (ε = 0) at the cost of having an approximate notion of fairness, i.e.
there is a negligible probability that the honest players may fail to compute the secret correctly if they
follow the prescribed protocol. Our protocol however achieves an exact notion of fairness. Also, in regards
to our equilibrium notion, we achieve ε-Nash equilibrium in most cases, but as the number of honest
players involved in the reconstruction protocol increases, so does the probability of obtaining a strict Nash
equilibrium. Finally, one of the future directions of work mentioned in [13] was to find a solution concept
which would be resilient to coalitional deviations. An earlier version of their paper [12] showed coalition-
proofness against stable coalitions in a model simpler than their fail-stop one. Our protocol is resilient to
coalitions of size ≤ k and furthermore ε-resilient to coalitions of size up to and including m− 1.

2 Definitions and Assumptions

2.1 Definitions

In order to understand the work done in subsequent sections of this paper, we must first define a few im-
portant terms. Please note that definitions 3.1 to 3.7 are taken from Kol and Naor’s paper [7] with slight
modifications. Please note especially that the term game as used in their definitions has been changed to
set of games in our definitions. This is done in order avoid confusion, due to the fact that we use repeated
games in our paper.
Definition 3.1: The utility function ui of a player is defined as a function which maps a player’s actions
to a payoff value in such a way that preferred actions result in higher payoff values.

Definition 3.2: We say that a player retrieves the designated value (the secret or F (x)) when out-
come o is reached, if according to o the player quits and outputs the right value. Let o and o′ be two
possible outcomes of the set of games, and let retrieve(o) be the set of players retrieving the value when o
is reached. If the following condition holds, then we say that the nature of the utility function is learning
preferring: ui(o) > ui(o′) whenever i ∈ retrieve(o) and i /∈ retrieve(o′) (players prefer to learn).

Definition 3.3: Note that we call a vector of players’ strategies a strategy profile, and use the fol-
lowing notations: α−i = (α1, ..., αi−1, αi+1, ..., αn), (α−i, α′i) = (α1, ..., αi−1, α

′
i, αi+1, ...αn), and ui(σ) =

Eo∼O(σ)[ui(o)] where O(σ) denotes the probability distribution over outcomes induced by the protocol σ.
Now, a behavioural strategy profile σ for a protocol is said to be a Nash equilibrium if for every i ∈ N
and any behavioural strategy σ′i, it holds that ui(σi, σ−i) ≥ ui(σ′i, σ−i).

Definition 3.4: A behavioural strategy profile σ for a set of repeated games is said to be a strict Nash
equilibrium if for every i ∈ N and any behavioural strategy σ′i, it holds that ui(σi, σ−i) > ui(σ′i, σ−i).
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Definition 3.5: A behavioural strategy profile σ for a set of repeated games is said to be a ε-Nash
equilibrium if for every i ∈ N and any behavioural strategy σ′i, it holds that ui(σi, σ−i) + ε ≥ ui(σ′i, σ−i),
where ε is a negligible value.

Definition 3.6: A coalition is a subset of the players who are active during the reconstruction phase.

Definition 3.7: A protocol is said to be resilient to coalitions of size t if even a coordinated devia-
tion by a coalition of that size or less won’t increase the utility of any of the players of the coalition.
According to the prescribed strategy, each player of the coalition, i ∈ C, plays the strategy σi and the
remaining players play σ−i. Let the player’s deviating strategy be σdi . Then the protocol is said to be
resilient to coalitions of size t if ∀i ∈ C,∀|C| ≤ t, it holds that ui(σi, σ−i) > ui(σdi , σ−i).

Definition 3.8: We say that a protocol is ε-resilient to a coalition of size t if no member of the coalition
can gain more than ε in the process of a coordinated deviation by the coalition. According to the pre-
scribed strategy, each player of the coalition, i ∈ C, plays the strategy σi and the remaining players play
σ−i. Let the player’s deviating strategy be σdi . Then the protocol is said to be ε-resilient to coalitions of
size t if ∀i ∈ C,∀|C| ≤ t, it holds that ui(σi, σ−i) + ε ≥ ui(σdi , σ−i), where ε is a negligible value.

Definition 3.9: We define the utility Ufi of a player i as the utility she gets if she is able to trick
the other players into believing that a non-secret is the secret. Ufi -dependence refers to how well the
protocol deals with this utility for any player i.

Definition 3.10: Backward induction can be described as follows. If we know that the last round of
a game is r, then we choose not to broadcast information in that round in order to gain in utility (if
other players broadcast while we do not, then we gain the secret while others may not). Since each
player thinks like this, common knowledge states that we all know that no one will broadcast in round
r, and hence round r − 1 effectively becomes the last round. Similarly, everyone will not broadcast in
r − 1 because it is now the last round and since that becomes common knowledge, round r − 2 becomes
the last round. This type of thinking continues until at last we don’t broadcast in any of the rounds.
Similarly, if we are dealing with repeated games, as in this paper, if we know when the last game of
the protocol will be played, then if we know when the last round (in our case, stage) of the last game is
to be played, we can choose not to play that game and effectively the previous game becomes the last game.

Definition 3.11: In our protocol to reconstruct the secret, we use repeated games. In that context,
we refer to the true game as the game, which upon completion, will reveal the actual secret.

2.2 Assumptions

As for the assumptions made, we follow several of those made in Fuchsbauer et al.’s paper [3] when it
comes to an asynchronous broadcast channel.

1. Any message sent will eventually be received, even if it is at time ∞.

2. Rational and malicious players may schedule the message delivery. In other words, players who are
not honest may schedule message delivery to benefit themselves.

3 Our Protocol

We consider that an Asynchronous Broadcast Channel is present and connects all the n players such
that a message sent from one player will be received by all the remaining players. Messages sent along
the channel may be delayed and received in an arbitrary order (but we have taken steps to prevent
this from happening), but they will eventually arrive at the receiver. All players broadcast their values
simultaneously.

At the heart of our protocol is a 2-stage game which is repeated a number of times depending on a
geometric distribution. First we describe the 2-stage game and then we describe how it is used.
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The information shared in stage 1 and stage 2 of the game correspond to the 2 stages in [2]. In stage
1, we broadcast player i’s share of Rj ⊗ Sj where Rj is a random number used in game j and Sj is the
possible secret used in game j. We also broadcast information theoretic authentication information about
the stage 1 information as done in [7]. In stage 2, we broadcast player i’s share of Rj as well as i’s share
of a boolean indicator, which indicates whether the current game is the true game or not. Here as well,
we broadcast information theoretic authentication information for stage 2. Note that we choose the value
of k according to the number of honest players “k + 1” participating in the protocol.

The game is played as follows. Initially everyone broadcasts their share of Rj⊗Sj and it is reconstructed
using m-out-of-n Shamir secret sharing. Once every player’s share has been received and is verified, stage
2 commences. Now, every player broadcasts their share of Rj and a boolean indicator. Both these values
are reconstructed using k-out-of-n Shamir secret sharing. The value of Rj⊗Sj Xored with Rj produces the
possible secret and the reconstructed boolean indicator tells us whether this game was the true game or not.
In stage 2, it is guaranteed that at least k people broadcast (even though k+ 1 people are honest players,
one of them may be the short player and this may be the true game, in which case k other long players are
required to reconstruct the secret). So, whether or not this game was the true game can be determined
except in the very rare case that a player manages to break the information theoretic authentication check
and pass off a forged stage 2 share. This would only happen with a negligible probability ε which can be
lowered by increasing the bit size on the security checking “tag” and “hash” values.

This game is repeated O( 1
β ) times until the short player (the player who has less number of games

to play) finishes playing all her games. At this point the short player should ideally broadcast ⊥, which
would be a message understood by all parties to signify that the player has finished playing all her games.
For our purposes, we may assume that ⊥ is represented by the value zero.

Dealer(y, β)
Let F = GF (p) where p ≥ |Y | prime, and associate each element of the secret set Y with an element of F .
Denote by G(β) the geometric distribution with parameter β.

• Create the list of possible secrets and random numbers:

– Choose l, d ∼ G(β) such that L = l + d− 1 is the size of the full list of possible secrets.

– Select a random ordering of the possible secrets such that the lth secret is the actual secret y.

– Generate a list of size L of random numbers.

• Create shares: Create n shares. One share will contain l − 1 cells and the remaining shares will
contain L cells. The player who gets the share with less number of cells is deemed the short player
and the remaining players are deemed the long players. The values in each cell of the short player are
the same as the values in the corresponding cells in the long players. The lth cell of the long players is
considered the true game and the secret revealed after playing the game will be the real secret. Each
cell corresponds to a 2-stage game and consists of the following information:
Stage 1 information:

– Masked Secret: An m-out-of-n Shamir share of Rj ⊗ Sj , where Rj is a randomly generated
number for game j and Sj is a possible secret for game j.

– Authentication Information: Information theoretic security checking as done in [7]. A “tag”
to prove the authenticity of the masked secret and “hash values” to check the authenticity of
other players’ tags.

Stage 2 information:

– Mask: A k-out-of-n Shamir share of Rj .

– Indicator: A k-out-of-n Shamir share of a boolean value indicating whether this game reveals
the true secret or whether the game should be repeated.

– Authentication Information: A “tag” to prove the authenticity of stage 2 information for
this game and “hash values” to verify the authenticity of other players’ tags.

• Add one more half cell (containing only stage 1 info) to each share.

• Assign shares: Randomly allot the shares to the players.

Table 1: Dealer’s share allotment protocol
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Playeri(share)
Set secret revealed ← FALSE and cheater detected← FALSE.
Repeat the following until secret revealed is TRUE or cheater detected is TRUE:

• If the player’s share ended (the player is at the final half cell containing only stage 1
info):

– If this is stage 1 of the game:

∗ Broadcast the player’s stage 1 tag and the player’s share of Rj ⊗ Sj .

∗ If anyone’s message did not pass the authentication check, set cheater detected←TRUE.

– If this is stage 2 of the game:

∗ Broadcast ⊥.

∗ If at least k people have broadcasted and their messages passed the authentication check,
set secret revealed←TRUE and leave the game.

∗ If anyone’s message did not pass the authentication check, set cheater detected←TRUE.

• If the player’s share did not end:

– If this is stage 1 of the game:

∗ Broadcast the player’s stage 1 tag and the player’s share of Rj ⊗ Sj .

∗ If anyone’s message did not pass the authentication check, set cheater detected ← TRUE.

∗ After the player has received all n− 1 of the other shares.

· If they all passed the authentication check, proceed to stage 2.

· Else leave the game.

– If this is stage 2 of the game:

∗ Broadcast the player’s stage 2 tag and the player’s share of the random number and
indicator.

∗ If anyone’s message did not pass the authentication check, set cheater detected ← TRUE.

∗ If at least k − 1 people have broadcasted and their messages passed the authentication
check:

· If the reconstructed indicator shows that this game revealed the true secret, then set
secret revealed ← TRUE and leave the game.

· If the reconstructed indicator shows that this game did not reveal the true secret and
someone broadcasted ⊥ in stage 1 or in stage 2, then set cheater detected ← TRUE
and leave the game.

∗ After other messages have arrived, if all have passed authentication check, then proceed
to next game in share. Else, leave the game.

• Leave the game: If secret revealed is TRUE, then the secret can be reconstructed as follows. First
reconstruct the masked secret using shares broadcasted in stage 1 of the game. Then construct the
mask using shares broadcasted in stage 2 of the game. Xor the mask and the masked secret to get
the secret. Quit and output the possible secret. If secret revealed is FALSE, then the real secret was
not obtained.

Table 2: Player i’s reconstruction protocol

Protocol Analysis
The key to our protocol is the honest players. An honest player disregards her utilities and plays the game
exactly as it is specified. Because of them, we can guarantee that some players will follow the protocol.
Because of this assurance we have more control and can guarantee good results as was done in [13]. Also,
if we look at previous results in the field of rational secret sharing, we come across [2], which basically said
that if we make secret sharing a two stage process wherein we first share the Xor of a random number
and the secret using m-out-of-n secret sharing and then follow that up by sharing the random number
using l-out-of-n secret sharing, where l is any number less than m, then we could provide an incentive
to players to not act maliciously, because even if they did, they would never benefit from it. This was
analyzed for simultaneous secret sharing and proven in the paper. However, in the cases of synchronous
broadcast and asynchronous broadcast, the incentive falls through and the idea cannot be used as is. [13]
used another approach coupled with a small minority of honest players in order to obtain good results for
synchronous broadcast. By using the idea of [2] coupled with honest players, we are able to obtain results
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for asynchronous broadcast.
As to our protocol having a strict Nash equilibrium with probability Pr(k+1

n ) and an ε-Nash equilibrium
with probability Pr(n−k−1

n ), the reason for this rests solely with who the short player is. When the short
player is honest, we can guarantee that she will not join a coalition or try to forge a fake secret during
the true game. In that case, due to the way in which we choose β, it is strictly better for all the players
involved to follow the protocol than to deviate. However, if the short player is not an honest player, then
she may try to forge a secret and may succeed with a negligible probability of ε. Hence, when the short
player is honest, we have a strict Nash equilibrium, else we have an ε-Nash equilibrium. The short player
will be an honest player with a probability of Pr(k+1

n ).
Our protocol is immune to backward induction because it maintains the property that after any history

that can be reached by the protocol, the protocol is still a strict Nash equilibrium with probability Pr(k+1
n )

and an ε-Nash equilibrium with probability Pr(n−k−1
n ). This is because one player is short while the others

are long. No one knows if they are the short player or the long player and hence they are forced to keep
playing. Furthermore, the honest players will always play irregardless of utility.

An idea also discussed in [2] is that of the Ufi -dependence of a player i. It basically deals with the fact
that a player may have something to gain by forcing other players to think they have the correct secret
when in fact they don’t, essentially making those players obtain a fake secret, and asks if it is possible to
create a protocol where the desire to force others to obtain such a fake secret may be counteracted. Our
protocol deals with this by intrinsically assuming that a possible secret is false until proven true. That
is to say that even if a party i aborts early in order to achieve a gain of Ufi , we don’t assume the secret
has been gained until and unless the secret is proven to be the true secret by the honest players, using
a boolean indicator. By the same token, one might consider the possibility of a player, who somehow
manages to discover which game reveals the true secret, trying to make it appear to be a fake secret by
sending an incorrect message. Our protocol is designed to detect this trickery using information theoretic
authentication and will correctly determine whether the current possible secret is indeed the true secret
with a negligible error probability of ε, where the information theoretic authentication of the messages
uses log 1

β bits and β is the parameter used for the geometric distribution in the dealer’s protocol.
The values of β0 and c0: We now need to calculate two values before we proceed to formulate our

theorem. This analysis is present in Kol and Naor’s paper [7] and will be repeated below (with slight
tweaks) for the sake of understanding. We first define the utility values for a player i as follows:

• Ui is the utility of a player i when she obtains the secret along with at least one player not belonging
to any coalition of which she is a part.

• U+
i is the utility of a player i when she obtains the secret and no player, other than those belonging

to her coalition, obtains the secret.

• U−i is the utility of a player i when she does not obtain the secret.

Now, if the set of secrets Y follows a distribution D, then let us assume that b ∈ Y is the secret with the
highest probability of being the actual secret according to D. In other words, ∀x ∈ Y,D(b) ≥ D(x). Let
the probability that a player i can guess the secret given the distribution D and her share be g.
If the player follows the protocol, then she will get Ui. If she deviates and gets the secret, then she will get
a utility of U+

i . If she deviates but does not get the secret, with a probability of 1− g, then she stands to
get a utility of U−i . Now, it matters to us to ensure that the expected utility from following the protocol
is more than the expected utility from deviating from the protocol. So, the following must hold true:

Expected utility (deviating) < Expected utility (following protocol)

g ∗ U+
i + (1− g) ∗ U−i < Ui

g ∗ (U+
i − U

−
i ) < Ui − U−i

g <
Ui − U−i
U+
i − U

−
i
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Let us call the ratio
Ui − U−i
U+
i − U

−
i

for a player i, ci. Since every player has learning preferring utilities, it

follows that U−i < Ui ≤ U+
i and hence ci > 0 for every player i. So, for a given player i to follow the

protocol, we must ensure that the chance of her deviating and getting the secret is less than ci. In order
for the protocol to work for every player, we must ensure that the probability of deviating and getting the
correct secret is less than all players’ ci’s. For a set of players N , we require

g < mini∈Nci

We call the value mini∈Nci as c0. Since every player’s guess is at least as good as D(b) we should require
D(b) < c0.
In our theorem we use β0 to cap the value of β, which is the parameter of the geometric distribution
used in the dealer’s algorithm. For now, we state that the value of β0 is mini∈N{ ci−D(b)

ci−D(b)+2∗z∗n+1} where
z = |Y |. The reason for this value lies in the proof of Theorem 1. However, do note that since we require
c0 > D(b), it follows that ci > D(b) which implies that β0 > 0 and hence this is a valid cap of β.

Theorem 1. Let Y be a finite set of secrets with distribution D, and let each rational player have
learning preferring utilities. If D(b) < c0, then for β < β0 and for all 2 ≤ m ≤ n, the scheme described
above is, for Y ,

• an asynchronous strict rational m-out-of-n secret sharing scheme with probability Pr(k+1
n ),

• an asynchronous ε-rational m-out-of-n secret sharing scheme with probability Pr(n−k−1
n ),

• immune to backward induction,

• and handles Ufi -dependence of any player i in a time efficient manner.

Depending upon the number of honest players k + 1, where 2 ≤ k ≤ m− 1, participating in the k-out-of-n
secret sharing stage of each game, the protocol will be resilient to coalitions of size ≤ k and furthermore
ε-resilient to coalitions of size up to and including m − 1. The scheme has expected round complexity of
O( 1

β ) and expected share size of O( 1
β log 1

β ).

Proof In order to prove this theorem, we need to prove the following things.
1. The expected round complexity of the reconstruction protocol and the expected share sizes are as
claimed.
2. Any group of m− 1 players or less will not be able to learn anything about the secret before the game
starts.
3. Any group of m players or more, where k + 1 of them are honest, correctly following the protocol will
be able to reconstruct the secret.
4. The strategies prescribed to every subset of m or more players, where k + 1 of them are honest, will
be strict best responses with a probability of Pr(k+1

n ) and will be ε-best responses with a probability of
Pr(n−k−1

n ).
5. The protocol is resilient to coalitions of size ≤ k and ε-resilient to coalitions of size up to and including
m− 1.
6. The protocol is immune to backward induction.
7. The proposed scheme handles Ufi -dependence of any player i in a time efficient manner.

To show (1), we can see that the total number of games is chosen according to the geometric distribution
G(β) and hence the expected round complexity is O( 1

β ). Also, the size of each cell of a share pertaining
to a game will be O(log 1

β ). This is due to the information theoretic authentication, which must be able
to prevent players from simply guessing the “tag” values with a probability greater than β and as such
trying to forge their own “tag” values for fake information. Therefore the expected size of each share will
be O( 1

β log 1
β ).

To show (2), we note that the first stage of each game played requires m players to come together in
order to reconstruct Rj ⊗ Sj , hence any group of less than m players will not be able to learn anything
about the secret prior to the start of the game.
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For (3), we claim that if m or more players correctly follow our protocol, then they will be able to
reconstruct the secret after the true game.

To show (4), we need to show that as long as no deviation was encountered, every player that does not
know the secret is strictly better off with a probability of Pr(k+1

n ) and ε-better off with a probability of
Pr(n−k−1

n ) to follow the protocol. This is quite similar to what was proven in Kol and Naor’s paper [7]
for Theorem 5.2. However, in our case, we are using an asynchronous channel instead of the simultaneous
channel that they used. As such, our proof also focuses on showing how our protocol tackles the asynchrony
present in the system.

We will first show that every player that does not know the secret is strictly better off with a probability
of Pr(k+1

n ) and ε-better off with a probability of Pr(n−k−1
n ) to follow the protocol. Following this, we

show how our protocol tackles the issue of asynchrony.
Let us denote the current game by t and let si be the size of the share assigned to player i. Let b be

the value with the highest probability of being the secret according to the probability distribution and let
z = |Y |. There are 2 cases to be considered, which are as follows.

Case 1: Player i’s share has ended (t = si + 1)
In this case, player i knows that she is the short player. One of two things will be true:
(i) Player i is an honest player. This is possible with a probability Pr(k+1

n ).
If this is the case, then she will not deviate from the protocol and the protocol will be a strict rational
protocol.
(ii) Player i is a rational player. This is possible with probability Pr(n−k−1

n ).
In this case, she will try to deviate and achieve a utility of U+. This is only possible if she is able to
trick others into believing that this game is not the true game, by modifying the indicator and bypassing
the authentication. She may do so with a probability of β. Let the probability of getting the secret by
deviating be α′. It follows that

α′ = β

It is enough to require that

α′ < ci

β < ci

β < β0

Case 2: Player i’s share has not ended (1 ≤ t ≤ si)
The part of the proof for this case is the same as given in Kol and Naor’s paper [7]. A copy of the proof
presented for this case for Theorem 5.2 in Kol and Naor’s paper [7] is given in the appendix (with slight
tweaks). At the end of it, we see that even in this case it is enough to require β < β0 in order to deter
players from deviating. Hence in both cases, the players will follow the protocol so long as β < β0 given
that D(b) < c0.

Furthermore, our protocol also effectively handles asynchronous broadcast, and this may be shown as fol-
lows. In the case of [7], the proof as it was presented was sufficient for a simultaneous broadcast channel. In
the case of asynchronous broadcast, several new problems arise which must be handled. The problems are:

1. Ordering the messages of a players’ shares so that other players knows which messages to combine
together. (Figuring out which of the several games’ data of another player’s share has been received.
And then making sure that all that all the data being used to reconstruct the secret belongs to the
same game.)

2. Synchronizing the players to prevent any player from gaining an unfair advantage. (Suppose one
player chooses not to send messages. How do we distinguish this case from that of a player’s message
taking infinitely long to reach.)
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The problems are addressed in our protocol as follows:

1. The problem of ordering of messages was taken care of thanks to the requirements for players to
move to the different stages of a game. For a player to move from stage 1 of a game to stage 2 of
the same game, she must first wait for the messages from all the other players. Furthermore, all
the messages must pass the information theoretic authentication check. Only then can she move
on to stage 2. Since the crucial information required to reconstruct the secret is transmitted in the
second stage of the game, it follows that players will broadcast the correct required information in
stage 1. Now, if the game currently being played is the true game, then it suffices for the honest
players to play as they should, even if everyone else keeps silent. And since any message broadcasted
will definitely reach (we had assumed this earlier just as Fuchsbauer et al.’s [3] assumed it in their
paper), we are guaranteed that the protocol succeeds in having everyone learn the secret. However,
should the current game not be the true game, then the incentive for all the players to transmit their
information is that if they do not, then the honest players will not proceed to the next game and
then there is no guarantee that the players will eventually discover the secret. A player may try to
guess which game is the correct game and then deviate in the final step, but deviation is not desired
since we have proved that by capping β with β0, player’s are suitably deterred from deviating from
the given protocol.

2. Synchronization of players is implemented by forcing players to play games one by one, and fur-
thermore, each game stage by stage. There is a clear end to each game and to each stage and this
provides us with a means of synchronization. Furthermore, players have no reason to deviate by not
sending messages. This is taken care of because β < β0.

To show (5), it is clear that as long as k + 1 honest players play the game, Rj will always be shared with
the other players and hence the secret will be reconstructed. Furthermore, if the number of players in the
coalition exceeds k but is less than m, then the coalition can only succeed if one of its members successfully
cheats the authentication and makes others believe that the true game is not the true game. This is only
possible with a negligible probability of ε.

For (6), consider the following. The long players do not know which game is the final game until after
it has occurred. As such, they won’t know when to deviate until it is too late. Only the short player has a
notion of which game is the last game, but that only occurs after her share has ended. Hence, the protocol
is immune to backward induction.

In order to prove (7), we note that a player i can only achieve a utility of Ufi if she is able to trick
other players into obtaining an incorrect secret. The flip side is that if a player deviates, but the remaining
players are not tricked, then the player does not obtain a utility of Ufi . In our protocol, even if a player
deviates (by say broadcasting wrong values in stage 1 or stage 2 of a game), unless she is able to pass
the information theoretic authentication check, which is possible with only a negligible probability of β.
Furthermore, for the same reason (authentication check) she cannot force others to obtain a wrong value
for the secret by faking the true game, since this is possible with only a negligible probability of β and
also because the honest players will always act properly and by following the protocol, will alert others
to any deception via the indicator. Hence the issue of Ufi -dependence is addressed via the strength of the
information theoretic checking. By increasing the strength of the checking (i.e. increasing the number
of bits required for the checking and thereby increasing the cell size), we can greatly reduce the Ufi -
dependence to the point where only if Ufi >> Ui, will the player attempt deviating in this manner. This
can be done without having to increase the number of games played, compared to the solution used in [2].

�

4 Addition of Malicious Players

A malicious player is someone who disregards her utility values and whose only goal is to disrupt the
game. They can do this by causing the game to stop early, misleading others to believe that they have the
right secret when they don’t, or causing some players to get the secret and others not to. A step in the
direction of dealing with malicious players was made by Lysyanskaya and Triandopoulos in [8], where they
dealt with a situation where both rational and malicious players were involved in a game. They concluded
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that it was possible to play such a game but they were unable to prevent early stoppage. Our protocol is
also able to function properly even with malicious players, but it cannot prevent early stoppage. It can,
however, prevent the other two problems mentioned above. However, Theorem 1. needs to be modified
in order to incorporate this new element.

Theorem 2. Let Y be a finite set of secrets with distribution D, and let each rational player have
learning preferring utilities. If D(b) < c0, then for β < β0 and for all 2 ≤ m ≤ n, the scheme described
above is, for Y ,

• an asynchronous strict rational m-out-of-n secret sharing scheme with probability Pr(k+1
n ),

• an asynchronous ε-rational m-out-of-n secret sharing scheme with probability Pr(n−k−1
n ),

• immune to backward induction,

• and handles Ufi -dependence of any player i in a time efficient manner.

Let t players be the number of malicious players actively involved in the protocol. Depending upon the
number of honest players k + 1, where 2 ≤ k ≤ m− 1, participating in the k-out-of-n secret sharing stage
of each game, the protocol will be resilient to coalitions of size ≤ k − t and ε-resilient to coalitions of size
up to and including m− 1− t. The scheme has expected round complexity of O( 1

β ) and expected share size
of O( 1

β log 1
β ).

This change in the theorem occurs because one way the malicious players can disrupt the game is by
sending their shares to one player, through a side channel, but not to others. In order to avoid this, we
must reduce the size of coalitions so that even if all malicious players send their shares to members of a
coalition, that coalition will still not be able to reconstruct the secret on their own.

The proof for this theorem follows in the same vein as that of Theorem 1.

5 Open Problems

This paper brings up new and interesting problems. This paper attempts to probe the case of asynchronous
broadcast through the lens of information theoretic security. Is it also possible to probe the case of asyn-
chronous point to point communication through the lens of information theoretic security and still come
out with satisfying protocols? Is it possible to further improve the coalition resilience and communication
complexity of the current protocol? All these questions and more stem from this work.
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A Proof of Case 2 (Player i’s share has not ended)

The following is the proof as to why any player i is better off following the prescribed strategy when her
share has not ended, i.e. 1 ≤ t ≤ si, as long as β < β0. This proof is taken from Kol and Naor’s paper [7]
as the proof for case 2 under the 4th point for the proof of Theorem 5.2. The proof has been tweaked to
suit the interests of the protocol in the current paper.

We denote by true game prob the probability that the current game is the true game, given the player’s
share and transcript of moves thus far. The idea now is to prove that true game prob is a very small value.
Intuitively, if a player is near the end of her share, then she believes she has the short share, and if the end
of her share is still far far away, then she assumes that she is the long player and thus any future game
could be the true game.

Claim 1. true game prob ≤ z∗n∗β
1−β

Proof of Claim 1. The only parameters viewed by player i that are relevant when determining whether
the current game is the true game are: the number of the current game, t, player i’s share size, si, and the
current unmasked possible secret yt (player i learned this secret after the t− 1th game. The other values
viewed by player i are independent of the secret and its revelation time. Assume that si = k (k > t),
yt = a, and that player i0 is the one with the short share.

true game prob = Pr(l = t|l ≥ t ∧ yt = a ∧ si = k)

=
Pr(l = t ∧ yt = a ∧ si = k)
Pr(l ≥ t ∧ yt = a ∧ si = k)

=
Pr(i 6= i0 ∧ l = t ∧ yt = a ∧ si = k)

Pr(i = i0 ∧ l ≥ t ∧ yt = a ∧ si = k) + Pr(i 6= i0 ∧ l ≥ t ∧ yt = a ∧ si = k)

We now calculate the individual values of the numerator and denominator of the last fraction. Recall that
if t is the true game (t = l) then yt = y, where y is the real secret, otherwise yt = rt for a randomly chosen
rt ∈ Y .
The term in the numerator:

Pr(i 6= i0 ∧ l = t ∧ yt = a ∧ si = k)
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= Pr(i 6= i0) ∗ Pr(l = t) ∗ Pr(y = a) ∗ Pr(d = k − t+ 1)

=
n− 1
n
∗ β ∗ (1− β)t−1 ∗ D(a) ∗ β ∗ (1− β)k−t

=
n− 1
n
∗ D(a) ∗ β2 ∗ (1− β)k−1

The first term in the denominator:

Pr(i = i0 ∧ l ≥ t ∧ yt = a ∧ si = k)

= Pr(i = i0) ∗ Pr(rt = a) ∗ Pr(l = k + 1)

=
1
n
∗ 1
z
∗ β ∗ (1− β)k

The second term in the denominator:

Pr(i 6= i0 ∧ l ≥ t ∧ yt = a ∧ si = k)

= Pr(i 6= i0) ∗ Pr(rt = a) ∗
k∑

j=t+1

Pr(l = j) ∗ Pr(d = k − j + 1)

(t is not the true game) +

Pr(i 6= i0) ∗ Pr(y = a) ∗ Pr(l = t) ∗ Pr(d = k − t+ 1)

(t is the true game)

=
n− 1
n
∗ 1
z
∗

k∑
j=t+1

β ∗ (1− β)j−1 ∗ β ∗ (1− β)k−j +

n− 1
n
∗ D(a) ∗ β ∗ (1− β)t−1 ∗ β ∗ (1− β)k−t

=
n− 1
n
∗ β2 ∗ (1− β)k−1 ∗

(
1
z
∗ (k − t) +D(a)

)
Therefore,

true game prob =
n−1
n ∗ D(a) ∗ β2 ∗ (1− β)k−1

1
n ∗

1
z ∗ β ∗ (1− β)k + n−1

n ∗ β2 ∗ (1− β)k−1 ∗ (1
z ∗ (k − t) +D(a))

=
(n− 1) ∗ D(a) ∗ β

1
z ∗ (1− β) + (n− 1) ∗ β ∗ (1

z ∗ (k − t) +D(a))

≤ z ∗ n ∗ β
(1− β)

�

After completing some number of games in her share, the distribution over the secrets for player i may
have changed. Let us call this new distribution D′. D′ differs from D because when the current unmasked
secret is yt, the probability of yt being the real secret increases. Corresponding to this new distribution,

13



let the element with the highest chance of being the secret be b′ ∈ Y . As we can infer, the higher the
D′(b′), the better chance player i has of guessing the secret correctly.

Claim 2. D′(b′) ≤ true game prob+D(b)
Proof of Claim 2. We see that D′(b′) will have its highest value when the current unmasked secret is
the value which had the highest chance of being the real secret according to the initial distribution, i.e.
yt = b. When this is the case, automatically b = b′. Therefore:

D′(b′) ≤ Pr(y = b|l ≥ t ∧ yt = b ∧ si = k)
= Pr(y = b ∧ l = t|l ≥ t ∧ yt = b ∧ si = k)+
Pr(y = b ∧ l 6= t|l ≥ t ∧ yt = b ∧ si = k)

≤ true game prob+D(b)

�

The final part of the proof comes from the fact that if a player i deviates in the current game, then only
if one of 3 conditions occurs, can she get the secret. These 3 conditions are:

• The current game is the true game. This occurs with probability true game prob.

• In case this is not the true game, then player i was not caught in the act of cheating. This is true
only if she beats the information theoretic authentication check and this occurs with a probability
of β.

• Finally, in case player i was caught, then she was able to guess the correct secret. The player’s best
chance of guessing the secret is D′(b′).

Once again, we require that the probability of deviating but still getting the secret of a player i be capped
by ci. Hence:

true game prob+ β +D′(b′) < ci

2 ∗ true game prob+ β +D(b) < ci

2 ∗ z ∗ n ∗ β
1− β

+ β < ci −D(b)

2 ∗ z ∗ n ∗ β + (1− β) ∗ β < (1− β) ∗ (ci −D(b))
β ∗ (2 ∗ z ∗ n+ 1 + ci −D(b)) < ci −D(b)

β <
ci −D(b)

ci −D(b) + 2 ∗ z ∗ n+ 1
β < β0

�
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