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Abstract—In a distributed storage system, codes for efficient
repair of failed nodes has attracted significant recent research
attention. Ideas from network coding and interference alignment
have been used successfully to show bounds and construct coding
schemes for efficient repair. In this article, we use ideas from
classical algebraic codes to interpret the requirements of efficient
repair as existence of certain specific types of codewords in the
dual code. Since the construction is quasicyclic and works over
small fields, it appears to be a promising method for reducing
the computational complexity of efficient repair codes.

I. INTRODUCTION AND NOTATION

We consider a distributed storage system, where a K-bit
message is encoded into a N -bit codeword and stored in
n = N/b nodes with each node storing b bits. The code is
constructed such that a data collector, interested in accessing
the message, will be able to recover the message by connecting
to any k = K/b out of the n nodes, downloading kb = K
bits and running a decoding algorithm. Therefore, from a data
collector’s point of view, maximum distance separable (MDS)
codes provide a natural construction for distributed storage.
Frequently, a node in the distributed storage system will fail
requiring replacement by another node. The process of repli-
cating the information of a failed node in a new node is called
exact repair. Seminal study of efficient repair in distributed
storage systems was reported in [1]. Several code constructions
for different types of repair and limits have been later reported,
and these results have been summarized in [2]. As a result of
these studies, it has become apparent that standard MDS codes
are not sufficient by themselves for efficient and exact repair.
In this article, we report constructions of quasicyclic MDS
codes that allow for efficient exact repair. We will use the
following notation to describe our construction.

We will let b = αm (for some positive integers α and
m), and view the bits stored in each node as a length-α
vector over GF(2m). The vector stored in node i is denoted
c̄i = [ci,1 ci,2 · · · ci,α], 1 ≤ i ≤ n with coordinates
ci,j ∈ GF(2m). A codeword distributed over n nodes is
denoted c = [c̄1 c̄2 · · · c̄n]. The set of all such codewords is
denoted as the code C. We see that the code C is over the
alphabet A = GF(2m)α, which denotes the set of all α-tuples
over GF(2m). So, |A| = 2αm, and the blocklength of C is n
over A. The message length of C over A is k = K/b.

In the “distributed storage with efficient repair” problem ,
the following properties of C are important considerations:

1) Data collection: The K-bit message can be recovered
from [c̄i : i ∈ S] for any subset S ⊆ {1, 2, · · · , n} with
|S| = k.

2) Efficient, exact repair for node n: In case node n fails,
the bits c̄n in node n can be computed exactly with
βi < α symbols over GF(2m) sent from node i for
1 ≤ i ≤ n − 1. The number of symbols sent for repair∑n−1
i=1 βi should be strictly lesser than kα = K, the

number required for data collection.

For the data collection property to be satisfied, it is clear
that the code C will have to be MDS over the alphabet A with
a minimum distance (over A) of n− k + 1.

The code C is said to be quasicyclic, if [c̄1 c̄2 · · · c̄n] ∈ C
implies [c̄2 c̄3 · · · c̄n c̄1] ∈ C. If C is quasicyclic, ensuring
efficient exact repair for node n guarantees that the same repair
property is applicable for all nodes.

Another useful view of a codeword of C is the following.
A codeword c = [c̄1 c̄2 · · · c̄n] can be thought of as a
concatenation of α length-n vectors ci = [c1,i c2,i · · · cn,i] for
i = 1, 2, · · · , α. We will use the notation c = [c1|c2| · · · |cα]
to denote this concatenation. Note that each vector cj is stored
over n nodes with one symbol ci,j stored in node i.

Since we consider cyclic codes over the field GF(2m), we
will assume that n is odd. This ensures that there exists a
positive integer s such that n divides 2sm− 1. Extensions for
general n are possible using standard methods.

In the terminology of [2] [3], we have let d = n− 1 be the
number of nodes that will participate in the regeneration. The
code C is said to be MSR (minimum storage regenerating)
with no symbol extension if βi = 1 (for all i) and α = n− k.
The efficiency of regeneration using a non-MSR code C can be
measured by comparison with a MSR code. Since a MSR code
needs n−1 symbols for repair, the difference

∑n−1
i=1 βi−(n−1)

is a measure of efficiency in repair.
In prior work, product matrix and interference alignment

ideas were used in [3] [4] for constructing codes and de-
veloping bounds on parameters for which exact repair is
possible. In [5] and [6], algebraic ideas have been used in code
construction. While [5] presents codes of rate 1/2, projective
geometry ideas are used in [6]. In contrast, we use ideas
from standard cyclic coding theory in our construction and
the method can be used for rates greater than 1/2 as well.



II. CONSTRUCTION FOR α = 2

For α = 2, the code C is defined as follows:

C = {[c1|c2] :
[
H11

H12

]
cT1 +

[
0
H22

]
cT2 = 0}, (1)

where H11, H12 and H22 are (n−k)×n matrices with entries
from GF(2m), and 0 represents a (n− k)×n all-zero matrix.
We will choose the matrices Hii (i = 1, 2) to be parity-check
matrices of (n, k) cyclic codes (denoted Cii) over GF(2m).
The first row of Hii, denoted [hii,0 hii,1 · · · hii,n−1], specified
in polynomial notation as hii(x) =

∑n−1
l=0 hii,lx

l, is the check
polynomial of Cii. The second row of Hii is a cyclic right
shift of the first row, and so on for other rows. As per standard
cyclic codes theory [7], hii(x) is a degree-k polynomial that
divides xn + 1.

The first row of H12, denoted [h12,0 h12,1 · · · h12,n−1],
is written as h12(x) =

∑n−1
l=0 h12,lx

l in polynomial notation.
The second row of H12 will be a cyclic right shift of the first
row, and so on, as before. However, unlike the hii(x), we will
not impose any degree or divisor constraint on h12(x), as of
now.

A. Dimension of C

The definition in (1) implies that for a codeword c, we need
(a) H11cT1 = 0 and (b) H12c1 = H22c2. There are (2m)k

vectors c1 that satisfy (a). For each such choice, there are
(2m)k vectors c2 that satisfy (b). Hence, the total number of
codewords in C is (2m)2k = (22m)k, and the dimension of C
over A = GF(2m)2 is k.

We proceed to determine conditions on hij(x) that make
the overall code C MDS over A and quasicyclic.

B. MDS condition

Let the minimum distance of Cii be di for i = 1, 2.
For a nonzero c ∈ C, either (a) c1 6= 0, which implies

wt(c1) ≥ d1, since H11cTi = 0 according to the definition of
(1); or (b) if c1 = 0, then c2 6= 0 and H22cT2 = 0 according
to the definition of (1). Hence, wt(c2) ≥ d2.

Therefore, for a nonzero codeword c ∈ C, wt(c) ≥
min(d1, d2) over the alphabet A. Now, for C to be MDS,
we need min(d1, d2) = n − k + 1 with d1 ≤ n − k + 1 and
d2 ≤ n−k+1. This condition is satisfied if d1 = d2 = n−k+1
i.e. Cii are MDS over GF(2m).

C. Quasicyclic condition

For the code C as defined in (1) to be quasicyclic, we need

h12(x)ĥ22(x) = 0 mod h11(x), (2)

where ĥ22(x) = (xn + 1)/h22(x). The proof is given in the
appendix.

D. Efficient and Exact Repair

We use the dual of C to determine and describe conditions
for efficient exact repair. A vector b = [b̄1 b̄2 · · · b̄n], where
b̄i = [bi,1 bi,2] and bi,j ∈ GF(2m), is said to be in the dual of
C as defined in (1), if

[b1,1 b2,1 · · · bn,1]cT1 + [b1,2 b2,2 · · · bn,2]cT2 = 0 (3)

for all c ∈ C. In concatenation notation, we will denote a
dual vector as b = [b1|b2], where bi = [b1,i b2,i · · · bn,i] for
i = 1, 2.

From (1), we see that [uH11 +vH12|vH22] is a dual vector
for C for all length-(n − k) vectors u and v over GF(2m).
Let us denote the set of such dual vectors as

C⊥ = {[uH11 + vH12|vH22] : u,v ∈ GF(2m)n−k2}. (4)

Suppose node n fails, and a new node can access the nodes
1 to n − 1. In that case, ci,j for 1 ≤ i ≤ n − 1 and j = 1, 2
are available for download to the new node, while cn,1 and
cn,2 are unknowns. Note that a dual vector b provides one
equation, such as (3), involving the two unknowns. So, given
two dual vectors, say [a1|a2] and [b1|b2] in C⊥, the new node
can attempt to solve for the two unknowns and replicate the
information in the failed node n. The equation to be solved
can be written as follows:[

a1|a2

b1|b2

]
[c1|c2]T =

[
a1

b1

]
cT1 +

[
a2

b2

]
cT2 = 0,

which can be rewritten as

M1

[
c1,1
c1,2

]
+M2

[
c2,1
c2,2

]
+ · · ·+Mn−1

[
cn−1,1

cn−1,2

]
= Mn

[
cn,1
cn,2

]
,

(5)
where

Mi =
[
ai,1 ai,2
bi,1 bi,2

]
(6)

for i = 1, 2, · · · , n.
For (5) to be solvable for the two unknowns cn,1 and cn,2,

we need that rank(Mn) = 2. Also, we see that the number
of symbols to be downloaded from node i is given as βi =
rank(Mi) for i = 1, 2, · · · , n− 1. For the code C to be MSR,
we require that βi = 1 and α = n − k = 2. So, for C to be
MSR, we require n− k = 2 and [a1|a2], [b1|b2] in C⊥ such
that

an,1bn,2 + an,2bn,1 6= 0,
ai,1bi,2 + ai,2bi,1 = 0, 1 ≤ i ≤ n− 1.

In vector notation the above MSR condition can be written
as

a1 ∗ b2 + a2 ∗ b1 = [0 · · · 0 δ], (7)

where ∗ denotes the element-wise product of two vectors (x ∗
y = [x1y1 x2y2 · · ·xnyn]) and δ ∈ GF(2m) is nonzero.



III. FOURIER DOMAIN CONSTRUCTION FOR α = 2

Since n divides 2sm−1, there exists a primitive n-th root of
unity in GF(2sm), which we denote γ. Also, GF(2m) is a sub-
field of GF(2sm). For a length-n vector a = [a0 a1 · · · an−1]
(in polynomial notation, a(x) = a0 + a1x + a2x

2 + · · · +
an−1x

n−1) with ai ∈GF(2m), the finite Fourier transform
or the Mattson-Solomon (MS) polynomial [7] is defined as
A(z) =

∑n−1
j=0 A−jz

j , where Aj = a(γj) =
∑n−1
i=0 aiγ

ij for
j = 0,±1,±2, · · · . We will use the following notation: for
a vector a, the polynomial notation is a(x) and the Fourier
transform is written A(z). See [7] for properties of the Fourier
transform. Two crucial properties are listed below for future
reference.

1) The Fourier transform of a∗b is the circular convolution
A(z)B(z) mod zn + 1.

2) If a(γ−j) = 0, then A−j = 0 i.e. the coefficient of zj

is zero in the Fourier transform A(z).
We will now interpret the construction of (1) and its

various requirements in the Fourier domain. As noted above,
the Fourier transforms of the polynomials h11(x), h22(x)
and h12(x) will be denoted H11(z), H22(z) and H12(z),
respectively.

A. Dimension and Distance

Since the dimension of Cii (i = 1, 2) is equal to k, hii(x)
has exactly k zeros in the set {1, γ, γ2, · · · , γn−1}. Hence, by
property 2 of Fourier transforms, Hii(z) has exactly n − k
nonzero terms i.e. Hii(z) is of the form

Hii(z) =
n−k∑
l=1

Hii,lz
eii,l . (8)

We will refer to {Hii,l : 1 ≤ l ≤ n−k} and Eii = {eii,l : 1 ≤
l ≤ n − k} as the nonzero coefficients and nonzero powers
of Hii(z), respectively. Note that the powers of γ that are
nonzeros of hii(x) are given as −Eii mod n.

We now consider the minimum distance requirements on
Cii. From Section II-B, we require Cii to be MDS over
GF(2m). From the theory of cyclic codes [7], we know that
Cii is MDS whenever the nonzero powers of Hii(z) are
in an arithmetic progression (AP) (modulo n) with common
difference relatively prime to n.

To summarize, if Hii(z) is of the form of (8) with the
powers {eii,l : 1 ≤ l ≤ n − k} in an AP modulo n with
common difference relatively prime to n, the dimension and
distance requirements are satisfied.

B. Quasicyclic condition

We will now characterize E12, the nonzero powers of
H12(z). Note that E12 is determined by the possible nonzeros
of h12(x).

Suppose h11(x) and h22(x) have been fixed. From (2), we
see that all powers of γ that are nonzeros of h11(x) can
also be nonzeros of h12(x). Similarly, all nonzeros of h22(x)
can also be nonzeros of h12(x). Therefore, the powers of
γ that are possible nonzeros of h12(x) are −E11 ∪ −E22

mod n. So, the nonzero powers of H12(z) form the set
E12 = E11 ∪ E22. We will denote the elements of E12 as
E12 = {e12,1, e12,2, · · · , e12,L}, where L = |E11 ∪ E22|.

Thus, H12(z) has the form

H12(z) =
|E11∪E22|∑

l=1

H12,lz
e12,l . (9)

C. Repair

Using the properties, we take the Fourier transform of (7)
to obtain

[A1(z)B2(z) +B1(z)A2(z)]n = δ

n−1∑
i=0

γizi, (10)

where [(·)]n stands for mod z7+1 and δ ∈ GF(2m) is nonzero.
Since [a1|a2] and [b1|b2] are in C⊥ and obey the structure

[uH11 + vH12|vH22], there are some constraints between
the coefficients of the polynomials A1(z), A2(z), B1(z) and
B2(z). Suppose

[a1|a2] = [uaH11 + vaH12|vaH22], (11)
[b1|b2] = [ubH11 + vbH12|vbH22], (12)

where ua, ub, va and vb are arbitrary length-(n− k) vectors
over GF(2m). Taking Fourier transforms of the above equa-
tions, we get

A1(z) =
n−k−1∑
l=0

ua,lH11(γ−lz) +
n−k−1∑
l=0

va,lH12(γ−lz),

(13)

A2(z) =
n−k−1∑
l=0

va,lH22(γ−lz), (14)

B1(z) =
n−k−1∑
l=0

ub,lH11(γ−lz) +
n−k−1∑
l=0

vb,lH12(γ−lz),

(15)

B2(z) =
n−k−1∑
l=0

vb,lH22(γ−lz), (16)

where the coordinates of ua, ub, va and vb have been indexed
from 0 to n − k − 1 using a natural notation. Since ua and
ub are arbitrary, the first summation terms in (13) and (15)
simply provide the Fourier transform of an arbitrary codeword
of C11. Therefore, they can be replaced by

∑n−k
l=1 wi,lz

eii,l for
arbitrary wi,l, i = 1, 2, l = 1, 2, · · · , n − k. Simplifying the
second summation term of (13) and (15) using (9), we have
the following forms for A1(z) and B1(z):

A1(z) =
n−k∑
l=1

w1,lz
e11,l +

|E12|∑
l=1

va(γ−e12,l)H12,lz
e12,l , (17)

B1(z) =
n−k∑
l=1

w2,lz
e22,l +

|E12|∑
l=1

vb(γ−e12,l)H12,lz
e12,l , (18)

where va(x) =
∑n−k−1
l=0 va,lx

l and vb(x) =
∑n−k−1
l=0 vb,lx

l.



D. Search for codes

The polynomials A1(z), A2(z), B1(z) and B2(z) in the
form given by (17), (14), (18), (16) are substituted in (10)
to obtain the main equation that needs to be satisfied for the
construction of a quasicyclic MDS code with efficient exact
repair. The unknowns to be solved are E11, E22, {wi,j}, the
coefficients of H11(z), H12(z) and H22(z), and the vectors
va and vb.

To facilitate computational search, we first fix n, k and
m, and then choose at random the AP E11, the AP E22,
the coefficients of H22(z), the vector va and the vector vb.
With these choices made, the condition (10) provides linear
equations in the remaining unknowns, namely {wi,j} and the
coefficients of H12(z). The existence of solutions to this set
of linear equations can be readily checked. If a solution exists,
we are done. Else, the process is repeated with another set of
random choices.

Whenever the above computational search succeeds, we
have a quasicyclic MDS code with efficient exact repair.

E. Choice of n, k and an example

According to bounds reported in [4], MSR codes for exact
repair are not possible if d = n−1 < 2k−3. Since we suppose
that α = n− k, we require k > α+ 2 or n > 2α+ 2.

For α = 2, the only interesting odd-n case is n = 5 and
k = 3. We show one construction for n = 5 over GF(4) (i.e.
m = 2). Let κ ∈GF(16) be a primitive element. Then, γ = κ3

is a primitive 5-th root of unity, and ω = κ5 is a primitive
element of GF(4) i.e. GF(4) = {0, 1, ω, ω2}.

A computer search yields the following choices for the
polynomials and vectors required in the construction:

H11(z) = κz2 + κ4z3, H22(z) = κ8z + κ2z4,

H12(z) = κ11z + κ7z2 + κ13z3 + κ14z4,

h11(x) = 1 + ωx+ ωx2 + x3, h12(x) = 1 + x,

h22(x) = 1 + ω2x+ ω2x2 + x3,

[
a1|a2

b1|b2

]
=
[
ω2 ω2 1 0 1 | 1 ω2 ω2 1 0
0 1 1 0 0 | 0 1 ω2 ω2 1

]
.

We notice that βi = 1 for 1 ≤ i ≤ 4 and rank(M5) = 2 for
the above reconstruction vectors, and the code is MSR.

Beyond the MSR condition, construction of efficient exact
repair codes is interesting whenever n and k are such that
k/n > 1/2 [2]. Following the same computer search pro-
cedure, we are able to construct efficient exact repair codes
for n = 7, k = 4 with d = 6 over GF(8). However, since
α = 2 < n − k = 3, this code is not MSR. We see that 6
symbols are needed for repair, while the message is of length
8 symbols. For n = 7, k = 4, d = 6 MSR codes with α = 3
have been reported in the literature [4]. For these (7, 4) MSR
codes 6 symbols are needed for repair, when the message is
of length 12 symbols.

IV. CONSTRUCTION FOR α = 3

In this section, we will describe extensions of our quasi-
cyclic approach for α = 3. While we have not yet been able
to construct MSR codes with α = 3, we report some close-
to-MSR codes in terms of symbols needed for repair.

For α = 3, one possible extension to the construction of (1)
is as follows.

C = {[c1|c2|c3] :

H11

0
H13

 cT1 +

 0
H22

H23

 cT2 +

 0
0
H33

 cT3 = 0},

(19)
where the matrices Hij (applicable i and j) are n−k×n with
entries from GF(2m) and 0 is the n− k × n all-zero matrix.

A. Distance, quasicyclic nature and repair

We will let Hii (i = 1, 2, 3) be parity check matrices of
(n, k) cyclic MDS codes Cii. The check polynomials and their
Fourier transforms are denoted hii(x) and Hii(z), respectively.
The nonzero powers of Hii(z) will need to be in an AP modulo
n with common difference coprime to n. The rows of the
matrices Hij will be cyclic shifts of the first row, as before.
With the same proof as before, we can show that the code
in (19) is quasicyclic, whenever the set of nonzero powers of
H23(z) is the union of the nonzero powers of H22(z) and
H33(z), and the set of nonzero powers of H13(z) is the union
of the nonzero powers of H11(z) and H33(z).

Dual vectors for α = 3 have the form [u1H11 +
u3H13|u2H22 + u3H23|u3H33]. When node n fails and can
connect to nodes 1 to n − 1, three dual vectors [p1|p2|p3],
[q1|q2|q3] and [r1|r2|r3] are needed for solving for the three
unknowns. The equation can be written as

M1

c1,1c1,2
c1,3

+M2

c2,1c2,2
c2,3

+· · ·+Mn−1

cn−1,1

cn−1,2

cn−1,3

 = Mn

cn,1cn,2
cn,3

 ,
(20)

Mi =

pi,1 pi,2 pi,3
qi,1 qi,2 qi,3
ri,1 ri,2 ri,3

 , 1 ≤ i ≤ n− 1. (21)

We will need rank(Mn) = 3, and we have that the number of
symbols to be downloaded from node i is βi = rank(Mi).

B. Fourier domain search

The linear dependency condition for efficient repair given
by (10) in the Fourier domain is now applied repeatedly
for the components of the three dual vectors needed in the
reconstruction. One set of possibilities is the following:

[P1(z)R2(z) + P2(z)R1(z)]n = δ1

n−1∑
i=0

γizi, (22)

[P1(z)R3(z) + P3(z)R1(z)]n = δ2

n−1∑
i=0

γizi, (23)



[Q1(z)R2(z) +Q2(z)R1(z)]n = δ3

n−1∑
i=0

γizi, (24)

[Q1(z)R3(z) +Q3(z)R1(z)]n = δ4

n−1∑
i=0

γizi, (25)

where δi 6= 0, i = 1, 2, 3, 4. Using simplifications similar to
the case when α = 2, we fix the nonzeros powers of Hii(z)
(i = 1, 2, 3), the nonzero coefficients of H33(z) and Ri(z)
(i = 1, 2, 3). This results in linear equations for the coefficients
of Pi(z), Qi(z) (i = 1, 2, 3) and the coefficients of H13(z)
and H23(z). However, because of the non-exhaustive nature
of the conditions (22), (23), (24) and (25), simply finding a
solution is not sufficient. We have to further check that the
solution satisfies the condition that the rank of Mn is three.
Also, we need to compute the values of βi = rank(Mi), i =
1, 2, · · · , n− 1 to check the efficiency of the repair process.

C. Results

For α = 3, we attempted computer search for n = 7 and
k = 4 over GF(8). We can report that there are several codes
with suitable reconstruction dual vectors that result in exactly
two of the βi (i = 1, 2, 3, 4, 5, 6) equal to 2 and the rest
being 1. This implies that a new node will need to download
one symbol each from 4 nodes and 2 symbols each from the
remaining 2 nodes to exactly compute the symbols in the failed
node. Therefore, 8 symbols are needed for a code with 12
message symbols. As discussed before [4], the best MSR code
for these parameters can perform exact repair by download-
ing only 6 symbols. One such (7,4) code is the following:
H11(z) = γ6z4 + γ3z5 + γ2z6, H22(z) = γ + γ3z + z2,
H33(z) = γz + γ4z3 + z5, H13(z) = γ6z + γz3 + γ5z4 +
z5 + γ3z6, H23(z) = γ4 + γ2z + γ2z2 + γz3 + γ3z5. The
reconstruction dual vectors, listed one below the other, are[

1 γ4 0 0 γ3 γ γ4

1 γ3 γ4 1 γ6 0 0

γ2 γ6 0 γ3 γ4 1 γ6

∣∣∣∣∣ 0 0 0 0 γ4 γ4 γ
0 0 1 0 1 0 γ

0 0 0 γ4 γ5 γ3 γ4

∣∣∣∣∣ γ
2 γ5 0 0 γ3 γ γ

γ2 γ4 0 γ2 γ6 0 γ3

γ4 1 γ2 1 γ4 1 γ6

]
,

with γ ∈ GF(8) being a primitive element.

V. CONCLUDING REMARKS

We presented quasicyclic MDS codes with efficient exact
repair properties for 2 and 3 symbols per node. We have used
a parity check matrix method for construction with a suitable
structure to ensure that the code is quasicyclic. Dual vectors
are used in the reconstruction process with a Fourier domain
search that simplifies the problem considerably.

Several aspects of the construction and search method are
new in the area of codes for distributed storage with efficient
exact repair. Also, the codes reported here have the advantage
of simplicity both in terms of cyclic reconstruction and small
field sizes.

While the construction appears to be fairly complete for two
symbols per node, there are several interesting possibilities
that have been unexplored in the three symbols per node case.
However, for the two symbols per node case, the search for a
(7, 4) code with d = 5 remains an interesting problem.
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APPENDIX

Suppose c = [c1|c2] ∈ C. Then, H11cT1 = 0 and H12cT1 =
H22cT2 = [s1 s2 · · · sn−k2 ]T . Let a cyclic right shift of c be
denoted [c′1|c′2], where c′1 = [cn,1 c1,1 c2,1 · · · cn−1,1] and
c′2 = [cn,2 c1,2 c2,2 · · · cn−1,2].

Since H11 is a parity check matrix for a cyclic code, we
have H11c′T1 = 0. Since c′i is a cyclic right shift of ci, we
see that H12c′T1 = [s′ s1 s2 · · · sn−k2−1] and H22c′T2 =
[s s1 s2 · · · sn−k2−1], since rows of Hij are cyclic right shifts
of the first row. So, for C to be quasicyclic, we only need
s′ = s or

[h12,1 · · ·h12,n−1 h12,0][c1,1 c2,1 · · · cn,1]T+

[h22,1 · · ·h22,n−1 h22,0][c1,2 c2,2 · · · cn,2]T = 0,

for all c = [c1|c2] ∈ C. Hence, we need [h1|h2] =
[h12,1 · · ·h12,n−1 h12,0|h22,1 · · ·h22,n−1 h22,0] to belong to
the dual C⊥ i.e. there should be u,v such that [h1|h2] =
[uH11 + vH12|vH22]. In polynomial notation, we need u(x)
and v(x) with degree < n− k such that

x−1h12(x) = u(x)h11(x) + v(x)h12(x) mod xn + 1,
(26)

x−1h22(x) = v(x)h22(x) mod xn + 1. (27)

Since h22(x)ĥ22(x) = xn + 1,

x−1h22(x) = [(1 + ĥ22(x))x−1]h22(x) mod xn + 1,

where we have used the fact that ĥ22,0 = 1. From the above,
we let v(x) = [(1+ĥ22(x))x−1], which is a degree-(n−k−1)
polynomial that satisfies (27). Using v(x) = [(1+ĥ22(x))x−1]
in (26), we require u(x) such that

h12(x)ĥ22(x) = u(x)h11(x) mod xn + 1,

which is possible whenever h12(x)ĥ22(x) = 0 mod h11(x).
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