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The correspondence between linear codes and representablematroids is well known. But a similar correspon-
dence between quantum codes and matroids is not known. We show that representable symplectic matroids over
a finite fieldFq correspond toFq-linear quantum codes. Although this connection is straightforward, it does
not appear to have been made earlier in literature. The correspondence is made through isotropic subspaces.
We also show that the popular Calderbank-Shor-Steane (CSS)codes are essentially the homogenous symplec-
tic matroids while the graph states, which figure so prominently in measurement based quantum computation,
correspond to a special class of symplectic matroids, namely Lagrangian matroids. This association is useful in
that it enables the study of symplectic matroids in terms of quantum codes and vice versa. Furthermore, it has
application in the study of quantum secret sharing schemes.
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I. INTRODUCTION

Matroids are mathematical structures that abstract the idea
of independence. Originally, introduced by Whitney, they
have since found applications in various fields most notably
in algorithms, combinatorial optimization, graphs, cryptogra-
phy, coding theory to name a few. A particular class of ma-
troids called the representable matroids are closely related to
error-correcting codes. In fact, the so-called representations
of these matroids give rise to linear codes; further, one can
obtain matroids from linear codes. This correspondence goes
much deeper in that certain invariants of the code are essen-
tially invariants of the matroid as well. (Most well-known
is the connection between the weight enumerator of a linear
code and the Tutte polynomial of the matroid associated to
the code.)

Given these associations one is tempted to ask if we can find
a similar correspondence between quantum codes and (a class
of) matroids? The answer to this question, as we shall see, is
surprisingly simple and straightforward. In fact, it goes back
to the many ways we can view matroids. But this connection
does not appear to have made in the literature so far.

The main results of this paper are the correspondence be-
tween quantum codes and matroids, and applications of this
correspondence. Strictly speaking we establish a correspon-
dence between quantum codes and objects which are more
general than matroids, called the symplectic matroids. Sym-
plectic matroids generalize matroids, although their definition
is somewhat more complicated than matroids. Our result has
important applications. It can be used to study quantum codes
using matroids and vice versa. We also find an application for
these results in quantum secret sharing. We show how certain
symplectic matroids induce quantum secret sharing schemes.
There are many important open problems that arise with this
connection and we are hopeful that further research along
these lines will be fruitful for either communities of quantum
information theorists and matroid theorists.

∗ pradeep@phas.ubc.ca

II. BACKGROUND

A. Symplectic matroids

Our presentation of the symplectic matroids follows the
exposition in [1] very closely. Consider the sets[n] =
{1, . . . , n} and [n]∗ = {1∗, . . . , n∗}. Let J = [n] ∪ [n]∗

and define an involution onJ as

∗ : J → J, wherei 7→ i∗ and(i∗)∗ = i (1)

This map can be extended naturally to subsets ofJ . A set
S ⊂ J is said to be admissible ifS ∩ S∗ = ∅. A transversal
is an admissible set of sizen; it is a maximal admissible set.
Consider now the group of permutations on the setJ ; a per-
mutation is said to be admissible if it commutes with the invo-
lution. This group of admissible permutations onJ , denoted
asW , is the hyperoctahedral group of symmetries, the group
of symmetries of the hypercube[−1, 1]n in n-dimensions.

Consider the ordering of the elements ofJ as given by

n > n− 1 > · · · > 2 > 1 > 1∗ > 2∗ · · · > n∗. (2)

We now define another ordering on the setJ by means of
the admissible permutationw ∈ W . We say thati ≤w j if
and only ifw−1i ≤ w−1j. Let w be given by the following
permutation:

(

1 2 . . . n n∗ . . . 2∗ 1∗

i1 i2 . . . in in+1 . . . i2n−1 i2n

)

This permutation induces the ordering≺ given by

i1 < i2 < · · · < in < in+1 < · · · < i2n.

Clearly,≺ induces an ordering on the subsets ofJ . It can also
be used to order subsetsA,B ⊂ J . Given two subsetsA =
{a1, . . . , am}, andB = {b1, . . . , bm}, we say thatA ≤w B
if and only if ai ≤w bi, where we assumed thatA andB have
been ordered as{a1 ≺ a2 ≺ · · · ≺ am} and{b1 ≺ b2 ≺
· · · ≺ bm} respectively.

Definition 1 (Symplectic matroids). Let Jk be the collection
of admissiblek-subsets ofJ andB ⊆ Jk. A tuple(J, ∗,B)
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is a symplectic matroid if and only if it satisfies the following
condition:

For every admissible ordering of the setJ , there exists a
unique maximal setB ∈ B such that for allA ∈ B, we have
A ≺ B.

The condition mentioned above is often called theMaxi-
mality condition . The elements ofB are called bases while
B itself is called collection of the bases of the symplectic ma-
troid. The cardinality of the bases is called is the rank of the
matroid. (All the bases have the same size.) If the rank of the
symplectic matroid is the maximal value ofn, then it is said
to be a Lagrangian matroid.

Remark 1. Suppose we setJ = [n] and instead ofW , we
consider the symmetric group of all permutations, ie. all per-
mutations onJ are admissible. Then the tuple(J,B), where
B is a collection ofk-subsets ofJ , is a matroid if and only ifB
satisfies the Maximality condition. In this case the involution
plays no role. It is common in this case to refer toJ as the
ground set.

B. Representable symplectic matroids

It is often convenient to deal with what are known are as the
representations of a matroid. These representations provide us
with a concrete object to work with and study the properties
of the matroid. An ordinary matroid is said to have a repre-
sentation if the elements of the ground set can be identified
with the columns of a matrix (typically over some field) such
that columns indexed by the bases are maximally linearly in-
dependent columns of that matrix.

Some symplectic matroids can also be endowed with rep-
resentations. In this case instead of a standard vector space
(with an orthogonal basis), we consider a symplectic vector
space. That is a space of dimension2n and endowed with
a symplectic form〈·, ·〉, whose basis{e1, . . . , en, e∗1, . . . , e

∗
n}

satisfies the following relations:

〈ei, ej〉 = 0, i 6= j∗ (3)

〈ei, e
∗
i 〉 = −〈e∗i , ei〉 = 1 (4)

Definition 2. A vector spaceV over a fieldF is said to be
isotropic if and only if for anyu, v ∈ V we have〈u, v〉 = 0,
where〈·, ·〉 is the inner product.

LetU be an isotropic subspace of a symplectic vector space.
Suppose we write down a basis of this isotropic space as the
rows of a matrixM = [A|B] ∈ Fk×2n, wherek is the di-
mension ofV ; then we must haveABt = BAt. Index the
columns ofM by the setJ = [n] ∪ [n]∗. Let B ⊂ J such
thatB ∩B∗ = ∅ and|B| = k. Then if thek × k minor ofM
indexed byB is nonzero, then we say thatB is a basis ofM .
LetB denote the collection of bases ofM . Then(J, ∗,B) is a
symplectic matroid overF.

Proposition 1 ([1]). Let the row space ofM = [A|B] ∈
F
s×2n be an isotropic subspace with respect to a symplectic

form. ThenM is the representation of a symplectic matroid.

A symplectic matroid is said to be homogenous if for every
basisB ∈ B, we have|B ∩ [n]| is same. For such a matroid
|B ∩ [n]∗| is also independent ofB. If such a matroid is rep-
resentable then its representation is of the form

M =

[

X 0
0 Z

]

,

whereXZt = 0. For the rest of the discussion in this paper
we will assume that the matroid representations are over a fi-
nite fieldFq; occasionally we specialize to the case ofF2 for
simplicity.

III. CONNECTIONS WITH QUANTUM CODES

We recall some of the notions relevant for quantum codes.
We will confine our discussion to additive quantum codes, in
particular to stabilizer codes. Interested readers can findmore
details in [2, 3] for binary quantum codes and [4–7] for non-
binary versions. Letq be the power of a primep andFq a
finite field. Suppose thatCq denotes theq-dimensional com-
plex vector space. Fix a basis forCq asB = {|x〉 | x ∈ Fq}.
We define error operators onCq asX(a)|x〉 = |x + a〉 and
Z(b)|x〉 = ωtrq/p(bx)|x〉. Error operators onn suchq-level
quantum systems are operators onCqn and are obtained as
tensor products of the operators onC

q. These error operators
form the generalized Pauli group which is denoted as

Pn = {ωcX(a1)Z(b1)⊗ · · · ⊗X(an)Z(bn)}, (5)

whereω = ej2π/p.
An ((n,K, d))q quantum code is aK-dimensional sub-

space of theqn-dimensional complex vector spaceCqn and
able to detect all errors on fewer thand subsystems. When
K = qk, it is also denoted as an[[n, k, d]]q code. A stabilizer
code is the joint eigenspace of an abelian subgroup ofPn. The
subgroup is called the stabilizer of the code. For a nontrivial
quantum code, the stabilizer does not have any scalar multiple
of identity other than the identity itself.

By defining a map between the Pauli group and the vector
spaces overF2n

q , we can establish a correspondence between
quantum codes and classical codes. This correspondence with
the classical codes has been used extensively in the study of
quantum codes [2–7]. An elementωcX(a1)Z(b1) ⊗ · · · ⊗
X(an)Z(bn) in Pn is mapped to(a1, . . . , an|b1, . . . , bn) ∈
F2n
q . Under this mapping the stabilizer of the quantum code

is mapped to aFp-linear subspace ofF2n
q . If the image of the

stabilizer is also anFq-linear subspace then we say that it is an
Fq-linear quantum code. In this paper we restrict our attention
to Fq-linear codes only. The image of a set of generators of
the stabilizer under this map is often called a stabilizer matrix.

The relevant bilinear form that we endowF2n
q with is the

symplectic inner product defined as follows. Letu, v be two
vectors inF2n

q whereu = (a|b) = (a1, . . . , an|b1, . . . , bn)
andv = (c|d) = (c1, . . . , cn|d1, . . . , dn). Then their sym-
plectic inner product is defined as

〈u|v〉s = (a · d− c · b). (6)
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It is Fq-linear in the sense that〈u|v〉s = 0 if and only if
〈αu|βv〉s = 0 for all α, β ∈ Fq. It can be easily checked
that this form is asymmetric as〈u|v〉s = −〈v|u〉s. Denoting
the standard basis ofF2n

q as{ei, . . . , en, e∗1, . . . , e
∗
n}, we can

check that〈ei|ej〉s = 0 for i 6= j∗, and〈ei|e∗i 〉s = 1.
In this case the stabilizer matrix of anFq-linear [[n, k, d]]q

quantum code defines an isotropic subspace ofF2n
q and is an

element ofF(n−k)×2n
q . This gives us the following result:

Proposition 2 ([2, 3]). Let Q be an [[n, k, d]]q Fq-linear
quantum code, then the row space of the stabilizer matrix of
the code defines an isotropic subspace of dimensionn− k.

Putting together with our discussion on the representations
of symplectic matroids the following result is immediate.

Theorem 1. LetQ be an[[n, k, d]]q Fq-linear quantum code.
ThenQ induces a representable symplectic matroid overFq

of rankn − k. If Q is a CSS code it induces a representable
homogenous matroid.

Proof. This is an immediate consequence of Proposition 2 and
Proposition 1. The stabilizer matrix of a CSS code is precisely
the same form as in equation (11), (see [2]) and consequently,
it induces a homogeneous symplectic matroid.

It turns out the distance of the quantum code is related to
the cardinality of the circuit of smallest size but to prove it
more precisely we must wait till we have a few more results
in hand.

With appropriate permutation of the columns of its repre-
sentation a representable Lagrangian matroid can be put in
the form

[

I A
]

, whereA is a symmetric matrix. IfA is
such that its diagonal is all zero then we can identify it with
adjacency matrix of a (weighted) graph. Recall that a graph
state overF2 is defined as the quantum state whose stabilizer
is given by

S =

〈

Kv | v ∈ V (G);Kv = Xv

∏

u∈N(v)

Zu

〉

(7)

whereV (G) is the vertex set ofG andN(v) is the set of
neighbors ofv. If G is a weighted graph we can define a
graph state overFq with stabilizer as follows:

S =

〈

Kv | v ∈ V (G);Kv = Xv(1)
∏

u∈N(v)

Zu(wuv)

〉

(8)

wherewuv is the weight of the edgeuv. See [8, 9] for more
details on nonbinary graph states.

Since a stabilizer state corresponds to an[[n, 0, d]]q code,
Theorem 1 implies the following:

Corollary 2. Every graph state induces a representable La-
grangian matroid.

We pause to note a few differences with respect to the cor-
respondence between matroids and classical codes. In case
of classical codes the independent sets correspond to a sub-
set of errors that are detectable. The codewords correspondto

dependent sets. Further, the minimally dependent codewords
characterize the matroid completely. (A minimal codewordx
does not contain the support of any other codewordy, unless
y is the scalar ofx.) The supports of these minimal codewords
are called circuits of the associated matroid. The concept of
circuits can be generalized for symplectic matroids but cir-
cuits are most useful in the characterization of special cases
of symplectic matroids such as Lagrangian matroids.

Classical (linear) codes have well-defined dual codes, on
the other hand, there is no equivalent notion of a dual quantum
code for a quantum code be it linear or additive. And not sur-
prisingly, we find that a similar notion of duality is lackingfor
symplectic matroids. There has been a suggestion by Borovik
[10] to use the involution defined in equation (1) for defining
duals, however this suggestion seems to be most fruitful for
the Lagrangian matroids and not for the general symplectic
matroids.

Remark 2 (Quantum codes and ordinary matroids). Suppose
that an [[n, k, d]]q quantum code isFq2 -linear, then we can
also associate an ordinary matroid to that code in addition to
a symplectic matroid. In this case the stabilizer matrix can
be represented by a(n − k)/2 × n matrix overFq2 . In this
particular instance, we can associate the vector matroid of
this matrix to the quantum code. ThusFq2-linear codes afford
multiple associations to matroids.

A. New quantum codes from graphical symplectic matroids

Quantum codes from graphs have been studied extensively
in the context of fault tolerance. We now propose a new class
of quantum codes induced by graphs by way of symplectic
matroids. These are derived from the graphical symplectic
matroids proposed by Chow [10].

The graphical symplectic matroids are defined as follows.
Let G be a graph ofn edges. Label the edges of the graph by
a transversalT ⊂ [n] ∪ [n]∗. (Recall that a transversal in an
admissible set of sizen.) A cycle inG is called balanced if
there are an even number of edges labeled with elements from
[n]∗, otherwise it is said to be unbalanced. An admissible set
S ⊂ [n] ∪ [n]∗ is an independent set if it is either a forest or
every connected component is a tree plus an edge such that
the cycle has an odd number of edges in[n]∗. It is the import
of [10, Theorem 2], that the maximal independent sets form
the bases of a symplectic matroid.

Assuming a connected graph, we can state some properties
of these symplectic matroids. If the graph is a tree, then the
rank of the symplectic matroid is|V | − 1. If the graph is not
a tree, then the rank is|V |. If these matroids are representable
then we have a quantum code from Theorem 1. However, all
graphic symplectic matroids are not representable [10]. Sup-
posing that it is representable then the code has parameters
[[|E(G)|, |E(G)| − |V (G)|, d]]q , whered ≥ the smallest cy-
cle in the graph.

As an example, the complete graph on three vertices is iden-
tical to the graph state on that graph. For dense graphs the
associated codes are not likely to have good distance. On
the other hand, sparse graphs might lead to good quantum
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codes. The main reason for proposing these codes is to il-
lustrate the possibility that matroids can provide new perspec-
tives on quantum codes.

B. New symplectic matroids via quantum codes

Unlike matroids, symplectic matroids are a little more re-
stricted in obtaining new symplectic matroids from existing
ones. There are a however, few constructions known for con-
structing symplectic matroids: contraction, truncation,Higgs
lift and direct sum [1]. For the representable symplectic ma-
troids which correspond toFq-linear quantum codes one can
relate these constructions to familiar coding theoretic opera-
tions.

Consider a symplectic matroid of rankk whose collection
of bases are given byB. Contraction (along)a ∈ J is defined
by the following operation:

B′ = {B | (B ∪ {a}) ∈ B}, (9)

whereB′ is the collection of bases of the resulting symplectic
matroid. This translates to obtaining an[[n − 1, k]]q from an
[[n, k]]q code. Truncation modifiesB as

B′ = {A ∈ Jk−1 | A ⊂ B ∈ B}. (10)

In coding theoretic terms this is equivalent to obtaining an
[[n, n− k+1]]q quantum code from an[[n, n− k]]q quantum
code.

On the other hand deletion corresponds to puncturing on the
underlying code and as this does not always preserve a self-
orthogonality of the code, this construction does not general-
ize. An interesting method for constructing new symplectic
matroids is the so-called Higgs lift [1]. This corresponds to
obtaining an[[n, k − 1]]q code from an[[n, k]]q code.

Two symplectic matroids can be combined to give rise to a
third matroid in many ways. The simplest method is the direct
sum method. Concatenation is a popular method to construct
new codes and if done appropriately it gives rise to another
self-orthogonal code. There are many flavors of concatenating
quantum codes [4, 11]. These constructions can be translated
to equivalent constructions of symplectic matroids.

C. Transformations of symplectic matroids

One of the most studied equivalence of quantum codes is
local equivalence, especially local Clifford equivalence. It is
natural to ask if this corresponds to any equivalence on the as-
sociated symplectic matroids. The (representable) symplectic
matroids are not going to be preserved under local Clifford
operations in general. This can be checked with the complete
graph on 3 vertices and the graph obtained by local comple-
mentation at any of the vertices. The symplectic matroid asso-
ciated with the line graph on 3 vertices has the representation





1 0 0 0 1 1
0 1 0 1 0 0
0 0 1 1 0 0





with the associated bases being
{{1, 2, 3}, {1∗, 2∗, 3}, {1∗, 2, 3∗}} On the other hand,
the symplectic matroid of graph state on the complete graph
on three vertices which is local Clifford equivalent to it has
the representation





1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0





This symplectic matroid has its collection of bases
{{1, 2, 3}, {1∗, 2∗, 3}, {1∗, 2, 3∗}, {1, 2∗, 3∗}}. This prompts
the question is there an operation by which we can express
this transformation of the symplectic matroid in terms of an
operation on its bases?

One of the methods to obtain an equivalent symplectic ma-
troid is via the torus action defined as follows. Let[A|B]
be the representation of a symplectic matroid. Then for
any invertiblen × n diagonal matrixT , the representation
[AT−1|BT ] is also a representation of the symplectic matroid.
The torus action gives rise to an equivalent quantum code with
the same parameters. Furthermore, the weight distributionof
the code is unchanged under the torus action.

D. Representable homogeneous symplectic matroids

Given a symplectic matroid define a circuit to be a min-
imally dependent admissible subset ofJ . Then we have
the following characterization for the homogenous symplec-
tic matroids. These results will be needed later in the section
on quantum secret sharing.

Lemma 3. Every circuit of a representable homogeneous
symplectic matroid consists of either elements in[n] or [n]∗.

Proof. Suppose that there is a minimally dependent admissi-
ble setC ⊂ J such thatC ∩ [n] 6= ∅ andC ∩ [n]∗ 6= ∅.
Without loss of generality assume thatC = {1, . . . ,m, (m+
1)∗, . . . , p∗}. Assume that the representation of the symplec-
tic matroid is given by

M =

[

X 0
0 Z

]

. (11)

As C is a circuit, there exists a linear combination of the
columns{1, . . . ,m} and the columns{(m + 1)∗, . . . , p∗}.
However given the fact that the representation of the matroid
is of the form equation (11), the columns{1, . . . ,m} and
{(m + 1)∗, . . . , p∗} are linearly dependent as well. But this
implies thatC is not a minimally dependent set. Therefore
every circuit of the homogenous symplectic matroid is either
a subset of[n] or [n]∗ but not both.

Theorem 4. Representable homogenous symplectic matroids,
satisfy the Circuit elimination property: IfC1, C2 ∈ C, such
thate ∈ C1 ∩C2 andC1 ∪C2 is admissible, then there exists
a circuitC ∈ C such thatC ⊆ (C1 ∪ C2) \ {e}.
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Proof. Let C1 andC2 be two circuits ofM. By Lemma 3,
every such circuit consists of elements in[n] or [n]∗. Suppose
thatC1 ∩ C2 6= ∅. Then this is possible if and only if both
C1, C2 ⊂ [n] or C1, C2 ⊂ [n]∗. Without loss of generality
assume thatC1, C2 ⊂ [n]. Let e ∈ C1 ∩ C2. Thene can
be expressed a linear combination of columns inC1 \ {e} as
well asC2 \ {e}. It is then immediate thatC1 ∪2 \{e} is
a dependent set and must contain a minimal dependent set
equivalently a circuit in[n], which is clearly an admissible set.
Thus representable homogenous symplectic matroids satisfy
the circuit elimination property.

Before we move to some applications of these results, we
raise the question we address the issue of invariants for the
symplectic matroids.

E. Invariants for symplectic matroids

An important invariant associated with matroids is the rank
polynomial. As a weight enumerator captures many of the in-
variants of the code (such as distance), the rank polynomial
encodes information about many invariants of the matroids.
The rank polynomial has been related to other polynomials
of interest such as Tutte polynomial of a graph, the Kauffman
polynomial of a knot, the partition function and has been stud-
ied extensively in view of its relevance to complexity theory.
But from a coding theoretic point of view the weight enumera-
tor and the rank polynomial are closely related. All this brings
up the question if there are similar polynomials for the sym-
plectic matroids which are of interest to quantum codes. A
general answer to this question eludes us, but when we fo-
cus our attention to the Lagrangian matroids, we can partially
answer this question.

In [12], Bouchet studied graph polynomials for isotropic
systems that are related to the Tutte polynomial of an associ-
ated graph. Isotropic systems are essentially Lagrangian ma-
troids. Consequently the following Tutte-Martin polynomials
as defined by Bouchet are only defined for Lagrangian ma-
troids.

Definition 3 (Restricted Tutte-Martin polynomial). LetL be a
Lagrangian matroid. Define the restricted Tutte-Martin poly-
nomial as

m(L;x) =
∑

S∈Jn

(x− 1)n−rk(S). (12)

wheren = rk(L).

We could attempt to define a similar polynomial for sym-
plectic matroids that are not Lagrangian. For a symplectic
matroid,L we define the restricted Tutte-Martin polynomial
as

m(L;x) =
∑

S∈Jk

(x− 1)k−rk(S). (13)

wherek = rk(L).
SupposeM is a representable Lagrangian matroid, with

representation[I|A], for some symmetric matrix,A. Then its

restricted Tutte-Martin polynomial is the same as the interlace
polynomial of a graphG with adjacency matrixA. Note that
the interlace polynomialqN (x) is defined as [13]

qN (G;x) =
∑

S⊆V (G)

(x− 1)corank(G(S)), (14)

whereG(S) is the subgraph ofG induced byS. Bouchet who
originally defined the restricted Tutte-Martin polynomialgave
it in a slightly different form.

Recent work [14] has made the connection between inter-
lace polynomial and orbits of quantum states and codes under
edge local complementation. Perhaps the most famous poly-
nomial associated to matroids is the rank polynomial or the
Tutte polynomial. It does not seem possible to define a Tutte
polynomial for a symplectic matroid in general and might re-
quire an expansion of the definition of symplectic matroid.

IV. APPLICATION FOR QUANTUM SECRET SHARING

In [15], connections between matroids and quantum se-
cret sharing schemes were investigated. It was shown that
identically self-dual matroids induce quantum secret shar-
ing schemes thereby this establishing a connection between
matroids and quantum secret sharing schemes. However, it
was somewhat limited in that only quantum secret sharing
schemes that are realized using a CSS code were within that
correspondence. In present section we intend to make this ma-
troidal correspondence stronger by including a larger class of
schemes some of which can be realized by non-CSS codes.

Given a Lagrangian matroidL whose collection of bases is
B, we can define the dual matroid as follows. The collection of
bases of the dual matroid are given byB∗ = {B∗ | B ∈ B}.
Similarly, the collection of circuits of the dual matroid are
given byC∗ = {C∗ | C ∈ C}. Elements ofC∗ are also
called cocircuits ofL.

LetL be a self-dual Lagrangian matroid, then we define an
access structure from the circuits ofL as follows. Define the
mapϕ : [n] ∪ [n]∗ → [n] where

ϕ(i) =

{

i if i ∈ [n]
i∗ if i ∈ [n]∗

(15)

We obtain an access structure by consideringi ∈ [n] as the
dealer. The induced minimal access structure is given as

Γi,min = {ϕ(A) | A ∪ {i} orA ∪ {i∗} ∈ C}, (16)

whereC is the collection of circuits ofL. We say a Lagrangian
matroid is secret sharing if the access structure induced byit
for anyi ∈ [n] is a quantum access structure. (Such an access
structure is monotonic and satisfies the no-cloning theorem.
In terms of minimal access structures, it means that any two
authorized sets are not disjoint.)

It is possible that a Lagrangian matroid can induce a quan-
tum access structure for somei ∈ [n] but not alli. For sim-
plicity we consider the case when it induces on alli ∈ [n].

We do not yet have a condition for which Lagrangian ma-
troids induce quantum access structures and which do not.
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We provide partial answers in both directions. First we give
a necessary condition for a Lagrangian matroid to induce a
quantum secret sharing scheme. Then we give a sufficient
condition for a Lagrangian matroid to induce a secret sharing
scheme.

Theorem 5. Suppose thatG is a graph wihtout loops or multi-
edges and whose adjacency matrix is given byA. LetL be a
Lagrangian matroid induced byG such thatL is represented
by

[

I A
]

. If G has no cycles of length≤ 4 and no vertices
of degree 1, then the access structure induced byL is not a
valid quantum access structure.

Proof. A Lagrangian matroid of this type corresponds to a
graph state whose stabilizer is given by

S = 〈Kv | v ∈ V (G)〉 , whereKv = Xv

∏

i∈N(v)

Zi

andV (G) is the vertex set ofG andN(v) is the set of neigh-
bors ofv. The associated Lagrangian matroid has the repre-
sentation

[

I A
]

. Consider access structure induced by the
vertexv.

Γv,min = {ϕ(A) | A ∪ {v} orA ∪ {v∗} ∈ C}.

Of interest are two elements inC that are induced by the gen-
eratorsKu, whereu,w ∈ N(v). By assumption|N(v)| > 1.
Therefore there are at least two generatorsu,w ∈ N(v). The
supports of generators correspond to circuits and are of the
{u}∪N(u)∗ and{w}∪N(w)∗ respectively. Consequently the
sets induced by these circuits are of the formsupp(Ku) \ {v}
andsupp(Kw) \ v. We claim that these two sets are disjoint.
Suppose that they are not, then there exists a vertexx 6= v
such thatx ∈ supp(Ku) ∩ supp(Kw). This implies thatG
has a 4-cycle contrary to assumptions. Therefore these two
circuits induce disjoint authorized sets and the induced access
structure cannot be a quantum access structure.

Lemma 6. Let L be a self-dual Lagrangian matroid whose
collection of circuits is given byC. Then the collection of
cocircuits ofL is given byC∗ = {C∗ | C ∈ C} = C.

Proof. Let B be the collection of bases of the matroid. Then
collection of bases of the dual matroid is given byB∗ = {B∗ |
B ∈ B}. LetC ∈ C be a circuit of the matroid. SinceB∗ is
also an element ofB, C is not a subset ofB∗ for anyB ∈ B.
Therefore,C∗ is in C as well, andC = C∗ = {C∗ | C ∈
C}, which is precisely the collection of circuits of the dual
matroid.

Theorem 7. LetL be a self-dual Lagrangian matroid. Then
the access structureΓi,min as defined in equation(16) is a
valid quantum access structure.

Proof. Let A′ andB′ be two authorized sets inΓi,min. Then
there exist two circuitsA ∪ {a} andB ∪ {b} such thatA′ =
ϕ(A) andB′ = ϕ(B), wherea, b ∈ {i, i∗}. Suppose that
a 6= b. We observe thatB∗ ∪ {b∗} must be a cocircuit ofL.
SinceL is self-dual it follows thatB∗ ∪ {b∗} is a circuit ofL.
Sinceϕ(B) = ϕ(B∗), we can instead considerB∗. Without
loss of generality we can assume thata = b = i.

The self-duality ofL implies thatB ∪ {i} is a cocircuit of
L. By [1, Theorem 4.2.5] it follows that

|(A ∪ {i}) ∩ (B ∪ {i})| 6= 1.

But this implies that|A ∩ B| ≥ 1 for any pair of minimal
authorized sets. This is the necessary and sufficient condition
for an access structure to be a minimal quantum access struc-
ture.

Corollary 8. A self-dual Lagrangian matroid induces a quan-
tum secret sharing scheme.

However, self-dual Lagrangian matroids are not the only
matroids which induce valid quantum access structures. Con-
sider the Lagrangian matroid whose representation is givenby
the following matrix.















0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 0 0 0 1 1 0
0 1 0 1 0 0 0 0 0 0 1 1
0 0 1 0 1 0 0 1 0 0 0 1















The circuits of this matroid are given by

C =



















{1, 3∗, 4, 5∗}, {1, 4∗, 5, 6∗}, {1, 2∗, 5∗, 6},
{1, 2, 3∗, 6∗}, {1, 2∗, 3, 4∗}, {1∗, 2∗, 4, 5},
{1∗, 3∗, 5, 6}, {1∗, 2, 4∗, 6}, {1∗, 2, 3, 5∗},
{1∗, 3, 4, 6∗}, {2, 3∗, 4∗, 5}, {3, 4∗, 5∗, 6},
{2, 4, 5∗, 6∗}, {2∗, 3, 5, 6∗}, {2∗, 3∗, 4, 6}



















The access structure induced by the treating the first coordi-
nate as the dealer is given by

Γ1,min =







{2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5},
{2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6},

{3, 5, 6}, {4, 5, 6}







This is precisely the access structure of the((3, 5)) threshold
scheme and it can be realized using the[[5, 1, 3]] code. As
this matroid is not self-dual, it shows that class of matroidal
quantum secret sharing schemes is strictly larger than the class
induced by the class of self-dual Lagrangian matroids.

The dual of a matroidM = (J,B) is given byM∗ =
(J,B∗), whereB∗ = {J \ B | B ∈ B}. A matroid is said
to be identically self-dual ifM = M∗. In [15], it was shown
how to construct quantum secret sharing schemes from inden-
tically self-dual matroids. This construction is a specialcase
of Theorem 7.

Lemma 9. Let M be an identically self-dual matroid. Then
there exists a self-dual Lagrangian matroidL whose collec-
tion of bases is given byB(L) = {B ∪ ([n] \ B)∗ | B ∈
B(M)}. FurtherL induces the same quantum access struc-
ture asM .

Proof. To see this consider a identically self-dual matroidM
whose collection of bases is given byB1. The collection of the
bases for the dual matroid are given byB⊥

1 = B1 becauseM is
identically self-dual. By definitionB⊥

1 = {[n]\B | B ∈ B1}.
Therefore, for every basisB, [n]\B is also inB. Now consider
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forming a Lagrangian matroid whose collection of bases is
given byB = {B ∪ ([n] \B)∗}. It is Lagrangian because the
cardinality of any element inB is n. The self-duality of the
symplectic matroid is a consequence of the self-duality ofM .

By Theorem 7, the access structure induced byL is a valid
quantum access structure. We want to show that this access
structure is precisely the access structure induced by the ma-
troid M . Recall that the access structure induced byM is
given by

ΓM
i,min = {A | A ∪ {i} ∈ C(M)},

whereC(M) is the collection of circuits ofM .
By Lemma 3, the circuits ofL are either in[n] or [n]∗. The

restriction ofL to the transversal[n] gives the matroidM ,
while the restriction to[n]∗ gives the identically self-dual ma-
troidM∗ = M . Every circuit ofL contained in the restriction
[n] (resp.[n]∗) is a circuit ofM (resp.M∗). But these exhaust
the circuits ofL. Thus the access structure induced byL, as
given in (16), is exactly the same access structure asM .

V. CONCLUSION AND OPEN QUESTIONS

In this paper we have established a connection between
quantum codes and symplectic matroids. This opens a new
perspective on quantum codes and has potential applications
for quantum cryptography. Furthermore, this correspondence
raises a number of interesting questions that are worth pursu-
ing. We list some of them here.

1) Find representations for the graphical symplectic matroids.

Alternatively, find a criterion to test which of these ma-
troids are representable.

2) Find out if the quantum codes derived from the symplectic
matroid of a simple connected graph, have good parame-
ters.

3) What are the necessary and sufficient conditions for La-
grangian matroids to induce quantum access structures?
Can these be stated in terms of the graph underlying the
Lagrangian matroid?

4) Given a secret sharing Lagrangian matroid, what is the as-
sociated quantum code that realizes this access structure?

5) Define a polynomial that captures the weight enumerator of
the underlying quantum code for representable symplectic
matroids.

We hope that the results in this paper will prompt further re-
search into the applications of matroids for quantum informa-
tion.
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