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Certain features in the primordial scalar power spectrum are known to improve the fit to the
cosmological data. We examine whether bouncing scenarios can remain viable if future data confirm
the presence of such features. In inflation, the fact that the trajectory is an attractor permits the
generation of features. However, bouncing scenarios often require fine tuned initial conditions, and it
is only the ekpyrotic models that allow attractors. We demonstrate, for the first time, that ekpyrotic
scenarios can generate specific features that have been considered in the context of inflation.

Inflation, features and bounces: The precise observations
of the anisotropies in the Cosmic Microwave Background
(CMB) by WMAP and Planck [1, 2] point to a primor-
dial scalar power spectrum that is nearly independent
of scale and is largely adiabatic [3]. The most popular
paradigm to generate perturbations of such nature is the
inflationary scenario [4]. As is well known, inflation is
driven by scalar fields (see, for instance, the reviews [5]).
There exist many models which permit inflation of the
slow roll type leading to power spectra that are consis-
tent with the cosmological data (for a comprehensive list,
see Ref. [6]).

Though a nearly scale invariant primordial power spec-
trum as generated by slow roll inflation is consistent with
the observational data, there have been repeated (model
dependent as well as model independent) efforts to ex-
amine if the power spectrum contains features [4, 7]. It
has been found that certain features improve the fit to
the CMB data [4, 7–12]. The possibility of such features
gains importance because of the reason that, if they are
confirmed by future observations, they can strongly limit
the space of viable models. While such features can be
produced in inflationary models which permit deviations
from slow roll [8–11], it is imperative to examine if they
can also be generated in alternative scenarios.

Even as inflation has been remarkably successful, al-
ternative scenarios have been explored for the origin of
primordial perturbations. Amongst these alternatives,
the most investigated are the classical bouncing scenarios
(for recent reviews, see Refs. [13]). Recall that, the pri-
mary goal of the inflationary paradigm is to overcome the
horizon problem and provide natural initial conditions for
the perturbations when they are well inside the Hubble
radius during the early stages of the accelerated expan-
sion. The bouncing scenarios can permit similar initial
conditions to be imposed on the perturbations during the
contracting phase, provided the early phase is undergoing
decelerated contraction. More than a handful of bouncing
scenarios have been constructed that result in primordial
power spectra that are consistent with the observations
(see, for instance, Refs. [14]).

It is rather straightforward to construct a model of
inflation and, as we mentioned, there exist many mod-

els of inflation that perform well against the cosmological
data. In contrast, it proves to be an intricate task to con-
struct bouncing models that are free of pathologies (for a
list of difficulties faced, see, for example, Refs. [13, 15]).
Moreover, the inflationary trajectory is almost always an
attractor, which permits inflation to be achieved easily.
However, bouncing scenarios often require fine tuned ini-
tial conditions. It is the attractor nature of the inflation-
ary trajectory which allows for the generation of features
in the primordial spectrum through brief periods of de-
viation from slow roll. The fact that the trajectory is an
attractor ensures that slow roll inflation is restored af-
ter such departures. The fine tuned conditions required
for bouncing scenarios implies that features cannot be
generated in these models. For instance, near matter
bounces, which can be easily constructed, do not behave
as attractors and hence they cannot return to the original
trajectory if departures are introduced [16]. This implies
that such models will be ruled out if cosmological data
confirm the presence of features in the primordial spec-
trum.

Amongst the bouncing models, it is only the ekpy-
rotic scenario that permits trajectories which are attrac-
tors (for the original ideas, see Refs. [17]; for more re-
cent discussions, see Refs. [18]). Another advantage of
the ekpyrotic model is the fact that the anisotropic in-
stabilities which may arise during the contracting phase
can be suppressed since the energy density of the ekpy-
rotic source dominates the evolution. However, ekpy-
rotic models driven by a single scalar field generate spec-
tra of curvature perturbations that have a strong blue
tilt. Therefore, models involving more than one field are
considered, with the ekpyrotic contracting phase being
dominated by isocurvature perturbations with a nearly
scale invariant spectrum. The second field is utilized
to convert the isocurvature perturbations into adiabatic
perturbations, eventually resulting in a nearly scale in-
variant curvature perturbation spectrum as is required
by the observations (see, for example, Refs. [19, 20]). In
this work, for the first time, we examine if features can
be generated in the curvature perturbation spectrum in
ekpyrotic bounces. We shall explicitly construct ekpy-
rotic potentials which permit the generation of features
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that have been considered in the context of inflation.
We shall set ~ = c = 1, M

Pl
= 1/

√
8 πG, and work

with the metric signature (−,+,+,+). Also, as usual, an
overdot and an overprime shall denote derivatives with
respect to the cosmic time t and the conformal time η.

Ekpyrotic attractor: We shall first briefly discuss the dy-
namics of the background in an ekpyrotic model, specif-
ically showing that a negative definite potential for the
scalar field admits an attractor during the contracting
phase. The model we shall consider involves two scalar
fields φ and χ, which are governed by the following
action consisting of the potential V (φ, χ) and a func-
tion b(φ) [18, 21]:

S[φ, χ] =

∫

d4x
√−g

[

−1

2
∂µφ∂µφ

−e2 b(φ)

2
∂µχ∂µχ− V (φ, χ)

]

. (1)

We shall work with the potential V (φ, χ) = Vek(φ) =
V0 e

λφ/M
Pl and choose b(φ) = µφ/(2M

Pl
), where λ and

µ are positive constants. To examine the stability of
the background, it is convenient to write the background
equations in terms of the following dimensionless vari-
ables [18]:

(x, y, z) ≡
(

φ̇√
6H M

Pl

,

√
V√

3H M
Pl

,
ebχ̇√

6HM
Pl

)

. (2)

In terms of the variables (x, y, z), the equations governing
the two scalar fields can be written as

dx

dN
= −3 x y2 +

√
3√
2

(

µ z2 − λ y2
)

, (3a)

dz

dN
= −3 y2 z −

√
3√
2
µx z, (3b)

where N = log a, as usual, denotes e-folds. We should
point out that, during the contracting phase,N runs from
large positive values at early times to small positive val-
ues as one approaches the bounce. Also, the first Fried-
mann equation leads to the constraint x2 + y2 + z2 = 1.
To illustrate our main points concerning the stabil-

ity of the background evolution, we shall focus here on
the simpler situation wherein µ = λ. Note that, dur-
ing the contracting phase, H is negative. When µ = λ,
upon further assuming that φ̇ is positive, it is easy to
show that either of the two fixed points (x∗, y∗, z∗) =
(−λ/

√
6,±

√

1− λ2/6, 0) lead to the desired conditions.
Firstly, they prove to be stable provided λ2 > 6. Sec-
ondly, we find that the corresponding equation of state
parameter describing the background is given by w =
p/ρ = λ2/3 − 1, where ρ and p represent the total en-
ergy density and pressure associated with the two scalar
fields. This implies that the contracting phase is driven
by super stiff matter (as w > 1 when λ2 > 6). Moreover,

since w > 1, the energy density ρ grows faster than a−6

during ekpyrotic contraction. Such a behavior allows one
to circumvent the difficulty posed by the rapid growth of
anisotropies (which behave as a−6) that proves to be a
great drawback afflicting many of the bouncing scenar-
ios [16]. Lastly, as alluded to earlier, the condition λ2 > 6
implies that the potential is negative.

Power spectra in ekpyrosis: Let us now turn to the
evaluation of the scalar power spectra in the model.
Since the model involves two fields, apart from the
curvature perturbation, isocurvature perturbations also
arise. In the spatially flat gauge, for instance, the
Mukhanov-Sasaki variables associated with the curva-
ture and the isocurvature perturbations vσ and vs
are given by vσ = a

(

cos θ δφ+ eb sin θ δχ
)

and vs =

a
(

−sin θ δφ+ eb cos θ δχ
)

, where cos θ = φ̇/σ̇, sin θ =

eb χ̇/σ̇ and σ̇2 = φ̇2 + e2 b χ̇2. The curvature and the
isocurvature perturbations are defined as R = vσ/z and
S = vs/z, respectively, with z = a σ̇/H [18, 21].

It is convenient to introduce the adiabatic and entropy
vectors EI

σ and EI
s in the space of the two fields, defined

as EI
σ = (cos θ, e−b sin θ) and EI

s = (−sin θ, e−b cos θ),
where I = {φ, χ}. The equations governing the gauge
invariant Mukhanov-Sasaki variables vσ and vs can be
expressed as [18, 21]

v′′σ +

(

k2 − z′′

z

)

vσ =
1

z
(z ξ vs)

′
, (4a)

v′′s +

(

k2 − a′′

a
+ a2 µ2

s

)

vs = −z ξ
(vσ
z

)′

, (4b)

where ξ = −2 a Vs/σ̇ and the quantity µ2
s is given by

µ2
s = Vss −

(

Vs

σ̇

)2

+ bφ (1 + sin2θ) cos θ Vσ

+ bφ cos
2θ sin θ Vs − (b2φ + bφφ) σ̇

2, (5)

with the subscript φ or χ indicating differentiation with
respect to the fields. Also, the quantities Vσ, Vs and
Vss are given by Vσ = EI

σ VI , Vs = EI
s VI and Vss =

EI
s E

J
s VIJ , with implicit summations assumed over the

repeated indices I and J . It should be stressed that
Eqs. (4) apply for an arbitrary potential V (φ, χ) and
function b(φ).

The ekpyrotic contracting phase can be modeled by
the potential Vek(φ) and the function b(φ) we had men-
tioned before [18]. We shall now assume that V0 is neg-
ative (to lead to an attractor) and that µ 6= λ. During
this ekpyrotic phase, we find that the contribution of χ
to the background energy density can be ignored and the
function ξ, which couples the curvature and the isocurva-
ture perturbations, is completely negligible (in this con-
text, see Fig. 1). Therefore, the Mukhanov-Sasaki equa-
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tions (4) decouple to lead to

v′′σ +

[

k2 +
2 (λ2 − 4)

(λ2 − 2)2 η2

]

vσ = 0, (6)

v′′s +

[

k2 +
λ2 (2− µλ− µ2) + 6µλ− 8

(λ2 − 2)2 η2

]

vs = 0. (7)

These equations can be solved analytically and, upon im-
posing the Bunch-Davies initial conditions at early times,
the scalar power spectra can be evaluated at later times
closer to the bounce. The two scalar power spectra can
be expressed as

P(k) =

[

Γ(|ν|)/Γ(3/2)
4 πM

Pl
λ

]2 (
k

a

)2 (−k η

2

)1−2 |ν|

, (8)

where ν = (λ2−6)/[2 (λ2−2)] and (λ2+2µλ−6)/[2 (λ2−
2)] for the curvature and the isocurvature perturbations,
respectively. The spectral indices n

R
and n

S
associated

the power spectra of the corresponding perturbations are
given by

n
R
= 4−

∣

∣

∣

∣

λ2 − 6

λ2 − 2

∣

∣

∣

∣

, n
S
= 4−

∣

∣

∣

∣

2 (λµ− 2)

λ2 − 2
+ 1

∣

∣

∣

∣

. (9)

Since λ2 > 6, one obtains a very blue (n
R
> 3) curvature

perturbation spectrum P
R
(k). We can choose µ suitably

to arrive at a nearly scale invariant isocurvature pertur-
bation spectrum P

S
(k) (such that n

S
≃ 1). In what

follows, we shall construct a mechanism to convert the
isocurvature perturbations into curvature perturbations
and also modify the tilt of the curvature perturbation
spectrum so as to be consistent with the observations.

Converting the isocurvature perturbations into curvature

perturbations: As is well known, the isocurvature pertur-
bations can be converted into curvature perturbations
if there arises a turn in the background trajectory in
the field space [18, 19]. Since the field φ dominates the
background during the ekpyrotic phase, we shall require
the field to take a turn along the χ direction. We achieve
such a turn by multiplying the original potential Vek(φ)
by the term

Vc(φ, χ) = 1 + β χ exp− [(φ− φc)/∆φc]
2 , (10)

where β, φc and ∆φc are constants. Clearly, in Vc, the
dependence on the field χ is the strongest within ∆φc

of φc. The introduction of the term Vc in the poten-
tial makes the dynamics difficult to study analytically.
Therefore, we resort to numerics. We find that, as the
field φ approaches φc, there arises an abrupt change of
direction in the field space with a rapid variation of the
field χ. Recall that, it is the function ξ which determines
the coupling between the curvature and the isocurvature
perturbations [cf. Eqs. (4)]. As we mentioned, at early
times, the function ξ turns out to be negligible, a be-
havior which permits us to impose uncorrelated initial
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FIG. 1. The behavior of the coupling function ξ (on the left)
and the corresponding effects on the curvature (in blue) and
the isocurvature (in green) perturbations (on the right) have
been plotted as a function of e-folds N . Recall that time runs
forward from left to right and the choice of N = 0 is arbitrary.
There arises a sharp rise in ξ when the direction of evolution
changes in the field space. It should be clear from the plots
that the amplitude of the curvature perturbation is enhanced
exactly around this time.

conditions on the curvature and iso-curvature perturba-
tions (in this context, see Ref. [22]). The change in the
direction in field space leads to a sharp rise in the func-
tion ξ, and the sudden rise in ξ considerably amplifies the
curvature perturbation. These behavior are illustrated in
Fig. 1. The analytical expressions for the power spectra
we have presented above correspond to spectra evaluated
prior to the turn. The power spectra evaluated numeri-
cally before and at the turn in field space (when φ = φc,
corresponding to η = ηc) are illustrated in Fig. 2. A few
points regarding the figure need emphasis. As we dis-
cussed, when evaluated prior to the turn, while P

R
(k) is

strongly blue, P
S
(k) is nearly scale invariant. Also, note

that over the scales of interest, the amplitude of P
S
(k) is

considerably larger than the amplitude of P
R
(k). How-

ever, as the turn occurs, we find that both the scalar
power spectra have roughly the same amplitude. More-
over, importantly, due to its strong effects, the isocurva-
ture perturbations have altered the shape of the curva-
ture perturbation spectrum P

R
(k) and, in fact, for suit-

able values of the parameters, we obtain a nearly scale in-
variant spectrum with n

R
≃ 0.96, completely consistent

with the observations. We have chosen the parameters
such that the nearly scale invariant P

R
(k) is COBE nor-

malized. Below, we shall modify the ekpyrotic potential
Vek(φ) to generate features in the scalar power spectra.

Generating ekpyrotic features: The primordial features
that have been found to improve the fit to the data can be
broadly classified into the following three types: (1) sharp
drop in power at large scales corresponding to the Hubble
radius today, (2) a burst of oscillations over an interme-
diate range of scales, and (3) persisting oscillations over
a wide range of scales. While a feature of the first type
improves the fit to the CMB data at the very low mul-
tipoles (specifically, the low quadrupole) [8], the second
type has been shown to provide a better fit to the outliers
(to the nearly scale invariant case) around the multipoles
of ℓ ≃ 20–40 [9]. The third type of feature has been found



4

10−20 10−19 10−18 10−17 10−16 10−15

k ηc

10−50

10−46

10−42

10−38

10−34

10−30

10−26

10−22

10−18

10−14

10−10

10−6

P R
(k
),
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)

FIG. 2. The curvature and isocurvature perturbation spec-
tra, viz. P

R
(k) and P

S
(k) (in blue and green, respectively),

have been plotted prior to (as dashed lines) as well as during
the turn (as solid lines) in field space. Note that P

S
(k) is

nearly scale free both prior to and during the turn. However,
while P

R
(k) is blue before the turn, it is red later. Also, the

isocurvature perturbations are extremely dominant prior to
the turn. But, the amplitude of the curvature perturbation
becomes comparable to that of the isocurvature perturbations
during the turn in field space. The range of wavenumbers
over which the spectra have been plotted are expected to cor-
respond to cosmological scales today. Moreover, we have cho-
sen to work with values of the various parameters involved so
that P

R
(k) is COBE normalized. The figure also contains the

scalar power spectra with a specific feature before (as trian-
gles) and during the turn (as squares). We should highlight
that it is the feature in the initial P

S
(k) which is imprinted

as a feature in the final P
R
(k).

to fit the data over a wide range of multipoles [10].

Smooth scalar field potentials cannot generate fea-
tures. It is the features in the potential and the resulting
non-trivial dynamics that translates to features in the
power spectra. As we discussed, in inflation, features in
the potential lead to deviations from slow roll which, in
turn, generate spectra containing departures from near
scale invariance. For instance, in single field inflationary
models, a point of inflection can lead to the first type
of feature we had mentioned above [8], while the second
type of feature can be generated with the introduction of
a simple step in the inflationary potential [9]. The last
type of feature is generated with the aid of correspond-
ing oscillations in the inflationary potential [10]. In fact,
there have been attempts to construct inflationary mod-
els that can simultaneously generate more than one type
of features [11].

Since the background dynamics in the ekpyrotic sce-
nario is rather distinct from the inflationary case, prior
experience with inflationary features does not necessar-
ily help in constructing ekpyrotic potentials leading to
the desired features. We find that multiplying the origi-

10−20 10−19 10−18 10−17 10−16 10−15

k ηc

10−11

10−10

10−9

10−8

P R
(k
)

10
−18

10
−17

2.1× 10
−9

FIG. 3. The power spectra of the curvature perturbations
with the three types of features (type 1 in red and cyan, type 2
in blue and orange, and type 3 in green and pink) generated in
the ekpyrotic (solid lines) and the inflationary (dashed lines)
scenarios have been plotted over scales of cosmological inter-
est. The inflationary spectra correspond to those that lead to
an improved fit to the CMB data [4]. Clearly (as also high-
lighted in the inset), the ekpyrotic spectra closely resemble
the inflationary spectra with features.

nal ekpyrotic potential Vek(φ) by the following oscillating
term:

Vf(φ) = 1 + α cos (ω φ/M
Pl
) (11)

does indeed lead to persistent oscillations in the power
spectrum as in the context of inflation [10]. However, the
potentials for generating the other two types of features
prove to be considerably different. We had to experiment
with different multiplicative functions Vf(φ) before arriv-
ing at the required forms. Interestingly, we find that,
introducing a step by multiplying Vek(φ) with the term

Vf(φ) = 1 + α tanh [(φ − φ0)/∆φf ] (12)

results in the first type of feature we had mentioned, viz. a
sharp drop in power at large scales. Lastly, introducing
a well in the potential with the help of a term such as

Vf(φ) = 1− α exp − [(φ− φ0)/∆φf ]
2

(13)

generates a burst of oscillations over an intermediate
range of scales, which is the second type of feature we
had discussed. (Though the above modifications to the
potentials can be considered to be ad-hoc, we believe
that their justification lie in the fact that the CMB data
seem to suggest the possibility of features in the primor-
dial spectrum.) We have plotted the power spectra of
curvature perturbations arising in these three cases in
Fig. 3. In the figure, we have also plotted inflationary
power spectra with features that lead to a better fit to the
most recent Planck data (in this context, see Refs. [2]). It
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is clear from the figure that the ekpyrotic features match
the inflationary features reasonably well.

Prospects: Features in the primordial spectra can lead to
strong constraints on the physics of the early universe [7].
However, there is no significant observational evidence
for deviations from a nearly scale invariant primordial
power spectrum as yet. Many of the simpler and fine
tuned bouncing models would prove to be unsustainable
if future observations confirm the presence of features [2].
We have examined if the bouncing scenarios can remain
viable after such a possibility. For the first time, we
have constructed ekpyrotic potentials that lead to fea-
tures that have often been found to provide an improved
fit to the CMB data. Though we have evaluated the spec-
tra prior to the bounce, since the scales associated with
the bounce are significantly different from the scales of
cosmological interest, the shape of the spectra we have
arrived at will not be altered by the dynamics of the
bounce. Therefore, these power spectra can be expected
to retain their form after the bounce (see Refs. [19], how-
ever, in this context, also see Ref. [25]). Moreover, ex-
perience with related models suggests that the isocurva-
ture perturbations would decay after the bounce leading
to an adiabatic spectrum consistent with the observa-
tions [18, 19].

We have focused here on the power spectra gen-
erated in the ekpyrotic models. Currently, there
also exist strong limits on the primordial scalar non-
Gaussianties [23]. The concern has been that, quite
generically, the scalar non-Gaussianities generated in
bounces may turn out be larger than the current con-
straints [20]. However, it has been argued that the non-
Gaussianities in the type of models we have considered
will prove to be small (in this context, see the third ref-
erence in Refs. [18]). We are currently working towards
evaluating the complete scalar bispectrum in bouncing
models. We are specifically focusing on the behavior
of the bispectrum in the so-called squeezed limit, which
may help us discriminate between the inflationary and
bouncing scenarios (in this context, see, for instance,
Refs. [26] wherein it has been shown that, in contrast
to inflation, the consistency relation governing certain
three-point functions will be violated in bounces).

Note: As we were finalizing this manuscript, the arti-
cle [24] appeared on the arXiv which also discusses the
generation of features from a contracting phase.
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