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Popularity in the generalized Hospital Residents setting
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Abstract. We consider the problem of computing popular matchings in a bipartite graph G = (R ∪
H, E) where R and H denote a set of residents and a set of hospitals respectively. Each hospital h has
a positive capacity denoting the number of residents that can be matched to h. The residents and the
hospitals specify strict preferences over each other. This is the well-studied Hospital Residents (HR)
problem which is a generalization of the Stable Marriage (SM) problem. The goal is to assign residents to
hospitals optimally while respecting the capacities of the hospitals. Stability is a well-accepted notion
of optimality in such problems. However, motivated by the need for larger cardinality matchings,
alternative notions of optimality like popularity have been investigated in the SM setting. In this paper,
we consider a generalized HR setting – namely the Laminar Classified Stable Matchings (LCSM+)
problem. Here, additionally, hospitals can specify classifications over residents in their preference lists
and classes have upper quotas. We show the following new results: We define a notion of popularity
and give a structural characterization of popular matchings for the LCSM+ problem. Assume n =
|R|+|H| and m = |E|. We give an O(mn) time algorithm for computing a maximum cardinality popular
matching in an LCSM+ instance. We give an O(mn2) time algorithm for computing a matching that
is popular amongst the maximum cardinality matchings in an LCSM+ instance.

1 Introduction

Consider an academic institution where students credit an elective course from a set of available courses.
Every student and every course rank a subset of elements from the other set in a strict order of preference.
Each course has a quota denoting the maximum number of students it can accommodate. The goal is to
allocate to every student at most one course respecting the preferences. This is the well-studied Hospital
Residents problem [7]. We consider its generalization where, in addition, a course can classify students – for
example, the students may be classified as under-graduates and post-graduates and department-wise and so
on. Depending on the classifications, a student may belong to multiple classes. Apart from the total quota,
each course now has a quota for every class. An allocation, in this setting, has to additionally respect the
class quotas. This is the Classified Stable Matching problem introduced by Huang [10].

Stability is a de-facto notion of optimality in settings where both set of participants have preferences.
Informally, an allocation of students to courses is stable if no unallocated student-course pair has incentive
to deviate from the allocation. Stability is appealing for several reasons – stable allocations are guaranteed
to exist, they are efficiently computable and all stable allocations leave the same set of students unallo-
cated [9]. However, it is known [13] that the cardinality of a stable allocation can be half the size of the
largest sized allocation possible. Furthermore, in applications like student-course allocation, leaving a large
number of students unallocated is undesirable. Thus, it is interesting to consider notions of optimality which
respect preferences but possibly compromise stability in the favor of cardinality. Kavitha and Huang [11,13]
investigated this in the Stable Marriage (SM) setting where they considered popularity as an alternative to
stability. At a high level, an allocation of students to courses is popular if no majority wishes to deviate from
the allocation. Here, we consider popularity in the context of two-sided preferences and one-sided capacities
with classifications.

We formally define our problem now – we use the familiar hospital residents notation. Let G = (R∪H, E)
be a bipartite graph where |R∪H| = n and |E| = m. Here R denotes the set of residents, H denotes the set
of hospitals and every hospital h ∈ H has an upper quota q(h) denoting the maximum number of residents
h can occupy. A pair (r, h) ∈ E denotes that r and h are mutually acceptable to each other. Each resident
(resp. hospital) has a strict ordering of a subset of the hospitals (resp. residents) that are acceptable to him
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or her (resp. it). This ordering is called the preference list of a vertex. An assignment (or a matching) M in
G is a subset of E such that every resident is assigned to at most one hospital and a hospital h is assigned
at most q(h) residents. Let M(r) (resp. M(h)) denote the hospital (resp. the set of residents) which are
assigned to r (resp. h) in M . A hospital h is under-subscribed if |M(h)| < q(h). A matching M is stable if no
unassigned pair (r, h) wishes to deviate from M . The goal is to compute a stable matching in G. We denote
it by HR+ throughout the paper 1. The celebrated deferred acceptance algorithm by Gale and Shapley [7]
proves that every instance of the HR+ problem admits a stable matching.

A generalization of the HR+ problem is the Laminar Classified Stable Matching (LCSM) problem in-
troduced by Huang [10]. An instance of the LCSM+ problem is an instance of the HR+ problem where
additionally, each hospital h is allowed to specify a classification over the set of residents in its preference
list. A class Ch

k of a hospital h is a subset of residents in its preference list and has an associated upper
quota q(Ch

k ) denoting the maximum number of residents that can be matched to h in Ch
k . (In the LCSM

problem [10], classes can have lower quotas as well.) We assume that the classes of a hospital form a laminar

set. That is, for any two classes Ch
j and Ch

k , either the two classes are disjoint (Ch
j ∩Ch

k = ∅), or one is con-

tained inside the other (Ch
j ⊂ Ch

k or Ch
k ⊂ Ch

j ). Huang suitably modified the classical definition of stability
to account for the presence of these classifications. He showed that every instance of the LCSM+ problem
admits a stable matching which can be computed in O(mn) time [10]. A restriction of the LCSM+ problem,
denoted by Partition Classified Stable Matching (PCSM+), is where the classes of every hospital partition
the residents in its preference list.

Motivated by the need to output larger cardinality matchings, we consider computing popular matchings
in the LCSM+ problem. The notion of popularity uses votes to compare two matchings. Before we can define
voting in the LCSM+ setting, it is useful to discuss voting in the context of the SM problem.
Voting in the SM setting: Let G = (R∪H, E) be an instance of the SM problem and let M and M ′ be
any two matchings in G. A vertex u ∈ R ∪ H (where each hospital h has q(h) = 1) prefers M over M ′ and
therefore votes for M over M ′ if either (i) u is matched in M and unmatched in M ′ or (ii) u is matched
in both M and M ′ and prefers M(u) over M ′(u). A matching M is more popular than M ′ if the number
of votes that M gets as compared to M ′ is greater than the number of votes that M ′ gets as compared to
M . A matching M is popular if there does not exist any matching that is more popular than M . In the
SM setting it is known that a stable matching is popular, however it was shown to be minimum cardinality
popular matching [11]. Huang and Kavitha [11,13] gave efficient algorithms for computing a max-cardinality
popular matching and a popular matching amongst max-cardinality matchings in an SM instance.
Voting in the capacitated setting: To extend voting in the capacitated setting, we assign a hospital h
as many votes as its upper quota q(h). This models the scenario in which hospitals with larger capacity
get a larger share of votes. For the HR+ problem, a hospital h compares the most preferred resident in
M(h) \M ′(h) to the most preferred resident in M ′(h) \M(h) (and votes for M or M ′ as far as those two
residents are concerned) and so on. For this voting scheme, we can obtain analogous results for computing
popular matchings in the HR+ problem via the standard technique of cloning (that is, creating q(h) copies
of a hospital h and appropriately modifying preference lists of the residents and hospitals 2). However,
our interest is in the LCSM+ problem, for which we are not aware of any reduction to the SM problem.
Furthermore, we show that the straightforward voting scheme as defined in the HR+ does not suffice for
the LCSM+ problem. Therefore, we define a voting scheme for a hospital which takes into consideration the
classifications as well as ensures that every stable matching in the LCSM+ instance is popular. We show the
following results:

– We define a notion of popularity for the LCSM+ problem. Since our definition ensures that stable
matchings are popular – this guarantees the existence of popular matchings in the LCSM+ problem.

– We give a characterization of popular matchings for the LCSM+ problem, which is a natural extension
of the characterization of popular matchings in SM setting [11].

1
We use HR+ instead of HR for consistency with other problems discussed in the paper.

2
For every hospital in the cloned graph, its preference list is the same as in the original instance. For every hospital h, fix an ordering
of its clones. The preference list of a resident r in the cloned instance is obtained by replacing the occurrence of h by the fixed
ordering of its clones. We refer the reader to [4,14] for details.
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– We obtain the following algorithmic results. An O(m+n) (resp. O(mn)) time algorithm for computing a
maximum cardinality popular matching in a PCSM+ (resp. LCSM+) instance. An O(mn) (resp. O(mn2))
time algorithm for computing a popular matching amongst maximum cardinality matchings in a PCSM+

(resp. LCSM+) instance.

Very recently, independent of our work, two different groups [4,12] have considered popular matchings in
the one-to-many setting. Brandl and Kavitha [4] have considered computing popular matchings in the HR+

problem. In their work as well as ours, a hospital h is assigned as many votes as its capacity to compare
two matchings M and M ′. In contrast, by the definition of popularity in [4], a hospital h chooses the most
adversarial ordering of residents in M(h) \M ′(h) and M ′(h) \M(h) for comparing M and M ′. However, it
is interesting to note that in an HR+ instance the same matching is output by both our algorithms. On the
other hand, we remark that the model considered in our paper is a more general one than the one considered
in [4]. Kamiyama [12] has generalized our work and the results in [4] using a matroid based approach.

We finally remark that one can consider voting schemes where a hospital is given a single vote instead
of capacity many votes. In one such scheme, a hospital compares the set of residents in M(h) and M ′(h) in
lexicographic order and votes accordingly. However, when such a voting is used, it is possible to construct
instances where a stable matching is not popular. The techniques in this paper use the fact that stable
matchings are popular, therefore it is unclear if our techniques will apply for such voting schemes.
Related Work: The notion of popularity was introduced by Gärdenfors [8] in the context of stable match-
ings. In [1] Abraham et al. studied popularity in the one-sided preference list model. As mentioned earlier,
our work is inspired by a series of papers where popularity is considered as an alternative to stability in the
stable marriage setting by Huang, Kavitha and Cseh [5,11,13]. Biró et al. [3] give several practical scenarios
where stability may be compromised in the favor of size. The PCSM+ problem is a special case of the Stu-
dent Project Allocation (SPA) problem studied by Abraham et al. [2]. They gave a linear time algorithm
to compute a stable matching in an instance of the SPA problem. In this paper, we use the algorithms of
Abraham et al. [2] and Huang [10] for computing stable matchings in the PCSM+ and LCSM+ problems.
Both these algorithms follow the standard deferred acceptance algorithm of Gale and Shapley with problem
specific modifications. We refer the reader to [2] and [10] for details.
Organization: In Section 2 we define the notion of popularity, in Section 3 we present the structural charac-
terization of popular matchings. In Section 4 we describe our algorithms to compute a maximum cardinality
popular matching, and a popular matching amongst maximum cardinality matchings. We conclude with a
short discussion about popular matchings in the LCSM problem.

2 Stability and popularity in the LCSM+ problem

Consider an instance G = (R∪H, E) of the LCSM+ problem. As done in [10], assume that for every h ∈ H
there is a class Ch

∗ containing all the residents in the preference list of h and q(Ch
∗ ) = q(h). For a hospital h,

let T (h) denote the tree of classes corresponding to h where Ch
∗ is the root of T (h). The leaf classes in T (h)

denote the most refined classifications for a resident whereas as we move up in the tree from a leaf node to
the root, the classifications gets coarser.

To define stable matchings in the LCSM problem, Huang introduced the notion of a blocking group w.r.t. a
matching. Later, Fleiner and Kamiyama [6] defined a blocking pair which is equivalent to a blocking group of
Huang. We use the definition of stability from [6] which we recall below. A set S = {r1, . . . , rl} is feasible for
a hospital h if |S| ≤ q(h) and for every class Ch

j of h (including the root class Ch
∗ ), we have |C

h
j ∩S| ≤ q(Ch

j ).
A matching M in G is feasible if every resident is matched to at most one hospital, and M(h) is feasible for
every hospital h ∈ H. A pair (r, h) /∈ M blocks M iff both the conditions below hold:

– r is unmatched in M , or r prefers h over M(r), and
– either the set M(h)∪{r} is feasible for h, or there exists a resident r′ ∈ M(h), such that h prefers r over

r′, and (M(h) \ {r′}) ∪ {r} is feasible for h.

A feasible matching M in G is stable if M does not admit any blocking pair.
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2.1 Popularity

To define popularity, we need to specify how a hospital compares two sets M(h) and M ′(h) in an LCSM+

setting, where M and M ′ are two feasible matchings in the instance.

Illustrative example Consider the following LCSM+ instance whereR = {r1, . . . , r4} andH = {h1, . . . , h3}
and the preference lists of the residents and hospitals are as given in Figure 1(a) and (b) respectively. The
preferences can be read as follows: resident r1 has h1 as his top choice hospital. Resident r2 has h2 as
its top choice hospital followed by h1 which is his second choice hospital and so on. For h ∈ {h2, h3} we
have q(h) = 1 and both these hospitals have a single class Ch

∗ containing all the residents in the prefer-
ence list of h and q(Ch

∗ ) = q(h). For hospital h1 we have q(h1) = 2 and the classes provided by h1 are
Ch1

1 = {r1, r2}, C
h1

2 = {r3, r4}, Ch1
∗ = {r1, r2, r3, r4} with quotas as follows: q(Ch1

1 ) = q(Ch1

2 ) = 1 and
q(Ch1

∗ ) = 2. We remark that the example in Figure 1 is also a PCSM+ instance. Figure 1(c) shows the tree
T (h1).

r1 : h1

r2 : h2, h1, h3

r3 : h1, h2

r4 : h1

(a)

h1 : r2, r3, r4, r1
h2 : r3, r2
h3 : r2

(b)

r1, r2, r3, r4

r1, r2 r3, r4

C
h1
∗

C
h1

1 C
h1

2

(c)

Fig. 1. (a) Resident preferences, (b) Hospital preferences, (c) T (h1). The matchings M = {(r1, h1), (r2, h2), (r3, h1)},
M ′ = {(r2, h1), (r3, h2), (r4, h1)}, and M ′′ = {(r1, h1), (r2, h3), (r3, h2), (r4, h1)} are all feasible in the instance.

Consider the two feasible matchings M and M ′ defined in Fig. 1. Note that M is stable in the instance
whereas the edge (r3, h1) blocks M

′. While comparing M and M ′, the vote for every vertex u in the instance
except h1 is clear – u compares M(u) with M ′(u) and votes accordingly. In order for h1 to vote between
M and M ′, the hospital compares between M(h1) = {r1, r3} and M ′(h1) = {r2, r4}. A straightforward way
is to compare r3 with r2 (the most preferred resident in M(h1) to the most preferred resident in M ′(h1))
and then compare r1 with r4 (second most preferred resident in M(h1) to second most preferred resident
in M ′(h1)). Thus, both the votes of h1 are in favor of M ′ when compared with M . Such a comparison has
two issues – (i) it ignores the classifications given by h1, and (ii) the number of votes that M ′ gets when
compared with M is more than the number of votes that M gets as compared to M ′. Therefore M ′ is more
popular than M which implies that M (a stable matching) is not popular.

We propose a comparison scheme for hospitals which addresses both the issues. In the above example,
we note that r1 ∈ M(h) has a corresponding resident r2 ∈ M ′(h) to be compared to in one of the most
refined classes Ch1

1 (see Figure 1(c)). Thus, we compare r1 with r2. The resident r3 ∈ M(h) is compared to
r4 ∈ M(h) another leaf class Ch1

2 . According to this comparison, h1 is indifferent between M and M ′ and
M ′ is no longer more popular than M . Note that, although in the example, both the comparisons happen
in a leaf class, this may not be the case in a general instance. Finally, we note that the matching M ′′ is a
popular matching in the instance and is strictly larger in size than the stable matching M .

We formalize the above observations in the rest of the section. To take into account the classifications, for
a hospital h and the matchings M and M ′, we set up a correspondence between residents in M(h) \M ′(h)
and the residents in M ′(h) \M(h). That is, we define:

corr : M(h)⊕M ′(h) → M(h)⊕M ′(h) ∪ {⊥}

For a resident r ∈ M(h)⊕M ′(h) we denote by corr(r) the corresponding resident to which r gets compared
when the hospital h casts its votes. We let corr(r) = ⊥ if r does not have a corresponding resident to be
compared to from the other matching. The pseudo-code for the algorithm to compute the corr function is
given below.
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Algorithm 1 Correspondence between residents of M(h) and M ′(h)

1: procedure Find-Correspondence(h,M,M ′)
2: let T (h) be the classification tree associated with h

3: set corr(r) = ⊥ for each r ∈ M(h) ⊕M ′(h)
4: Y = M(h) \M ′(h); Y ′ = M ′(h) \M(h)
5: while Y 6= ∅ and Y ′ 6= ∅ do

6: for each class Ch
j in T (h) do

7: Xj = Ch
j ∩ Y

8: X ′

j = Ch
j ∩ Y ′

9: Let Ch
f be one of the most refined classes for which Xf 6= ∅ and X ′

f 6= ∅.
10: for k = 1, . . . ,min(|Xf |, |X

′

f |) do
11: let r be the k-th most preferred resident in Xf

12: let r′ be the k-th most preferred resident in X ′

f

13: set corr(r) = r′, and corr(r′) = r

14: Y = Y \ {r}; Y ′ = Y ′ \ {r′}

The algorithm begins by setting corr for every r ∈ M(h) ⊕M ′(h) to ⊥. The algorithm maintains two
sets of residents Y = M(h) \ M ′(h) and Y ′ = M ′(h) \ M(h) for whom corr needs to be set. As long as
the sets Y and Y ′ are both non-empty, the algorithm repeatedly computes for every class Ch

j (including

the root class Ch
∗ ) the sets Xj = Ch

j ∩ Y and X ′
j = Ch

j ∩ Y ′. The algorithm then chooses one of the most

refined classes, say Ch
f in T (h), for whom Xf and X ′

f are both non-empty. Finally, residents in Xf and X ′
f

are sorted according to the preference ordering of h and the corr of the k-th most preferred resident in Xf

is set to the k-th most preferred resident in X ′
f , where k = 1, . . . ,min{|Xf |, |X ′

f |}.
For r ∈ R, and any feasible matching M in G, if r is unmatched in M then, M(r) = ⊥. A vertex prefers

any of its neighbours over ⊥. For a vertex u ∈ R ∪ H, let x, y ∈ N(u) ∪ {⊥}, where N(u) denotes the
neighbours of u in G.

voteu(x, y) = +1 if u prefers x over y

= −1 if u prefers y over x

= 0 if x = y

Using the above notation, the vote of a resident is easy to define – a resident r prefers M ′ over M iff the
term Vr > 0, where Vr = voter(M

′(r),M(r)).
Recall that a hospital h uses q(h) votes to compare M and M ′. Let q1(h) = |M(h) ∩M ′(h)| (number of

common residents assigned to h in M and M ′) and q2(h) = q(h)−max{|M(h)|, |M ′(h)|} (number of unfilled
positions of h in both M and M ′). Our voting scheme ensures that q1(h) + q2(h) votes of h remain unused
when comparing M and M ′. A hospital h prefers M ′ over M iff the term Vh > 0, where Vh is defined as
follows:

Vh = (|M ′(h)| − |M(h)|) +
∑

r∈M ′(h)\M(h)
&&

corr(r) 6=⊥

voteh(r, corr(r))

The first term in the definition of Vh counts the votes of h w.r.t. the residents from either M or M ′ that
did not find correspondence. The second term counts the votes of h w.r.t. the residents each of which has
a corresponding resident from the other matching. We note that in the SM setting, corr(r) will simply be
M(h). Thus, our definition of votes in the presence of capacities is a natural generalization of the voting
scheme in the SM problem.

Let us define the term ∆(M ′,M) as the difference between the votes that M ′ gets over M and the votes
that M gets over M ′.

∆(M ′,M) =
∑

r∈R

Vr +
∑

h∈H

Vh
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Definition 1. A matching M is popular in G iff for every feasible matching M ′, we have ∆(M ′,M) ≤ 0.

2.2 Decomposing M ⊕ M
′

Here, we present a simple algorithm which allows us to decompose edges of components of M ⊕M ′ in an
instance into alternating paths and cycles. Consider the graph G̃ = (R ∪H,M ⊕M ′), for any two feasible
matchings M and M ′ in G. We note that the degree of every resident in G̃ is at most 2 and the degree of
every hospital in G̃ is at most 2 · q(h). Consider any connected component C of G̃ and let e be any edge in
C. We observe that it is possible to construct a unique maximal M alternating path or cycle ρ containing e
using the following simple procedure. Initially ρ contains only the edge e.

1. Let r ∈ R be one of the end points of the path ρ, and assume that (r,M(r)) ∈ ρ. We grow ρ by adding
the edge (r,M ′(r)). Similarly if an edge from M ′ is incident on r in ρ, we grow the path by adding the
edge (r,M(r)) if it exists.

2. Let h ∈ H be one of the end points of the path ρ, and assume that (r, h) ∈ M \ M ′ belongs to ρ. We
extend ρ by adding (corr(r), h) if corr(r) is not equal to ⊥. A similar step is performed if the last edge
on ρ is (r, h) ∈ M ′ \M .

3. We stop the procedure when we complete a cycle (ensuring that the two adjacent residents of a hospital
are corr for each other according to the hospital), or the path can no longer be extended. Otherwise we
go to Step 1 or Step 2 as applicable and repeat.

The above procedure gives us a unique decomposition of a connected component in G̃ into alternating paths
and cycles. Note that a hospital may appear multiple times in a single path or a cycle and also can belong
to more than one alternating paths and cycles. Figure 2 gives an example of the decomposition of the two
feasible matchings in the instance in Figure 1.

r1

r2

r3

r4

h1

h2

(a)

r1

r2

r3

r4

h1

h2

h1

(b)

Fig. 2. M and M ′ are feasible matchings in the example as defined in Fig. 1. (a) G̃ = (R∪H,M ⊕M ′); bold edges
belong to M , dashed edges belong to M ′. (b) shows the decomposition of the edges of the component of G̃ into a
single path.

Let YM⊕M ′ denote the collection of alternating paths and alternating cycles obtained by decomposing
every component of G̃.

We now state a useful property about any alternating path or cycle in YM⊕M ′ .

Lemma 1. If ρ is an alternating path or an alternating cycle in YM⊕M ′ , then M ⊕ ρ is a feasible matching

in G.

Proof. Let 〈r′, h, r〉 be any sub-path of ρ, where r′ = corr(r), and (r, h) ∈ M . We prove that (M(h) \ {r})∪
{r′} is feasible for h. Let Ch

i (resp. Ch
j ) be the unique leaf class of T (h) containing r (resp. r′). See Figure 3.

We consider the following two cases:
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Ch
∗

Ch
k

.., r, ..

Ch
i

Ch
t

.., r′, ..

Ch
j

Fig. 3. The classification tree T(h) for a hospital h.

– r and r′ belong to the same leaf class in T (h), i.e. Ch
i = Ch

j . In this case, it is easy to note that
(M(h) \ {r}) ∪ {r′} is feasible for h.

– r and r′ belong to different leaf classes of T (h), i.e. Ch
i 6= Ch

j . Observe that |(M(h) \ {r}) ∪ {r′}| can

violate the upper quota only for those classes of T (h) which contain r′ but do not contain r. Let Ch
k be

the least common ancestor of Ch
i and Ch

j in T (h). It suffices to look at any class Ch
t which lies in the

path from Ch
k to Ch

j excluding the class Ch
k and show that |(M(h)∩Ch

t )∪{r′}| ≤ q(Ch
t ). As r

′ = corr(r)

and r /∈ Ch
t , we claim that |M(h) ∩ Ch

t | < |M ′(h) ∩ Ch
t | ≤ q(Ch

t ). The first inequality is due to the fact
that r′ did not find a corresponding resident in the set (M(h) \M ′(h)) ∩ Ch

t . The second inequality is
because M ′ is feasible. Thus, (M(h) ∩ Ch

t ) ∪ {r′} does not violate the upper quota for Ch
t . Therefore

(M(h) \ {r}) ∪ {r′} is feasible for h.

We note that the hospital h may occur multiple times on ρ. Let M(h)ρ denote the set of residents matched
to h restricted to ρ. To complete the proof of the Lemma, we need to prove that (M(h) \M(h)ρ) ∪M ′(h)ρ
is feasible for h. The arguments for this follow from the arguments given above. ⊓⊔

As was done in [13], it is convenient to label the edges of M ′ \M and use these labels to compute ∆(M ′,M).
Let (r, h) ∈ M ′ \M ; the label on (r, h) is a tuple:

(voter(h,M(r)), voteh(r, corr(r)))

Note that since we are labeling edges of M ′ \M , both entries of the tuple come from the set {−1, 1}. With
these definitions in place, we are ready to give the structural characterization of popular matchings in an
LCSM+ instance.

3 Structural characterization of popular matchings

Let G = (R ∪ H, E) be an LCSM+ instance and let M and M ′ be two feasible matchings in G. Using
the corr function, we obtain a correspondence of residents in M(h) ⊕M ′(h) for every hospital h in G. Let
G̃ = (R ∪ H,M ⊕ M ′) and let YM⊕M ′ denote the collection of alternating paths and cycles obtained by
decomposing every component of G̃. Finally, we label the edges of M ′ \M using appropriate votes. The goal
of these steps is to is to rewrite the term ∆(M ′,M) as a sum of labels on edges.

We note that the only vertices for whom their vote does not get captured on the edges of M ′ \ M are
vertices that are matched in M but not matched in M ′. Let U denote the multi-set of vertices that are end
points of paths in YM⊕M ′ such that there is no M ′ edge incident on them. Note that the same hospital can
belong to multiple alternating paths and cycles in YM⊕M ′ , therefore we need a multi-set. All vertices in U
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prefer M over M ′ and hence we add a −1 while capturing their vote in ∆(M ′,M). We can write ∆(M ′,M)
as:

∆(M ′,M) =
∑

x∈U

−1 +
∑

ρ∈YM⊕M′





∑

(r,h)∈(M ′∩ρ)

{voter(h,M(r)) + voteh(r, corr(r))}





We now delete the edges labeled (−1,−1) from all paths and cycles ρ in YM⊕M ′ . This simply breaks paths
and cycles into one or more paths. Let this new collection of paths and cycles be denoted by ỸM⊕M ′ . Let
Ũ denote the multi-set of vertices that are end points of paths in ỸM⊕M ′ such that there is no M ′ edge
incident on them. We rewrite ∆(M ′,M) as:

∆(M ′,M) =
∑

x∈Ũ

−1 +
∑

ρ∈ỸM⊕M′





∑

(r,h)∈(M ′∩ρ)

{voter(h,M(r)) + voteh(r, corr(r))}





Theorem below characterizes a popular matching.

Theorem 1. A feasible matching M in G is popular iff for any feasible matching M ′ in G, the set ỸM⊕M ′

does not contain any of the following:

1. An alternating cycle with a (1, 1) edge,
2. An alternating path which has a (1, 1) edge and starts with an unmatched resident in M or a hospital

which is under-subscribed in M .

3. An alternating path which has both its ends matched in M and has two or more (1, 1) edges.

Proof. We show that if M is a feasible matching such that for any M ′ the set ỸM⊕M ′ does not contain (1),
(2), (3) as in Theorem 1, then M is popular in G.

Assume for the sake of contradiction that M satisfies the conditions of Theorem 1, and yet M is not
popular. Therefore there exists a feasible matching M∗ such that ∆(M∗,M) > 0. Consider the set YM∗⊕M .
Recall that this set is a collection of paths and cycles and the edges of M∗ \M are labeled. Let ρ be any path
or cycle in YM∗⊕M and let ∆(M∗,M)ρ denote the difference between the votes of M∗ and M when restricted
to the residents and hospitals in ρ. Since ∆(M∗,M) > 0, there exists a ρ such that ∆(M∗,M)ρ > 0. Note

that ρ is present in YM∗⊕M ; using the presence of ρ we establish the existence of a ρ′ ∈ ỸM∗⊕M of the form
(1), (2) or (3) which contradicts our assumption. We consider three cases depending on the structure of ρ.

1. ρ is an alternating cycle or ρ is an alternating path which starts and ends in an M edge:

Since ρ ∈ YM∗⊕M , and ∆(M∗,M)ρ > 0, it implies that there are more edges in ρ labeled (1, 1) than the
number of edges labeled (−1,−1). We now delete the edges labeled (−1,−1) from ρ; this breaks ρ in to
multiple alternating paths. Note that each of these paths (say ρ′) start and end with an M edge and are
also present in ỸM∗⊕M . Furthermore, since ρ contained more number of edges labeled (1, 1) than the
number of edges labeled (−1,−1), it is clear that there exists at least one ρ′ which has two edges labeled
(1, 1). This is a path of type (3) from the theorem statement and therefore contradicts our assumption
that M satisfied the conditions of the theorem.

2. ρ is an alternating path which starts or ends in an M∗ edge:

The proof is similar to the previous case except that when we delete from ρ the edges labeled (−1,−1)
we get paths ρ′ ∈ ỸM∗⊕M which are paths of type (2) or type (3) from the theorem statement. This
contradicts the assumption that M satisfied the conditions of the theorem.

This completes the proof of one direction of the Theorem. To prove the other direction, we prove the
contrapositive of the statement. That is, if for any feasible matching M ′, ỸM⊕M ′ contains (1), (2) or (3),
then M is not popular in G. We first assume that ρ ∈ ỸM⊕M ′ satisfying (1), (2), or (3) is also present in
YM⊕M ′ . Under this condition, it is possible to get a more popular matching than M by the following three
cases.
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– Let M2 = M ⊕ ρ be a matching in G; by Lemma 1 we know that M2 is feasible in G. Comparing M2 to
M yields two more votes for M2. Hence, M2 is more popular than M .

– If ρ is an alternating path in ỸM⊕M ′ , which has both its endpoints matched in M , and contains more
than one edge labeled (1, 1). Then similar to the case above M2 = M ⊕ ρ is more popular than M .

– If ρ is an alternating path in ỸM⊕M ′ , which has exactly one of its endpoints matched in M , and contains
an edge labeled (1, 1), then again M2 = M ⊕ ρ is more popular than M .

Now let us assume that ρ ∈ ỸM⊕M ′ is not present in YM⊕M ′ . In such a case, ρ is contained in a larger path
or a cycle ρ′ ∈ YM⊕M ′ obtained by combining ρ with other paths in ỸM⊕M ′ and adding the deleted (−1,−1)
edges. Using the larger path or cycle ρ′ we can construct a matching that is more popular than M . Note
that we need to use paths or cycles in YM⊕M ′ to obtain another matching, since we have to ensure that the
matching obtained is indeed feasible in the instance and the correspondences are maintained. ⊓⊔

We now prove that every stable matching in an LCSM+ instance is popular.

Theorem 2. Every stable matching in an LCSM+ instance G is popular.

Proof. Let M be a stable matching in G. For any feasible matching M ′ in G consider the set YM⊕M ′ . To
prove that M is stable, it suffices to show that there does not exist a path or cycle ρ ∈ YM⊕M ′ such that
an edge of ρ is labeled (1, 1). For the sake of contradiction, assume that ρ is such a path or cycle, which has
an edge (r′, h) ∈ M ′ \M labeled (1, 1). Let r = corr(r′), where (r, h) ∈ M ∩ ρ. From the proof of Lemma 1
we observe that (M(h) \ {r}) ∪ {r′} is feasible for h, therefore the edge (r′, h) blocks M contradicting the
stability of M . ⊓⊔

4 Popular matchings in LCSM+ problem

In this section we present efficient algorithms for computing (i) a maximum cardinality popular matching, and
(ii) a matching that is popular amongst all the maximum cardinality matchings in a given LCSM+ instance.
Our algorithms are inspired by the reductions of Kavitha and Cseh [5] where they work with a stable marriage
instance. We describe a general reduction from an LCSM+ instance G to another LCSM+ instance Gs. Here
s = 2, . . . , |R|. The algorithms for the two problems are obtained by choosing an appropriate value of s.
The graph Gs: Let G = (R ∪ H, E) be the input LCSM+ instance. The graph Gs = (Rs ∪ Hs, Es) is
constructed as follows: Corresponding to every resident r ∈ R, we have s copies of r, call them r0, . . . , rs−1

in Rs. The hospitals in H and their capacities remain unchanged; however we have additional dummy
hospitals each of capacity 1. Corresponding to every resident r ∈ R, we have (s − 1) dummy hospitals
d0r, . . . , d

s−2
r in Hs. Thus,

Rs = { r0, . . . , rs−1 | ∀r ∈ R}; Hs = H ∪ { d0r, . . . , d
s−2
r | ∀r ∈ R}

We use the term level-i resident for a resident ri ∈ Rs for 0 ≤ i ≤ s− 1. The preference lists corresponding
to s different residents of r in Gs are:

– For a level-0 resident r0, its preference list in Gs is the preference list of r in G, followed by the dummy
hospital d0r .

– For a level-i resident ri, where 1 ≤ i ≤ s− 2, its preference list in Gs is di−1
r followed by preference list

of r in G, followed by dir.
– For a level-(s − 1) resident rs−1, its preference list in Gs is the dummy hospital ds−2

r followed by the
preference list of r in G.

The preference lists of hospitals in Gs are as follows.

– The preference list for a dummy hospital dir is ri followed by ri+1.
– For h ∈ H, its preference list in Gs, has level-(s− 1) residents followed by level-(s− 2) residents, so on

upto the level-0 residents in the same order as in h’s preference list in G.
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Finally, we need to specify the classifications of the hospitals in Gs. For every class Ch
i in the instance G,

we have a corresponding class C̄h
i =

⋃

r∈Ch
i
{r0, . . . , rs−1} in Gs, such that q(C̄h

i ) = q(Ch
i ). We note that

|C̄h
i | = s · |Ch

i |. Let Ms be a stable matching in Gs. Then Ms satisfies the following properties:

(I1) Each dir ∈ Hs for 0 ≤ i ≤ s− 2, is matched to one of {ri, ri+1} in Ms.
(I2) The above invariant implies that for every r ∈ R at most one of {r0, . . . , rs−1} is assigned to a non-dummy

hospital in Ms.
(I3) For a resident r ∈ R, if ri is matched to a non-dummy hospital in Ms, then for all 0 ≤ j ≤ i − 1,

Ms(r
j) = djr. Furthermore, for all i + 1 ≤ p ≤ s − 1, Ms(r

p) = dp−1
r . This also implies that in Ms all

residents r0, . . . , rs−2 are matched and only rs−1 can be left unmatched in Ms.

These invariants allow us to naturally map the stable matching Ms to a feasible matching M in G. We
define a function map(Ms) as follows.

M = map(Ms) = {(r, h) : h ∈ H and (ri, h) ∈ Ms for exactly one of 0 ≤ i ≤ s− 1}

We outline an algorithm that computes a feasible matching in an LCSM+ instance G. Given G and s,
construct the graph Gs from G. Compute a stable matching Ms in Gs. If G is an LCSM+ instance we
use the algorithm of Huang [10] to compute a stable matching in G. If G is a PCSM+ instance, it is easy
to observe that Gs is also a PCSM+ instance. In that case, we use the algorithm of Abraham et al.[2] to
compute a stable matching. (The SPA instance is different from a PCSM+ instance, however, there is a
easy reduction from the PCSM+ instance to SPA, we give the reduction (refer Appendix A.1) for the sake
of completeness.). We output M = map(Ms) whose feasibility is guaranteed by the invariants mentioned
earlier. The complexity of our algorithm depends on s and the time required to compute a stable matching
in the problem instance.

In the rest of the paper, we denote by M the matching obtained as map(Ms) where Ms is a stable
matching in Gs. For any resident ri ∈ R, we define

map−1(ri,Ms) = rjii where 0 ≤ ji ≤ s− 1 and Ms(r
ji
i ) is a non-dummy hospital

= rs−1
i otherwise.

Recall by Invariant (I3), exactly one of the level copy of ri in Gs is matched to a non-dummy hospital in Ms.
For any feasible matching M ′ in G consider the set YM⊕M ′ – recall that this is a collection of M alternating
paths and cycles in G. For any path or cycle ρ in YM⊕M ′ , let us denote by ρs = map−1(ρ,Ms) the path or
cycle in Gs obtained by replacing every resident r in ρ by map−1(r,Ms). Recall that if a resident r is present
in the class Ch

j defined by a hospital h in G, then in the graph Gs, r
i ∈ C̄h

j for i = 0, . . . , s− 1. The map−1

function maps a resident r in G to a unique level-i copy in Gs. Using Lemma 1 and these observations we
get the following corollary.

Corollary 1. Let ρ be an alternating path or an alternating cycle in YM⊕M ′ , then Ms ⊕ ρs is a feasible

matching in Gs, where ρs = map−1(ρ,Ms).

The following technical lemma is useful in proving the properties of the matchings produced by our algo-
rithms.

Lemma 2. Let ρ be an alternating path or an alternating cycle in YM⊕M ′ , and ρs = map−1(ρ,Ms).

1. There cannot be any edge labeled (1, 1) in ρs.

2. Let 〈rjaa , h, rjbb 〉 be a sub-path of ρs, where h = Ms(r
jb
b ). Then, the edge (r

j′a
a , h) /∈ ρs cannot be labeled

(1, 1), where j′a < ja.

Proof. Let 〈rjaa , h, rjbb 〉 be a sub-path of ρs, where h = Ms(r
jb
b ) (Figure 4). As Ms ⊕ ρs is feasible in Gs

(Corollary 1), the set (Ms(h) \ {rjbb }) ∪ {rjaa } is feasible for h in Gs. Now since (rjaa , h) is labeled (1, 1),
the edge (rjaa , h) blocks Ms contradicting its stability. This proves (1). To prove (2), assume that the edge

(r
j′a
a , h) /∈ ρs is labeled (1, 1). The residents rjaa and r

j′a
a belong to the same class (say C̄h

k ) in Gs, hence

(Ms(h) \ {r
jb
b }) ∪ {r

j′a
a } is feasible for h. Thus the edge (r

j′a
a , h) blocks Ms contradicting its stability.
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rjaa

r
jb
b

r
j′a
a

h

Fig. 4. The edges (rjaa , h) and (rjbb , h) belong to ρ, while the edge (r
j′a
a , h) does not belong to ρ.

4.1 Maximum cardinality popular matching

Let G = (R∪H, E) be an instance of the LCSM+ problem where we are interested in computing a maximum
cardinality popular matching. We use our generic reduction with the value of the parameter s = 2. Since G2

is linear in the size of G, and a stable matching in an LCSM+ instance can be computed in O(mn) time [10],
we obtain an O(mn) time algorithm to compute a maximum cardinality popular matching in G. In case
G is a PCSM+ instance, we use the linear time algorithm in [2] for computing a stable matching to get a
linear time algorithm for our problem. The proof of correctness involves two things – we first show that M
is popular in G. We then argue that it is the largest size popular matching in G. We state the main theorem
of this section below.

Theorem 3. Let M = map(M2) where M2 is a stable matching in G2. Then M is a maximum cardinality

popular matching in G.

We break down the proof of Theorem 3 in two parts. Lemma 3 shows that the assignment M satisfies
all the conditions of Theorem 1. Lemma 5 shows that the matching output is indeed the largest size pop-
ular matching in the instance. Let M ′ be any assignment in G. Recall the definition of ỸM⊕M ′ – this set
contains M alternating paths and M alternating cycles in G and the edge labels on the M ′ edges belong to
{(−1, 1), (1,−1), (1, 1)}.

Lemma 3. Let M = map(M2) where M2 is a stable matching in G2 and let M ′ be any feasible assignment

in G. Consider the set of alternating paths and alternating cycles ỸM⊕M ′ . Then, the following hold:

1. An alternating cycle C in ỸM⊕M ′ , does not contain any edge labeled (1, 1).

2. An alternating path P in ỸM⊕M ′ that starts or ends with an edge in M ′, does not contain any edge

labeled (1, 1).

3. An alternating path P in ỸM⊕M ′ which starts and ends with an edge in M , contains at most one edge

labeled (1, 1).

Proof. We first prove the parts (1) and (2). Recall that M = map(M2) where M2 is a stable matching in
G2. Assume that ρ = 〈u0, v1, u1, . . . , vk, uk〉 where for each i = 0, . . . , k, vi = M(ui) (in case ui is a hospital,
vi ∈ M(ui)). In case ρ is a cycle, all subscripts follow mod k arithmetic. The existence of ρ in ỸM⊕M ′ implies
that there is an associated M2 alternating path or an M2 alternating cycle ρ2 = map−1(ρ,M2) in G2.

Now assume for the sake of contradiction that ρ contains an edge e = (ra, hb) /∈ M labeled (1, 1) for some
a = 0, . . . , k, and b = 0, . . . , k. We observe the following about preferences of ra and hb in G.

(O1) ra prefers hb over ha = M(ra).
(O2) hb prefers ra over rb ∈ M(hb), where rb = corr(ra).
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Using the presence of an edge labeled (1, 1) in ρ, we will contradict the stability of M2 in G2. Consider
the edge e′ = (rjaa , hb) in G2. Since hb = M2(r

jb
b ), we observe that e′ /∈ M2. We consider the four cases that

can arise depending on the values of ja and jb.

1. ja = jb = 0
2. ja = jb = 1

3. ja = 1 and jb = 0
4. ja = 0 and jb = 1

Recall observation (O1), and the fact that the residents do not change their preferences in G2 w.r.t.
the hospitals originally in G. This implies in all the four cases above, the resident rjaa prefers hb over
ha = M2(r

ja
a ). Using (O2) and the fact that a hospital h in G2 prefers level-1 residents over level-0 residents,

we can conclude the following. For the cases (1), (2) and (3), hospital hb prefers rjaa over rjbb , which implies
that the pair (rjaa , hb) is labeled (1, 1), and thus forms a blocking pair w.r.t. M2 (using Lemma 2(1)).

We now consider the three different cases for ρ depending on whether ρ is a path or a cycle. When ρ is
a path, we break down its proof in two cases – (i) ρ starts or ends with a resident unmatched in M . (ii) ρ
starts or ends with an under-subscribed hospital. In each of the different possibilities for ρ, we show that the
stability of M2 can be contradicted even in case (4), i.e. when ja = 0 and jb = 1.

– ρ = 〈r0, h1, r1, . . . , hk−1, rk−1〉 is an alternating path that starts or ends with a resident which is

unmatched in M . Here ρ2 = map−1(ρ,M2) = 〈rj00 , h1, r
j1
1 , . . . , hk−1, r

jk−1

k−1 〉 and for t = 0, . . . , k − 1,
jt ∈ {0, 1}.
Using invariants (I1), (I2), and (I3), we conclude that a resident r remains unmatched in M2 when its
level-0 copy is matched to the dummy hospital dr, and the level-1 copy is unmatched in M2. Therefore,
the first resident on the path ρ2 is a level-1 resident. Furthermore, the second resident on the path r1
has to be a level-1 resident. Otherwise, as r10 is unmatched in M2 and h1 prefers a level-1 resident over a
level-0 resident, the edge (r10 , h1) will be labeled (1, 1), and thus forms a blocking pair w.r.t. M2 (using
Lemma 2(1)).
We consider an edge e ∈ ρ such that b = a+ 1. In case (4), we observe that as j0 = j1 = 1, ja = 0, and
a < b, there exists an index x in ρ2 such that there is a transition from a level-1 resident to a level-0
resident. That is, (r0x, hx) ∈ M2 and (r1x−1, hx) /∈ M2 both belong to ρ2.
We enumerate the possible labels for the edge ex = (rx−1, hx) in G.
• If ex is labeled (1, 1) or (1,−1), then the edge (r1x−1, hx) is labeled (1, 1), and thus blocks M2 (using
Lemma 2(1)).

• If ex is labeled (−1, 1), then the edge (r0x−1, hx) is labeled (1, 1), and thus blocksM2 (using Lemma 2(2)).
– ρ = 〈h0, r1, h1, . . . , rk−1, hk−1〉 is an alternating path that starts or ends with an under-subscribed

hospital. Here ρ2 = map−1(ρ,M2) = 〈h0, r
j1
1 , h1, . . . , r

jk−1

k−1 , hk−1〉 and for t = 1, . . . , k − 1, jt ∈ {0, 1}.
Observe that if j1 = 1, then (r01 , h0) is labeled (1, 1), as h0 is unmatched in M , and r01 prefers h0

to dr1 (dr1 = M2(r
0
1) using invariants (I1), (I2), and (I3)), contradicting the stability of Ms (using

Lemma 2(1)). Thus, it must be the case that j0 = 0. Note that the edge (r1, h0) can not be labeled (1, 1)
in G, as h0 being under-subscribed prefers being matched to r1, and residents do not change their votes,
and thus the edge (r01 , h0) is labeled (1, 1), contradicting the stability of M2 (using Lemma 2(1)).
We consider an edge e ∈ ρ such that a = b+ 1. In case (4), we observe that as j1 = 0, jb = 1, and a > b,
there exists an index x in ρ2 such that there is a transition from a level-0 resident to a level-1 resident.
That is, (r0x, hx) ∈ M2 and (r1x+1, hx) /∈ M2 both belong to ρ2. Using an argument similar to in the case
above, we can show that either the edge (r1x+1, hx) or the edge (r0x+1, hx) is labeled (1, 1), and therefore
forms a blocking pair w.r.t. M2.

– ρ = 〈r0, h0, r1, h1, . . . , rk, hk, r0〉 is an alternating cycle. Here ρ2 = map−1(ρ,Ms) = 〈rj00 , h0, r
j1
1 , h1, . . . , r

jk
k , hk, r

j0
0 〉

and for t = 1, . . . , k − 1, jt ∈ {0, 1}.
We consider an edge e ∈ ρ such that a = b + 1. As ja = 0 and jb = 1, and b < a, this is a transition
from a level-1 resident to a level-0 resident in the cycle ρ2. To complete the cycle ρ2 there must exist an
index x such that there is a transition from a level-0 resident to a level-1 resident. That is, (r0x, hx) ∈ M2

and (r1x+1, hx) /∈ M2 both belong to ρ2. Using an argument similar to as in the first case, we can show
that either the edge (r1x+1, hx) or the edge (r

0
x+1, hx) is labeled (1, 1), and therefore forms a blocking pair

w.r.t. M2.
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We now prove part (3) of the lemma. Consider P = 〈r0, h0, . . . , rk−1, hk−1〉 where for each i = 0, . . . , k−1,
M(ri) = hi. The existence of P in ỸM⊕M ′ implies that there exists an M2 alternating path P2 in G2. Here

P2 = 〈rj00 , h0, . . . , r
jk−1

k−1 , hk−1〉, and for t = 0, . . . , k − 1, jt ∈ {0, 1}.
For the sake of contradiction assume that P contains at least two edges, e1 = (rx, hx−1), e2 = (ry , hy−1)

for some x, y = 1, . . . , k−1, w.l.o.g. x 6= y, x < y and e1, e2 are labeled (1, 1). We observe the following about
preferences of rx, ry and hx−1, hy−1 in G.

(O1) rx prefers hx−1 over hx = M(rx).
ry prefers hy−1 over hy = M(ry).

(O2) hx−1 prefers rx over rx−1 ∈ M(hx−1).
hy−1 prefers ry over ry−1 ∈ M(hy−1).

Using the presence of the edges e1 and e2 labeled (1, 1) in P , we will contradict the stability of M2

in G2. Consider the edges e′1 = (rjxx , hx−1) and e′2 = (r
jy
y , hy−1) in G2, and since hx−1 = M2(r

jx−1

x ) and

hy−1 = M2(r
jy−1

y ), note that e′1, e
′
2 /∈ M2.

We first consider the edge e′1, and consider the four cases that can arise depending on the values of jx
and jx−1.

1. jx−1 = jx = 0
2. jx−1 = jx = 1

3. jx−1 = 0 and jx = 1
4. jx−1 = 1 and jx = 0

Recall observation (O1), and the fact that the residents do not change their preferences in G2 w.r.t the
hospitals originally in G. This implies that in all the four cases above, the resident rjxx prefers hx−1 over
hx = M2(r

jx
x ). Using (O2) and the fact that a hospital h in G2 prefers level-1 residents over level-0 residents,

we can conclude the following. For the cases (1), (2) and (3), hospital hx−1 prefers rjxx over r
jx−1

x−1 , which
implies that the pair (rjxx , hx−1) is labeled (1, 1), which contradicts the stability of Ms (using Lemma 2(1)).

With a similar analysis for the edge e′2, we conclude that the first three cases do not arise. There is only
one case left to consider, when jx−1 = 1, jx = 0 and jy−1 = 1, jy = 0. As x 6= y, x < y, and jx = 0, jy−1 = 1,
there exists an index ℓ in P2 such that there is a transition from a level-0 resident to a level-1 resident. That
is, (r0ℓ , hℓ) ∈ M2 and (r1ℓ+1, hℓ) /∈ M2 both belong to P2.

We enumerate the possible labels for the edge eℓ = (rℓ+1, hℓ) in G.

– If eℓ is labeled (1, 1) or (1,−1), then the edge (r1ℓ+1, hℓ) is labeled (1, 1), which contradicts the stability
of Ms (using Lemma 2(1)).

– If eℓ is labeled (−1, 1), then the edge (r0ℓ+1, hℓ) is labeled (1, 1), which contradicts the stability of Ms

(using Lemma 2(2)).

This completes the proof. ⊓⊔

Lemma 4. There is no augmenting path with respect to M in ỸM⊕M ′ .

Proof. Let P = 〈r0, h1, r1, h2, . . . , hk−1, rk−1, hk〉 be an augmenting path where for each i = 1, . . . , k −
1, M(ri) = hi. The existence of P in ỸM⊕M ′ implies that there exists an M2 augmenting path P2 =

〈rj00 , h1, r
j1
1 , h2, . . . , hk−1, r

jk−1

k−1 , hk〉 in G2, and for t = 0, . . . , k − 1, jt ∈ {0, 1}.
Using invariants (I1), (I2), and (I3), we conclude that a resident r remains unmatched in M2 when its

level-0 copy is matched to the dummy vertex dr, and the level-1 copy is unmatched in M2. Therefore the first
resident on the path P2 is a level-1 resident. The second resident on the path r1 has to be a level-1 resident,
otherwise the edge (r10 , h1) will be labeled (1, 1), and thus contradict the stability of M2 (using Lemma 2(1)).
This is because r10 prefers being matched to h1 than being unmatched in M2, and h1 prefers level-1 resident
over a level-0 resident. Observe that jk−1 = 0, else the pair (r0k−1, hk) is labeled (1, 1), as r0k−1 is matched to
dr (by invariants (I1) and (I2)), which is at the end of its preference list, and hk is unmatched in M ′.

Therefore the path P2 is of the form 〈r10 , h1, r
1
1 , h2, . . . , hk−1, r

0
k−1, hk〉. As j0 = j1 = 1 and jk−1 = 0,

there exists an index x in P2 such that there is a transition from a level-1 resident to a level-0 resident. That
is, (r0x, hx) ∈ M2 and (r1x−1, hx) /∈ M2 both belong to P2.

We enumerate the possible labels for the edge ex = (rx−1, hx) in G.
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– If ex is labeled (1, 1) or (1,−1), then the edge (r1x−1, hx) is labeled (1, 1), which contradicts the stability
of Ms (using Lemma 2(1)).

– If ex is labeled (−1, 1), then the edge (r0x−1, hx) is labeled (1, 1), which contradicts the stability of Ms

(using Lemma 2(2)).

This contradicts our assumption that P is augmenting with respect to M in ỸM⊕M ′ . ⊓⊔

Lemma 5. There exists no popular matching M∗ in G such that |M∗| > |M |.

Proof. For contradiction, assume that such an assignment M∗ exists in G. Consider the set YM⊕M∗ ; recall
that this set contains alternating paths and cycles possibly containing edges labeled (−1,−1). Since |M∗| >
|M | there must exist an augmenting path P in YM⊕M∗ . We first claim that the path P must contain at least
one edge labeled (−1,−1). If not, then the path P is also contained in ỸM⊕M∗ . However, by Lemma 4 there
is no augmenting path with respect to M in ỸM⊕M ′ for any feasible matching M ′ in G.

We now remove all edges from P which are labeled (−1,−1). This breaks the path into sub-paths say
P1, P2, . . . , Pt for some t ≥ 1, where P1 and Pt have one endpoint unmatched in M . Consider the path P1;
since P1 does not contain any (−1,−1) edge this implies that P1 ∈ ỸM⊕M∗ . Without loss of generality,
assume that P1 starts with a resident r which is unmatched in M . Thus using Lemma 3(2), P1 does not
contain any edge labeled (1, 1). Let us denote by ∆(M∗,M)P1

the difference between votes of M∗ and M
restricted to vertices of path P1. It is clear that ∆(M∗,M)P1

< 0. Also, for each i = 2, . . . , t − 1, the
alternating paths Pi have both of their endpoints matched in M . Thus we have ∆(M∗,M)Pi

≤ 0 as there
can be at most one (1, 1) edge (by Lemma 3(3)) in these paths, but the endpoints prefer M , as they are
matched in M but not in M ′. If Pt exists, then a argument similar as given for P1, we have ∆(M∗,M)Pt

< 0.
Using these observations, we conclude that M is more popular than M∗, a contradiction to the assumption
that M∗ and M are both popular.

Thus, for any given matching M∗ such that |M∗| > |M |, we know that M is more popular than such a
matching. This completes the proof of the lemma, and shows that the matchingM = map(M2) is a maximum
cardinality popular matching in G. ⊓⊔

4.2 Popular matching amongst maximum cardinality matchings

In this section we give an efficient algorithm for computing a matching which is popular amongst the set of
maximum cardinality matchings. The matching M that we output cannot be beaten in terms of votes by any
feasible maximum cardinality matching. Our algorithm uses the generic reduction with a value of s = |R|
= n1 (say). Thus, |Rn1

| = n2
1, and |Hn1

| = |H| + O(n2
1). Furthermore, |En1

| = O(mn1) where m = |E|.
Thus the running time of the generic algorithm presented earlier with s = n1 for an LCSM+ instance is
O(mn · n1) = O(mn2) and for a PCSM+ instance is O(mn1) = O(mn).

To prove correctness, we show that the matching output by our algorithm is (i) maximum cardinality
and (ii) popular amongst all maximum cardinality feasible matchings. Let M = map(Mn1

) and M∗ be any
maximum cardinality feasible matching in G. Consider the set YM⊕M∗ , and let ρ be an alternating path or
an alternating cycle in YM⊕M∗ . Let ρn1

= map−1(ρ,Mn1
) denote the associated alternating path or cycle in

Gn1
. We observe that every hospital on the path ρn1

is a non-dummy hospital since ρn1
was obtained using

the inverse-map of ρ. We observe two useful properties about such a path or cycle ρn1
in Gn1

. We show that
if for a hospital h ∈ ρn1

, the level of the unmatched resident incident on h is greater than the level of the
matched resident incident on h, then such a level change is gradual, and the associated edge in ρ has the
label (−1,−1). Lemma 6, gives a proof of these.

Lemma 6. Let ρn1
be an alternating path or an alternating cycle in Gn1

and let h be a hospital which has

degree two in ρn1
. Let 〈rjaa , h, rjbb 〉 be the sub-path containing h where M(rjbb ) = h. If ja > jb , we claim the

following:

1. ja = jb + 1.
2. The associated edge (ra, h) ∈ ρ is labeled (−1,−1).
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Proof. We first prove that ja = jb +1. For contradiction, assume that ja > jb +1. Observe that h prefers all
the level-ja residents over any level-jb resident. We consider the edge e = (ra, h) in the graph G. We claim
that the label for the edge e cannot be (1, 1) or (1,−1), otherwise the edge (rjaa , h) is labeled (1, 1) in Gn1

as
the residents do not change their votes. Similarly, we claim that the label for the edge e cannot be (−1, 1)
or (−1,−1), as rja−1

a is matched in Mn1
to the last dummy on its preference list, dja−1

ra
= Mn1

(rja−1
a ) (by

invariant (I3)), and prefers h to dja−1
ra

, and h prefers all the level-(ja− 1) residents over any level-jb resident.
In this case the edge (rja−1

a , h) is labeled (1, 1) in Gn1
, and thus blocks Mn1

(by Lemma 2(2)).
To prove part (b), we assume ja = jb +1. We enumerate the possible labels for the edge e = (ra, h) in G.

– If e is labeled (1, 1) or (1,−1), then the edge (rjaa , h) is labeled (1, 1), as rjaa prefers h overMn1
(rjaa ), and h

prefers any level-ja resident over a level-jb resident. Thus, the edge (r
ja
a , h) blocks Mn1

(by Lemma 2(1)).
– If e is labeled (−1, 1), then the edge (rjba , h) is labeled (1, 1), as rjba prefers h over djbra = Mn1

(rjba ), and h

prefers rjba over rjbb according to its preference list. Thus, the edge (rjba , h) blocks Mn1
(by Lemma 2(2)).

Thus, the only possible label for the edge (ra, h) is (−1,−1). ⊓⊔

We use Lemma 7 to prove that M is a maximum cardinality matching in G.

Lemma 7. Let M∗ be any feasible maximum cardinality matching in G. Then there is no augmenting path

with respect to M in YM⊕M∗ .

Proof. For the sake of contradiction assume that the path P = 〈r0, h1, r1, . . . , hk−1, rk−1, hk〉 is an aug-
menting path where for each i = 1, . . . , (k − 1), M(ri) = hi. Here r0 is unmatched in M , and hk is
under-subscribed in M . The existence of P in YM⊕M∗ implies that there exists an Mn1

augmenting path

Pn1
= map−1(P,Mn1

) = 〈rj00 , h1, r
j1
1 , . . . , hk−1, r

jk−1

k−1 , hk〉 in Gn1
, and for t = 0, . . . , k−1, jt ∈ {0, . . . , n1−1},

where hi = Mn1
(rjii ).

Since r0 is unmatched in M , by invariant (I3), it implies that for 0 ≤ i ≤ n1 − 2, Mn1
(ri0) = dir0 , and

rn1−1
0 is unmatched in Mn1

. This implies that the first resident in the path Pn1
is a level-(n1 − 1) resident

rn1−1
0 . The second resident on the path Pn1

also has to be a level-(n1 − 1) resident. If not, then the edge
(rn1−1

0 , h1) is labeled (1, 1) since h1 prefers rn1−1
0 to any resident at a level lower than n1 − 1 and rn1−1

0 is

unmatched in Mn1
. The last resident in the path Pn1

is a level-0 resident i.e. r
jk−1

k−1 = r0k−1. If not, then the
edge (r0k−1, hk) is labeled (1, 1), as r0k−1 is matched to the last dummy hospital (d0rk−1

) on its preference list
(by invariant (I3)), and hk is under-subscribed in Mn1

.
Thus, in the path Pn1

, the first two residents are level-(n1 − 1), while the last resident is level-0. Recall
that the path Pn1

was obtained as an inverse-map of the path P in G. Since the path P contains at most n1

residents (possibly all of the residents in G), the path Pn1
also contains at most n1 residents. From Lemma 6

we observe that the difference in the levels of two residents in a sub-path of Pn1
can be at most one. Thus,

it must be the case that residents at all the levels n1 − 1 to 0 are present in Pn1
. However, since there are

two residents at level-(n1 − 1) (first two residents) and one resident at level-0 (last resident), it is clear that
residents at all levels from n1 − 1 to 0 cannot be accommodated in a path containing at most n1 residents.

This contradicts the existence of such a path Pn1
in Gn1

which implies that the assumed augmenting
path P with respect to M cannot exist. This proves that M = map(Mn1

) is a max-cardinality matching in
G. ⊓⊔

We can now conclude that the set YM⊕M∗ is a set of alternating (and not augmenting) paths and
alternating cycles. It remains to show that M is popular amongst all maximum cardinality feasible matchings
in G. Let M∗ be any feasible maximum cardinality matching in G. In Lemma 8 we show that if there is an
edge (r, h) ∈ M∗ \M labeled (1, 1) in ρ, then in ρn1

, for the hospital h, the level of its unmatched neighbour
(resident) is lower than the level of its matched neighbour (resident).

Lemma 8. If an edge (ra, h) ∈ ρ is labeled (1, 1), then in ρn1
for the sub-path 〈rjaa , h, rjbb 〉 where Mn1

(rjbb ) =
h, we have ja < jb.
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Proof. Let an edge e = (ra, h) be labeled (1, 1) in ρ. We observe the following about preferences of ra and h
in G.

(O1) ra prefers h over M(ra).
(O2) h prefers ra over rb ∈ M(h), where rb = corr(ra).

Consider the edge e′ = (rjaa , h) in Gn1
, as h = Mn1

(rjbb ) it implies e′ /∈ Mn1
. Consider the three cases

that can arise depending on the values of ja and jb.

1. ja = jb 2. ja > jb 3. ja < jb

Recall observation (O1), and the fact that the residents do not change their preferences in Gn1
w.r.t. the

hospitals originally in G. This implies in all the three cases above, the resident rjaa prefers h over Mn1
(rjaa ).

Using (O2) and the fact that a hospital h in Gn1
prefers level-p residents over level-q residents, when p > q,

we can conclude the following. For the cases (1) and (2), hospital h prefers rjaa over rjbb , which implies that
the pair (rjaa , h) is labeled (1, 1), which is a blocking pair for Mn1

(using Lemma 2(1)). This contradicts the
stability of Mn1

. We therefore conclude that ja < jb. ⊓⊔

Lemma 9 shows that in an alternating path in YM⊕M∗ with exactly one endpoint unmatched in M or an
alternating cycle, the number of edges labeled (1, 1) cannot exceed the number of edges labeled (−1,−1).

Lemma 9. Let ρ be an alternating path or an alternating cycle in YM⊕M∗ . Then the number of edges labeled

(1, 1) in ρ is at most the number of edges labeled (−1,−1).

Proof. Depending on the nature of ρ we have three different cases.

– ρ is an alternating path which starts with an unmatched resident in M .
– ρ is an alternating path which starts with a hospital which is under-subscribed in M .
– ρ is an alternating cycle.

The proof idea is similar in all the three cases. In each of the above, we consider ρn1
= map−1(ρ,Mn1

). For
every edge labeled (1, 1) in ρ we show a change (increase / decrease) in the level of the residents which are
neighbours of a particular hospital. We show that each such change must be complemented with another
change (decrease / increase resp.) in the level of the residents which are neighbours to some other hospital.
Finally, we show that the second type of change translates to a (−1,−1) edge in ρ.

Let ρ be an alternating cycle. Consider a hospital hi ∈ ρ for which there is an edge (r, h) labeled (1, 1)

incident on it in ρ. Consider the associated hospital hi ∈ ρn1
. W.l.o.g. let 〈r

ji−1

i−1 , hi, r
ji
i 〉 be a sub-path of ρ

when traversing ρn1
in counter-clock-wise direction. By Lemma 8, we know that the level of the unmatched

resident incident on hi is lower than the level of the matched resident incident on hi. Thus there is an
increase in level of residents when at hi (while traversing ρn1

in counter-clockwise direction). This is true
for any hk ∈ ρn1

where the associated hospital in ρ has a (1, 1) edge incident on it. We now recall from
Lemma 6(2) that whenever a hospital hk ∈ ρn1

has a level decrease, the associated edge in ρ is labeled
(−1,−1). Furthermore the decrease in levels at a hospital is gradual. Thus, it must be the case that the
number of (1, 1) edges in ρ is at most the number of (−1,−1) edges in ρ.

In case ρ is an alternating path starting at an unmatched resident, we show that in the path ρn1
the

first two residents are level-(n1 − 1) residents (see Claim 1 below for a proof). Furthermore, consider the
first edge (r, h) ∈ ρ that is labeled (1, 1). The associated hospital hi has a increase in the level of its two
neighbouring residents. However, since ρn1

started with two level-(n1 − 1) residents (which is the highest
level possible). Therefore, there must have been some hospital hk preceding hi in ρn1

which has a decrease

in the levels of the two neighbours. Using these facts it is easy to prove the following:
Number of (1, 1) edges in ρ ≤ Number of increases in ρn1

≤ Number of decreases in ρn1
≤ Number of

(−1,−1) edges in ρ.
This completes the proof in case ρ is a path starting at an unmatched resident.

Finally, we are left with the case when ρ is an alternating path which starts with a hospital hi which is
under-subscribed in M . We show that in the associated path ρn1

, the first resident is a level-0 resident (see
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Claim 2 below for a proof). Note that in this case since the path starts at a hospital, whenever we have an
edge labeled (1, 1) in ρ, the associated hospital hi in ρn1

has an increase in the levels of the two neighbouring
residents. Now first resident in the path is at the lowest possible level, it must be the case that there is a
hospital hk preceding hi in ρ for which there is a decrease in the level of the neighbouring residents. Now
using arguments similar to those in the case of path starting at an unmatched resident, we conclude that
the number of (1, 1) edges in ρ is at most the number of (−1, 1) edges in ρ.
Claim 1: ρ = 〈r0, h1, r1, . . .〉 starts with an unmatched resident. As r0 is unmatched in M , by invariant
(I3), it implies that for 0 ≤ i ≤ n1 − 2, Mn1

(ri0) = dir, and rn1−1
0 is unmatched in Mn1

. Therefore the first

resident rj00 on the path ρn1
is a level-(n1− 1) resident, that is j0 = n1− 1. Furthermore, the second resident

on the path r1 has to be a level-(n1 − 1) resident. If not, then as rn1−1
0 is unmatched in Mn1

and h1 prefers
a level-(n1 − 1) resident to a level-v resident (v < n1 − 1), the edge (rn1−1

0 , h1) will be labeled (1, 1), and
thus blocks Mn1

contradicting its stability (using Lemma 2(1)).
Claim 2: ρ = 〈h0, r1, h1, . . .〉 starts with an under-subscribed hospital. The first resident rj11 on the path ρn1

has to be a level-0 resident, that is j1 = 0. If not, i.e. if j1 = 1, then d0r0 = Mn1
(r01) (by invariant (I3)) d0r0 in

Mn1
, and prefers h1 to d0r0 . The hospital h1 on the other hand is under-subscribed in Mn1

and prefers being
matched to r01 in Mn1

. Thus, the edge (r01 , h1) is labeled (1, 1), and blocks Mn1
contradicting its stability

(using Lemma 2(2)). ⊓⊔

Thus, we get the following theorem:

Theorem 4. Let M = map(Mn1
) where Mn1

is a stable matching in Gn1
. Then M is a popular matching

amongst all maximum cardinality matchings in G.

Discussion: A natural question is to consider popular matchings in LCSM instances. An LCSM instance
need not admit a stable matching. However we claim that restricted to LCSM instances which admit a stable
matching, our results hold without any modification. To obtain the result, we claim that Lemma 1 holds in
the presence of lower quotas on classes. Additionally, if the given LCSM instance G admits a stable matching,
the graph Gs for s = 1, . . . , n1 also admits a stable matching. We thank Prajakta Nimbhorkar for pointing
this to us.
Acknowledgement: We thank the anonymous reviewers whose comments have improved the presentation.
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A Appendix

A.1 Reduction from a PCSM+ instance to an SPA instance

An instance of SPA [2] consists of students, projects and lecturers. Each lecturer has an upper bound on
the maximum number of students that he/she is willing to advise. Each project has an upper bound on the
number of students it can accommodate. Each project is owned by exactly one lecturer. Each student has a
preference ordering over a subset of the projects, and each lecturer has a preference over the students.

We detail on the reduction from PCSM+ instance to an SPA instance here. For a resident r in the PCSM+

instance, a corresponding student sr is introduced in the SPA instance. For each hospital h, a lecturer lh with
capacity q(h) is added in the SPA instance. For each class Ch

j in the classification provided by a hospital h,

a project pj is associated with the lecturer lh, and the upper-bound of pj is equal to q(Ch
j ). The preference

list of lh is obtained from its corresponding hospital h. If the resident r is the k-th most preferred resident
in the preference list of h, then the student sr is the k-th most preferred student in the preference list of lh.
Similarly, the preference list of a student sr is created from its corresponding resident r. Let Ch

j be the class
that the resident r appears in the classification provided by the k-th most preferred hospital in its preference
list, then pj is the k-th most preferred project in the preference list for sr. As the classifications associated
with every hospital in the PCSM+ instance are a partition over its preference list, there is no ambiguity in
describing the preference of the students.
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