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Abstract—In the algebraic view, the solution to a network
coding problem is seen as a variety specified by a system of
polynomial equations typically derived by using edge-to-edge
gains as variables. The output from each sink is equated to its
demand to obtain polynomial equations. In this work, we propose
a method to derive the polynomial equations using source-to-
sink path gains as the variables. In the path gain formulation,
we show that linear and quadratic equations suffice; therefore,
network coding becomes equivalent to a system of polynomial
equations of maximum degree 2. We present algorithms for
generating the equations in the path gains and for converting
path gain solutions to edge-to-edge gain solutions. Because of the
low degree, simplification is readily possible for the system of
equations obtained using path gains. Using small-sized network
coding problems, we show that the path gain approach results
in simpler equations and determines solvability of the problem
in certain cases. On a larger network (with 87 nodes and 161
edges), we show how the path gain approach continues to provide
deterministic solutions to some network coding problems.

Index Terms—Algebraic network coding, Network coding,
Scalar linear network coding.

I. INTRODUCTION

THE idea of network coding over error-free networks,
pioneered in [1], has been a subject of active current

research. The general idea of linear network coding, where
intermediate nodes linearly combine incoming packets, was
explored in [2]. A simple and effective algebraic formulation
of the general network coding problem was introduced in
[3]. This established a direct connection between a network
information flow problem and an algebraic variety over the
closure of a finite field.

Using the formulations of [2], [3], the multicast network
coding problem, where one source transmits at the same rate
to a set of sinks, has been characterized almost completely.
A linear network code exists for the multicast case in a large
enough finite field and can be found in polynomial time [4].
The insufficiency of linear coding in the non-multicast case
has been demonstrated in [5]. Recent work in [6] and [7]
has shown the restrictions imposed on the field characteristic
for the scalar linear solvability of a general network coding
problem. See [6] for more non-multicast examples.

In the algebraic view, the network code is seen as a variety
specified by a system of polynomial equations in multiple
variables taking values from a finite field [3] [6]. To derive the
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equations corresponding to a given network coding problem,
edge-to-edge gains are assigned as variables. For every node,
the flow on outgoing edges is written down in terms of the
flows on the incoming edges using the edge-to-edge gains.
The flow propagates in this manner from the sources to the
sinks. The output from the sink is equated to its demand, and
polynomial equations in the edge-to-edge gains are obtained.

In this work, we propose a method to derive the equations
using path gains as the variables. The gain on every source
to sink path becomes a variable in the proposed formulation.
In the method of [3], the path gain would be a product of
several edge-to-edge gain variables. The advantage of the path
gain formulation is that the final equations are only linear and
quadratic, as shown in the remainder of this article. Because
of the low degree and the inherent nature of the scalar linear
network coding problem, simplification is readily possible for
the system of equations. We provide an algorithm to compute
the equations in the path gain formulation, and demonstrate
the efficacy of the path gain approach by illustrative examples.
Starting with the butterfly network and other interesting small-
sized network coding problems, we show that the path gain
approach provides results on solvability of the problem. On a
larger network (with 87 nodes and 161 edges), we show how
the path gain approach continues to provide solutions to some
network coding problems.

The path gain formulation is equivalent to the edge-to-
edge gain formulation and can be derived from it. Therefore,
the work presented in this article is a method to simplify
the equations generated by the edge-to-edge gain variable
assignment. While the number of variables in the edge-to-
edge formulation is of the order of the number of edges, the
number of monomial terms in these variables is exponential in
the number of edges. Hence, the polynomial system is of size
that can be exponential in the size of the network. Assigning
variable names to the paths (which can be exponential in the
size of the network in number) does not necessarily make the
path gain formulation more complex than the edge-to-edge
gain formulation as far as solving the equations is concerned.
However, in an actual implementation, the edge-to-edge gains
are to be used. To complete the path gain formulation, we
provide an algorithm to compute the edge-to-edge gains from
the path gains.

Though there are several other standard methods to simplify
systems of polynomial equations (such as Gröbner basis
methods), many problems in the area of solving systems of
polynomial equations (and in network coding with multiple
sources and sinks) are either NP-hard or undecidable. In this
light, the path gain formulation appears to be simpler than the
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edge-to-edge formulation in the sense that simplifications and
solutions are easier in several examples (both small and large).

Several methods and techniques to study the network coding
problem have been introduced by many researchers in this
area that has seen intense recent research activity. Following
the information-theoretic methods in [1], more information-
theoretic methods were used for characterizing network coding
for multimessage unicasts in [8]. The algebraic formulation
in [3] provided an elegant and powerful method to study
network coding. Random network coding [9], which is a
popular choice in practical implementations, was introduced
and studied using algebraic tools. The linear programming
formulation has seen applications in wireless network coding
[10] and optimizing network coding with a cost criterion [11].
The combinatorial approach, proposed and developed in [12]
and [13], has provided methods for studying the field sizes in
network coding problems.

In the context of the prior work cited above, the path
gain formulation for algebraic network coding presents the
equivalence between network coding and a maximum-degree-2
system of polynomial equations for the first time. The equiva-
lence is achieved without introducing any new monomial terms
that are not present in the original system. The equations
obtained from the path gain formulation are amenable to
considerable simplification in several cases of interest. Hence,
the path gain method can provide deterministic solutions to
several linear network coding problems. The method can,
in some cases, provide results on solvability. The primary
utility of the method is likely to be in larger examples. As
an illustration, for the network (in Fig. 5) with 87 nodes and
161 edges, we present results of solutions to certain network
coding problems with multiple sources and sinks in Section
IV-D.

The rest of this article is organized as follows. We will start
with a notational description of the network coding problem
in Section II, which also introduces the edge-to-edge gain
algebraic formulation of [3]. The path gain formulation is
presented in Section III, where we provide a graph transfor-
mation algorithm that is used to represent and compute the
equations in a transformed graph. At the end of the section, we
show how the equations derived from path gain variables are
amenable to easy simplifications. In Section IV, we illustrate
the advantages of the path gain formulation using various
example networks drawn from the literature. We also provide
results for a large Internet Service Provider (ISP) network. In
Section V, we give an algorithm (that uses the transformed
graph) to derive the edge-to-edge gains from the path gains.
Finally, we provide concluding remarks in Section VI.

II. THE NETWORK CODING PROBLEM

The communication network is modeled as a directed,
acyclic multigraph, G = (V,E), where the node set V
represents the terminals and switches in the network and the
edge set E represents the communication links. It is assumed
that all communication links are error-free and have unit
capacity.

A. Notation

For a given edge e = (u, v), we denote:

u = tail(e)
v = head(e)

For each node v ∈ V , we define

I(v) = {e ∈ E : head(e) = v},
O(v) = {e ∈ E : tail(e) = v}.

Let us further assume the following without loss of gener-
ality:

1) A node v is a source node iff |I(v)| = 0 and all source
nodes produce exactly one unit of data per unit time.

2) A node v is a sink node iff |O(v)| = 0 and all sink
nodes demand exactly one unit of data per unit time.

In cases where a node v produces (demands) more than
one data symbol, we can add virtual source (sink) nodes that
produce (demand) exactly one data symbol, have exactly one
output (input) link connecting them to v and no input (output)
links.

Then, the set of source and sink nodes is defined as follows:

S = {v ∈ V : |I(v)| = 0} = {s1, s2, . . . , s|S|}.
T = {v ∈ V : |O(v)| = 0} = {t1, t2, . . . , t|T |}.

Let the sink tj demand the s(j)-th source. For every source s, a
virtual incoming edge e(s) is added for notational convenience
(as in the edge-to-edge gain formulation [3]).

Let us now assume that we use a finite alphabet H . For
each edge e, an edge function is then defined as a mapping
fe : H

i → H , where i = 1 if tail(e) ∈ S and i = |I(tail(e))|
otherwise. For a sink t, a virtual outgoing edge e(t) is added
to denote the output. The edge function on this virtual edge,
which is a mapping denoted ft : H

|I(t)| → H , is called the
output function of the sink.

Definition 1: The collection of all the edge functions in a
given network is defined as a network code. If all the edge
functions are linear maps with respect to a field alphabet H ,
then the code is a scalar linear code.

Let the data symbol generated at the i-th source node, si ∈
S, be denoted by Xi. The data symbol demanded by the j-th
sink node, tj ∈ T , is Xs(j). The sources and sinks implicitly
define a set of connection requirements for the given network
G. The connection requirement is met at a sink tj if the output
of the function ftj equals Xs(j) for all inputs.

Given a network G, the set of source nodes S and the set of
sink nodes T , the network coding problem is to determine all
the edge functions such that all the connection requirements
are satisfied. If such a set of edge functions exists, then
the network coding problem is solvable. If a set of linear
edge functions (with respect to a finite field H) exists that
satisfies all the connection requirements, then the network
coding problem is scalar-linearly solvable.

In a scalar linear network coded flow (over a field H), the
edge function of an edge e can be written as

∑|S|
i=1 aiXi, where

ai ∈ H . We refer to
∑|S|
i=1 aiXi as either the edge function of

e or the symbol flowing through e and denote it as a vector
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fe = [a1 a2 · · · a|S|]. Similarly, the output function at the
sink has a vector notation.

B. Koetter-Médard formulation and edge-to-edge gains

Solving the scalar linear network coding problem was
formulated as a problem of solving a system of polynomial
equations by Koetter and Médard in [3]. The idea is to
construct the linear edge function fe for an edge e = (u, v)
recursively as follows:

fe =
∑

e′∈I(u)

αe′,efe′ , (1)

where αe′,e is an edge-to-edge gain. To start the recursion,
the edges out of a source node si are assigned the unit
coding vector with a 1 in the i-th position. The edge function
for the remaining edges, found using (1), become vectors of
polynomials in the edge-to-edge gains αe′,e. Finally, at a sink
tj , the output edge function is equated to the unit vector with
a 1 in the s(j)-th position. These equations form a polynomial
system in the edge-to-edge gains αe′,e for e′ ∈ I(tail(e)).

The Koetter-Médard algebraic formulation is illustrated for
the case of the modified butterfly network shown in Fig. 1 with
two sources and four sinks. Note that the network in Fig. 1 is
identical to the classic butterfly network under our definition of
sources and sinks. The edge functions under the assignment
of edge-to-edge gains (as in [3]) are shown in Fig. 1. The
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Fig. 1. Flow in the butterfly network.

formulation described in [3] gives the following 8 equations
in 10 variables:

α3 + α4α1 = 1 α4α2 = 0

α5 + α6α1 = 0 α6α2 = 1

α7α2 + α8 = 0 α7α1 = 1

α9α2 + α10 = 1 α9α1 = 0

In this work, we propose methods to simplify the algebraic
formulation for the general scalar-linear network coding prob-
lem through the use of path gains as opposed to edge-to-edge

gains used in [3]. As shown in the remainder of the paper, the
path gain approach results in considerable simplifications in
several cases.

III. ALGEBRAIC FORMULATION USING PATH GAINS

The main idea in the proposed formulation is to use path
gains instead of edge-to-edge gains as variables and obtain
a system of polynomial equations. We begin by showing a
derivation of the path gain formulation from the edge-to-edge
gain formulation.

A. Derivation from Koetter-Médard formulation

Let the output edge function at the sink tj demanding source
s(j) be ftj = [g(1) g(2) · · · g(|S|)]. If P = (e1e2 · · · el) is a
path from the source virtual incoming edge e(si) = e1 to
the sink virtual outgoing edge e(tj) = el, the polynomial
g(i) contains a path gain term a(P ) =

∏l
m=2 αem−1em .

Conversely, each term in the polynomial g(i) is the gain along
a path from the source edge e(si) to the sink edge e(tj).

In the proposed formulation, the path gain of a path P
from a source input virtual edge to a sink output virtual
edge is assigned as a variable denoted a(P ). Suppose there
are Nij paths, denoted Pijk (1 ≤ k ≤ Nij), from e(si)
to e(tj). We see that the polynomial g(i) can be written as
g(i) =

∑Nij

k=1 a(Pijk).
The proposed approach can be summarized as follows.

Equating the output edge function at the sinks to unit vectors,
the equations in the Koetter-Médard formulation become linear
in the new path gain variables. We call these conditions as
no-interference conditions. However, if two paths overlap in
one or more edges, there are inter-relationships between the
path gain variables. These inter-relationships are called edge
compatibility conditions, and they turn out to be quadratic in
the path gain variables.

A simple description of the edge compatibility conditions
is as follows. If two source-sink paths P = P1eP2 and
Q = Q1eQ2 overlap in an edge e, we see that the relationship
a(P )a(Q) = a(P1eQ2)a(Q1eP2) needs to be satisfied, since
both sides are equal to a(P1e)a(eP2)a(Q1e)a(eQ2). Note that
P1eQ2 and Q1eP2 are source-sink paths as well. However,
several of these equations can be combined to produce the nec-
essary set of edge compatibility conditions. This is described
in more detail in the Section III-E.

B. Constructing source-sink paths as trees

To work with the path gain formulation for a given network
and connection requirements, we need to determine source-
sink paths and assign path gain variables. Then, the no
interference conditions and the non-trivial edge compatibility
conditions have to be determined. In the remainder of this
section, we provide algorithms for performing these tasks. In
these algorithms, we employ a graph transformation that is
very useful in both visualizing the path gain approach and
solving for the edge-to-edge gains from the path gains.

An important ingredient in the algorithms is an ordering
of the nodes. Every directed acyclic network determines a
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topological order or sequencing of nodes from sources or
sinks or vice versa. A standard algorithm for finding such
a topological ordering of the nodes is given below [14] for
completeness.

Algorithm 1: Topological Sorting
Input: A directed acyclic graph, G = (V,E).

1) Associate with each node v, a value N(v) that is
initialized to |O(v)|.

2) Pick a node v such that N(v) = 0, do
• For each edge e ∈ I(v),
N(tail(e))← N(tail(e))− 1.

• N(v)← −1
• Append v to the ordering, P .

3) If any node has not been added to the ordering yet, go
to Step 2. Else terminate.

Output: P , a topological ordering of nodes.
Notice that the sinks occur first in the topological ordering.
Loosely, the ordering traverses the nodes from sinks to sources.
The final algorithm that takes a network coding problem as
input and outputs a set of trees that collect together all source-
sink paths is given below:

Algorithm 2: Graph Transformation
Input: A directed acyclic graph G = (V,E), set of sources S,
set of sinks T , connection requirements C.

1) Obtain a topological ordering P for the graph G =
(V,E) using Algorithm 1.

2) Let G′(V ′, E′) = G(V,E).
3) Loop through the nodes v ∈ V in the order defined by

P , do
• If O(v) > 1,

– for each edge e ∈ O(v), add a new node v′ to
V ′ with one output link connecting it to head(e)
and one input link e′ for each e′′ ∈ I(v) such
that tail(e′) = tail(e′′).

– Delete the old node v in V ′.
Output: G′ = (V ′, E′), a transformed network.

Theorem 2: The final transformed network is a set of |T |
directed trees {T1, T2, · · · , Tj} such that Sink tj is the root of
the j-th tree. All leaf nodes in the trees are copies of one of the
source nodes. There is a one-to-one correspondence between
the paths from leaf nodes, which are copies of the source si,
to the root in Tj and the paths from si to tj in the original
network.

Proof: Each node in the transformed network will have
exactly one output link and the acyclic property of the graph is
maintained by the transformation. The underlying undirected
graph is a set of disjoint trees, because any cycle in it must
imply that either the cycle is also present in the directed graph
or that one of the nodes in the directed graph has more than
one output link. Hence, the equivalent network is made up of
a set of directed trees.

The transformation maintains one output link for each node
in the original graph that has |O(v)| ≥ 1. So, the only nodes
that will have |O(v)| = 0, and hence be the roots of these
trees, are the sink nodes (which had |O(v)| = 0 to start with).
Hence, each sink would be the root of a directed tree in which
all edges are directed towards this root.

Also, the number of input links of a copied node in the
transformed graph is equal to the number of input links
possessed by the original node. So, the only nodes that will
have |I(v)| = 0, and hence be leaf nodes in these trees, are
copies of the source nodes (which had |I(v)| = 0 to start
with).

Finally, since all nodes are visited in the topological order
from the sinks to the sources, all paths from the sinks to the
sources will be part of the final network. This results in the
one-to-one correspondence in the paths.

An example of this transformation applied to the butterfly
network (Fig. 2a) can be seen in Fig. 2b. To apply the graph
transformation, the topological ordering of the nodes is chosen
to be 7−8−9−10−5−6−4−3−1−2. Nodes 7, 8, 9 and 10
are sink nodes, and occur first in the ordering. Nodes 5 and 6
will be replicated 2 times, since they both have 2 output links.
This will result in the replication of the edges e4, e5, e6 and
e7. Node 4 will now have 4 output links and will have to be
replicated as many times along with edge e3. Similarly, Node
3 will also be replicated 4 times along with edges e1 and e2.
Finally, the source nodes 1 and 2 will be replicated 6 times
each since they both now have 6 output links.

C. Path gain variables and edge functions

Since there is a one-to-one correspondence between the
leaf source nodes in the transformed network and the source-
sink paths in the original network, path gain variables are
assigned at the leaf source nodes. The assignment is illustrated
in Fig. 2b for the butterfly network. Source nodes 1 and 2
are assigned the variable names a and b, respectively. The
subscripts are chosen tree by tree in the transformed network.
In the tree with root as Node 7, the two copies of source node
1 are assigned variables a1 and a2, while the single copy of
source node 2 is assigned the variable b1. In the tree with root
node 8, the variables are a3, a4 for the two copies of Node
1, and b2 for the single copy of Node 2. We continue in this
manner to name the scaling variables at the source leaf nodes
of the other two trees to get variables a1, a2, · · · , a6 and b1,
b2, · · · , b6.

Once path gain variables are assigned (from some field) at
the leaf nodes, all edge functions are computed in the trans-
formed network assuming that intermediate nodes perform
addition only. The output function at the root (sink) is the sum
of all incoming edge functions. For instance, in the tree with
root as Node 7 in Fig. 2b, the edge functions are as follows:
for e1, a2X1; for e2, b1X2; for e3 and e6, a2X1 + b1X2; for
e4, a1X1; for e8, the edge function is (a1 + a2)X1 + b1X2.
The output function at sink node 7 is (a1 + a2)X1 + b1X2.
Similarly, the edge functions can be computed for the other
trees. Note that the intermediate nodes perform addition as the
entire path gain has been assigned as a variable at the leaf.

D. No Interference conditions

Because of the equivalence between paths from sources to
a sink tj in the original network and leaf nodes in the tree Tj ,
we see that the output function calculated in the transformed
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Fig. 2. (a) The (modified) butterfly network with 4 sinks and 2 sources. (b) The final transformed network has 4 disjoint trees - one for each sink node. The
path gains at the leaf nodes are denoted by ai’s and bi’s.

network is identical to the output function in the Koetter-
Médard formulation as given in Section III-A. Therefore, the
no interference conditions are obtained by equating the output
function of the root in the transformed network to its demand.

In Fig. 2b, the output function at the root nodes 7, 8, 9 and
10 are (a1 + a2)X1 + b1X2, (a3 + a4)X1 + b2X2, a5X1 +
(b3 + b4)X2 and a6X1 + (b5 + b6)X2, respectively. For the
symbol at Node 7 to be equal to the required X1, we have
a1+a2 = 1 and b1 = 0. Other equations are derived similarly.
Hence, in the butterfly network of Fig. 2, we get the following
linear equations:

a1 + a2 = 1 b1 = 0

a3 + a4 = 0 b2 = 1

a5 = 1 b3 + b4 = 0

a6 = 0 b5 + b6 = 1 (2)

For completion, we state the general form of the no-
interference conditions below. In general, each path gain
variable in the transformed network is associated with exactly
one source symbol and one sink (or tree). Let us denote the
source-sink path gains by aijk where i ∈ {1, . . . , |S|} denotes
the source, j ∈ {1, . . . , |T |} denotes the sink (or the tree),
and k ∈ 1, . . . , Nij is an index among all copies of the source
node si in the tree Tj rooted at tj . Then, the general form of
the “No Interference” conditions can be written as follows:∑

k

aijk =

{
1 if s(j) = si
0 otherwise (3)

E. Edge Compatibility conditions

As explained before, the path gain variables of overlapping
paths are related by quadratic edge-compatibility conditions. If
multiple copies of an edge are present in the transformed net-
work, then the edge is part of multiple source-sink paths in the
original network. Therefore, edge compatibility conditions are
indicated by the presence of multiple edges in the transformed
network. The edge functions in the transformed network can be

used to write down the edge compatibility conditions. We first
show this for the butterfly network example and later provide
the general form.

In our illustrative example of Fig. 2b, the edge e3 is copied
four times. Since there are

(
4
2

)
= 6 ways of choosing two

copies among the four, there will be six edge compatibility
conditions for e3. The symbols on the copies of e3 on the
trees with root nodes 7, 8, 9 and 10 are a2X1+b1X2, a4X1+
b2X2, a5X1 + b3X2 and a6X1 + b5X2, respectively. Hence,
in fractional form, we need a2

a4
= b1

b2
(roots 7 and 8), a2a5 = b1

b3

(roots 7 and 9), a2a6 = b1
b5

(roots 7 and 10), a4a5 = b2
b3

(8 and 9),
a4
a6

= b2
b5

(8 and 10) and a5
a6

= b3
b5

(9 and 10).
In the degree-2 form, the edge compatibility conditions for

the four copies of the edge e3 are listed below:

a2b2 = a4b1 a2b3 = a5b1

a2b5 = a6b1 a4b3 = a5b2

a4b5 = a6b2 a5b5 = a6b3 (4)

For the butterfly network example, we do not get any other
edge compatibility conditions. For edges e6 and e7, the equa-
tions are identical to the ones listed above. Also, there are no
equations for edges e1, e2, e4 and e5 since these edges have
scaled versions of the same symbol flowing through them.

We have seen that not all duplicated edges result in distinct
compatibility conditions. In general, edge compatibility equa-
tions will be required for each edge e in the original network
that satisfies the following conditions:

1) Number of copies of head(e) in the transformed network
> 1 (or the edge will not be replicated at all).

2) Number of different source nodes having a path to
e > 1 (since if two copies of e carry a1X1 and a2X1,
these will be scalar multiples of each other for any value
assigned to a1, a2).

3) |I(tail(e))| > 1 (or the equations will be same as that
for e′ ∈ I(tail(e))).

We now state the general form of the edge-compatibility
conditions in terms of nodes of the transformed network.
Given a node v ∈ V in the original network, the general form
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of the condition for two copies of v, denoted by v1 and v2 in
V ′, belonging to the j1-th and j2-th trees, respectively, can be
written as follows: ∑

k∈hi1j1
(v1)

ai1j1k

 ∑
l∈hi2j2

(v2)

ai2j2l

 =

 ∑
m∈hi1j2

(v2)

ai1j2m

 ∑
n∈hi2j1

(v1)

ai2j1n

 (5)

where hij(v) denotes the set of leaf nodes in the j-th tree that
are copies of the source node si and have a path to v.

A careful study of the general form shows an edge com-
patibility condition needs to be introduced for every two
copies, v1, v2 ∈ V ′, of node v ∈ V and for every two
sources si1 , si2 ∈ S such that (a) |I(v1)| > 1, (b) v1 ∈
Vj1 , v2 ∈ Vj2 , Vji = Set of nodes in the ji-th tree, and (c)
hi1j1(v1) 6= φ, hi2j1(v1) 6= φ.

The linear no-interference conditions and the quadratic edge
compatibility conditions on the path gains are necessary and
sufficient conditions for existence of solutions to the scalar
linear network coding problem. The sufficiency is proved by
Algorithm 3 in Section V. Before describing the sufficiency,
we show how the linear and quadratic equations in path gains
can be simplified in a systematic manner to provide useful
results.

F. Simplifying the equations

The linear equations (No Interference conditions) possess
the special property that each of them involves a mutually
exclusive set of variables. Using this property, we can simplify
the system of equations in the following two ways:

1) It is possible that some of the variables never occur in the
non-linear equations (Edge Compatibility conditions).
From (4), we can see that a1 is one such variable in
the example of the butterfly network. It can be easily
seen that the linear equation involving a1 can be trivially
satisfied for any value assigned to the other variables
involved in the same linear equation by choosing an
appropriate value of a1 (which does not have any other
condition on it). Hence, a1 along with the linear equation
it occurs in can be removed from the system as trivially
solvable.
Therefore, the first simplification would involve elimi-
nation of variables (and their corresponding linear equa-
tions) that do not occur in any non-linear equation.

2) Since each linear equation involves a mutually exclusive
set of variables, we can eliminate one variable using each
linear equation easily. Eliminating this variable from the
non-linear equations (note that this does not increase the
degree of the system) might reduce some of them to
linear equations which can again be used to eliminate
more variables iteratively.

In the case of the butterfly network, after the first step of
simplification, we are left with 8 variables, 4 linear equations
and 6 non-linear equations.

In the second step of the simplification, after the first round
of elimination of variables using the linear equations (2) in
(4), we are left with 4 variables: a2, a4, b3 and b5 and the 6
equations as shown below.

a2 = 0 b5 = 0

a2b5 = 0 a2b3 = 0

a4b5 = 0 a4b3 = 1

Subsequently, a2 and b5 can also be eliminated, using the lin-
ear equations above, leaving just 2 variables and the relation:

a4b3 = 1 (6)

Hence, the network coding problem for the example of the
butterfly network has been reduced to solving only one (non-
trivial) equation given in (6).

IV. ILLUSTRATIVE EXAMPLES

In this section, we provide a few examples to illustrate the
usefulness of the path gain approach in deriving the system
of polynomial equations corresponding to a network coding
problem. Note that several problems in this area of polynomial
equations and network coding are NP-hard or undecidable, and
we do not expect polynomial-time algorithms and exact step-
by-step solutions to result from the path gain approach. Our
approach is to demonstrate the effectiveness of the path gain
method in several examples of varying complexity.

In all examples, we provide the number of equations and
variables obtained from the edge-to-edge gain formulation.
The path gain formulation (after simplifications) will result in
better numbers in many cases. However, we point out that this
is not a comparison of the two methods, since one is simplified
and the other is not. As we have shown, the path gain method
can be seen as a method for simplifying the edge-to-edge
gain equations. Other methods for simplifying generic systems
of polynomial equations, such as Gröbner basis methods,
are useful in several networks. Also, Gröbner basis or other
methods can be used after the path-gain-based simplifications.
However, in many examples, we observe that the path gain
formulation appears to provide results on solvability. This is
mainly because the path gain approach provides low degree
equations, which are amenable to easy analysis and further
simplifications.

A. Illustration of derivation from Koetter-Médard formulation

For the butterfly network, the relationship between the path
gain variables (shown in Fig. 2b) and the edge-to-edge gains in
the Koetter-Médard formulation (Fig. 1) can be written down
as follows: a1 = α3 (path: 1 − 5 − 7), a2 = α4α1 (path:
1− 3− 5− 7), b1 = α4α2 (path: 2− 3− 4− 5− 7), a3 = α5

(path: 1−5−8), a4 = α6α1 (path: 1−3−4−5−8), b2 = α6α2

(path: 2− 3− 4− 5− 8), a5 = α1α7 (path: 1− 3− 4− 6− 9),
b3 = α2α7 (path: 2−3−4−6−9), b4 = α8 (path: 2−6−9),
a6 = α1α9 (path: 1 − 3 − 4 − 6 − 10), b5 = α2α9 (path:
2− 3− 4− 6− 10), b6 = α10 (path: 2− 6− 10).

The no-interference conditions are easily obtained. For edge
compatibility between the paths 2−3−4−5−8 and the path
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Fig. 3. (a) An example network that is solvable only over fields with characteristic 2. There are three sources - 1, 2 and 3 - producing symbols X1, X2 and
X3 respectively. There are three sinks - 12, 13 and 14 - demanding symbols X3, X1 and X2 respectively. (b),(c),(d) The final transformed network with 3
trees - one for each sink node.

1−3−4−6−9, we get the equation b2a5 = b3a4 = α6α2α1α7.
Other compatibility conditions can be checked similarly.

The change to path gain variables results in easy simplifi-
cation of the resulting equations with no increase in degree.
Finally, we obtain the simple equation, a4b3 = 1, which is not
obvious even when the substitution is clearly specified.

B. Another Example

Consider the network shown in Fig. 3a taken from [5], [6],
where it has been proved to have linear coding solutions only
over fields of characteristic 2. Nodes 1, 2 and 3 are sources
producing X1, X2 and X3 respectively. Nodes 12, 13 and 14
are sinks demanding X3, X1 and X2 respectively. The trees in
the equivalent transformed network are shown in Fig. 3b,c,d.

The set of equations generated by the “No Interference
condition” are:

Node 12: a1 + a2 = 0; b1 + b2 = 0; c1 = 1

Node 13: a3 = 1; b3 + b4 = 0; c2 + c3 = 0

Node 14: a4 + a5 = 0; b5 + b6 + b7 = 1; c4 + c5 = 0 (7)

The set of equations generated by the “Edge Compatibility
condition” for edges e1, e2, e3 and e4 respectively are:

e1 : a2b3 = a3b1; a2b5 = a4b1; a2b7 = a5b1;

a3b5 = a4b3; a3b7 = a5b3; a4b7 = a5b5

e2 : a2(b5 + b6) = a4(b1 + b2); a2c4 = a4c1;

(b1 + b2)c4 = (b5 + b6)c1

e3 : a3b7 = a5b3; a3c5 = a5c2; b3c5 = b7c2

e4 : b2c3 = b4c1; b2c4 = b6c1; b4c4 = b6c3 (8)

Using the linear equations to eliminate variables iteratively,
we get 9 equations in 6 variables shown below.

a2b3 = b1; a2 = −a4b1; a4b3 = −1;
a2c4 = a4; c4 = a4c2; b3c4 + c2 = 0;

b1c2 + b3 = 0; b1c4 + 1 = 0; b3c4 = c2 (9)

From equations b3c4+c2 = 0 and b3c4 = c2, we can derive
the relation 2c2 = 0. Substituting c2 = 0 in the above system
leads to the condition 1 = 0, which is not possible. Hence, we
must have 2 = 0, which implies that the system is not solvable
in any field with an odd characteristic. Also, in characteristic 2,

setting all variables to 1 in the above equations, is seen to be a
solution. This example demonstrates that, in practice, working
with the equations derived through the path gain formulation
can be advantageous.

For this example, the Koetter-Médard formulation, as illus-
trated in [6], results in 17 equations in 22 variables. However,
as shown in [6], it is possible to derive 2 = 0 from these 17
equations using other simplifications. Alternatively, a Gröbner
basis method can also be used to derive 2 = 0. The path
gain approach should be seen as a generic technique for
simplification that can be used in arbitrary network coding
problems, as shown in the next two examples.

C. Multicast example

An interesting example of a multicast problem, presented
in [15], is shown in Fig. 4. The sources are nodes 1 and 2,

16
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Fig. 4. Multicast example.

and the sinks are nodes 11-16. This problem does not have a
binary solution, as shown in [15].

Using the edge-to-edge gain formulation, we get 24 equa-
tions in 32 variables. The path gain method initially results
in 84 equations in 48 variables. After the simplifications, we
obtain 54 equations in 18 variables. Significantly, there are 6
quadratic equations, each of the form x23+x3+x1x2 = 0. Next,
we can show that x1x2 = 0 (either x1 = 0 or x2 = 0) provides
a contradiction in the equations. Hence, we have equations of
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the form x2+x+1 = 0, which cannot be solved in the binary
field. With some more analysis, we can find solutions over
GF(4).

From this example, we see that the path gain formulation
provides useful simplifications in non-trivial cases. In contrast,
Gröbner basis methods on the edge-to-edge gain equations are
not immediately useful in showing linear in-solvability over
GF(2). Note that this does not rule out any other simplification
of the edge-to-edge equations to obtain the necessary result.
We merely conclude that the path gain method provides a
useful simplification.

D. A Bigger Example

Consider an ISP network topology shown in Fig. 5 taken
from [16].

The network has 87 nodes and 161 edges. Edges are directed
from lower-numbered nodes to higher-numbered nodes i.e.
in an edge (u, v), u < v. Hence, the graph is directed and
acyclic. We assume all links have unit capacity, and use fields
of characteristic 2 in our simplification steps. After directing
the graph, the five nodes 1, 12, 21, 51 and 64 were set as
sources in the example problems. Sink nodes and demands
were chosen at random from among the sources visible from
each sink. The graph is not reduced by this choice of demands,
since all nodes are visible from the five chosen sources.

1) 5 sources (all rate 1), 10 sinks (all rate 1). The edge-to-
edge gain formulation gives a system of 44 equations in
30 variables. The path gain formulation initially results
in 44 linear equations and 3 degree-2 equations in 316
variables. After applying the simplification steps, we
are left with only 3 degree-2 equations in 7 variables
assuming solution exists in a characteristic 2 field. In
fact, setting all the remaining 7 variables to zero results
in a valid solution to the three equations (some other
scaling variables are non-zero). Hence, a solution over
GF(2) is possible.

2) 5 sources (one with rate 2, others rate 1), 11 sinks
(all rate 1). The edge-to-edge gain formulation yields
a system of 50 equations in 40 variables in this case. In
comparison, the path gain formulation initially resulted
in 50 linear equations and 34 degree-2 equations in 330
variables. But after applying the simplification steps, we
are left with only 13 degree-2 equations in 17 variables
assuming solution exists in a characteristic 2 field.
Again the all-zero solution is valid for the remaining
17 variables resulting in a network code over GF(2).

3) 5 sources (all with rate 2), 8 sinks (all rate 1). The
edge-to-edge gain formulation yields a system of 88
equations in 180 variables. The path gain formulation
initially gives 88 linear and 11198 degree-2 equations in
632 variables. But on applying the simplification steps,
assuming characteristic 2, it turns out that the system is
not solvable over characteristic 2.

To run further examples, we computed the max-flows from
the sources (1,12,21,51,64) to a set of 11 nodes chosen as
sinks. Rates below the individual max-flows were assigned to
sources and sink demands. The results are summarized below

(Notation: S, T are source and sink sets. A source node s of
rate R > 1 is shown as R source nodes s1, s2 · · · sR. The
demands of each sink are shown in brackets).

1) S = {11, 12, 121, 122, 21, 51, 64}, T = {15(121, 122),
40(11, 121, 21), 43(21), 49(11), 62(11, 121, 21), 63(121,
122), 67(11), 71(21), 82(64), 83(21), 86(21)}. The path
gain formulation yields 1188 equations in 507 variables.
After simplifications, there are 476 equations, but none
of them have a constant term. Hence, setting the
remaining variables to zero provides a binary solution.

2) S = {11, 12, 121, 122, 21, 51, 64}, T = {15(121, 122),
40(11, 12, 121, 21), 43(21), 49(11), 62(11, 121, 122, 21),
63(121, 122), 67(11), 71(21), 82(64), 83(21), 86(21)}.
We obtain 555 variables and 1683 equations. Upon
simplification, we find that a solution does not exist in
characteristic 2.

3) S = {1, 12, 211, 212, 51, 64}, T = {15(1), 40(211,
212), 43(211), 49(1), 63(12), 67(1), 71(211), 82(64),
83(211), 86(211)}. The path gain formulation yields 578
variables and 12048 equations. After simplifications,
there are 6780 equations, but only five of them have a
constant term. A linear term (one path gain) appears in
each of these five equations, but does not appear as a
linear term in any other equation. Hence, setting this
one path gain to 1 and the remaining variables to zero
provides a binary solution.

As expected, solutions are not guaranteed even if all demands
are within individual max flows. We see that the number
of equations and variables increases steeply in some cases.
However, guessing a binary solution may be feasible.

To obtain another example, we modified the graph
of Fig. 5 (by changing edge connections) to get a
butterfly network as a subgraph when the nodes 62
and 63 demand the sources 1 and 12. On the modified
graph, we set S = {1, 121, 122, 21, 51, 64}, T = {15
(121, 122), 40(1, 121, 21), 43(21), 49(1), , 62(1, 121, 21), 63(1,
121), 67(1), 71(21), 82(64), 83(21), 86(21)}, where the other
demands are chosen to be below the individual max flows. We
obtain 1247 equations in 503 variables. After simplifications,
there are no equations with a constant term. So, setting the
remaining variables to zero results in a binary solution.

Hence, we see that the path-based formulation of scalar
linear network coding appears to yield useful results even over
large networks with a few sources and sinks. This shows the
extent of simplification possible in polynomial systems defined
by network coding problems.

E. Simplification summary

It has been shown in [17] that the complexity of Gröbner
Basis algorithms depends, among other things, on the maxi-
mum degree of the starting basis. The degrees of the interme-
diate polynomials computed during Gröbner Basis calculations
has been shown to grow up to 22

d

if the maximum degree of
the starting basis is d. Due to these issues, Gröbner Basis
algorithms become practically intractable except for small
problem instances. In the light of these results, the path
gain formulation that produces degree-2 equations becomes
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Fig. 5. An ISP network over Europe with 87 nodes and 161 edges.

important in reducing the running complexity of Gröbner Basis
algorithms that may be used to solve the network coding
problem.

The simplification provided by the path gain approach is
summarized in Table I for the various examples presented so
far. As indicated, we have shown numbers for only one round

TABLE I
COMPARISON OF FORMULATIONS.

Path gain Edge gains (unsimplified)
Example

Butterfly
Fig. 3a

[3, Fig. 5]
[5, Fig. 3]
[6, Fig. 3]

Var.1 Deg. 2 Eqns1

4 6
8 15
9 5
27 45
12 30

Var. Eqns Deg.

10 8 2
14 9 3
14 4 4
50 32 3
22 17 3

1After one iteration of elimination using the linear equations

of linear equation simplification. It can be seen that, apart from
having a maximum degree of only 2, the number of variables
is also lesser in many cases enabling use of methods such as
[18] for solving the system.

The number of variables and equations from the edge-to-
edge gain formulation are of the order of the number of edges
in the network. However, the number of monomial terms possi-
ble using the edge-to-edge gain variables is exponential in the
number of edges. In a large network, depending on the number
of paths from sources to sinks, a large number of monomial
terms occur in the system of polynomial equations. Because
of the large number of variables and larger number of terms,
there is no obvious method to simplify the equations other

than running standard routines for Gröbner basis. The path
gain approach is beneficial in providing results on solvability
in some examples and in reducing the complexity of Gröbner
basis methods in most cases.

V. NETWORK CODE FROM PATH GAIN VARIABLES

While the path gain variables are useful for solving the sys-
tem of polynomial equations, the implementation of network
coding is through edge-to-edge gains. We now describe an
algorithm to obtain a network code for the original network
from the path gain variables in the transformed network.
Note that this completes the proof of the sufficiency of edge
compatibility conditions.

First, we will briefly describe the algorithm and then present
a notational version of the same. A solution to the system of
polynomial equations in the path gain formulation consists
of a set of values assigned to the path gain variables at the
leaf source nodes in the transformed network such that the
no interference conditions as well as the edge compatibility
conditions are satisfied. The algorithm to construct a network
code from such a solution consists of propagating the values
of these coefficients from the source nodes to the sink nodes
through the transformed network.

We compute two vectors for every edge e of the graph
G = (V,E). The first vector fe = [fe(1) fe(2) · · · fe(|S|)]
represents the edge function or symbol

∑|S|
j=1 fe(j)Xj sent

over edge e. Suppose e is replicated n times to obtain edges
e′′i , 1 ≤ i ≤ n in the transformed graph G′ = (V ′, E′). The
second vector ce = [c1 c2 · · · cn] is such that the edge
function on e′′i ∈ E′ is ci

∑|S|
j=1 fe(j)Xj . Note that such a

scaling property is guaranteed for all copies of an edge by the
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compatibility conditions. Once the vectors fe are computed for
all e ∈ E, the network code in G is completely known.

Suppose fe′ and ce′ are known for all the incoming edges
e′ ∈ I(v) for a node v ∈ V . The vectors fe and ce can be
computed for the outgoing edges e ∈ O(v) as illustrated for
a sample case in Fig. 6. In the figure, a node v ∈ V with
I(v) = {e1, e2, e3} and O(v) = {e4, e5} is replicated thrice
into v(1), v(2) and v(3) in G′. The incoming and outgoing
links are assumed to be replicated as shown in the transformed
network. For instance, the edge e1 is replicated thrice as e1(1),
e1(2) and e1(3). We suppose that there are three source nodes
S = {s1, s2, s3}, and fei = [αi1 αi2 αi3]. This results in edge
functions Ai =

∑3
j=1 αijXj for i = 1, 2, 3. We assume that

the scaling vectors cei are as shown in the figure.
Using the edge functions and scaling factors on the incom-

ing edges, the edge function of the copies of ei, i = 1, 2, 3
are computed first. For instance, the edge function of e2(2) is
computed as b2A2. Then, the edge function for the outgoing
links of v(1), v(2) and v(3) in G′ are computed by simple
addition. As shown in the figure, the symbols sent on e4(1)
and e4(2) will be scalar multiples. We then assign the symbol
on e4 in G to be the symbol on e4(1) given by

∑3
i=1 aiAi =∑3

j=1(
∑3
i=1 aiαij)Xj (assumed nonzero). Then, fe4 and ce4

are assigned suitably.
In this manner, all the nodes are processed in a suitable order

to compute the network code for the original graph from the
path gains on the transformed graph. We now introduce some
notation to describe the algorithm formally.

A. Notation

Consider the given network G = (V,E) and the equivalent
transformed network G′ = (V ′, E′). Then, for each node
v ∈ V , let us define the set of network coding coefficients
as ae′,e ∀ e′ ∈ I(v), e ∈ O(v) i.e. if xe′ is the symbol
received on the link e′ ∈ I(v), the symbol sent on e ∈ O(v)
is
∑
e′∈I(v) ae′,exe′ .

Nodes and edges get replicated during the transformation
from G to G′. We define some sets to hold information about
the replicated nodes and edges. For v ∈ V (v /∈ S ∪ T ) and
e, e′ ∈ E, define:

Rv = {v′ ∈ V ′ : v′ is a copy of v}
Re = {e′′ ∈ E′ : e′′ is a copy of e}
Re′,e = {e′′ ∈ Re′ : ∃ e′′′ ∈ Re so that head(e′′) = tail(e′′′)}

The sets Rv and Re hold nodes and edges in G′ that are copies
of v and e , respectively. Two such useful sets are (1) Rhead(e)
that contains copies of head(e), and (2) Rtail(e) that contains
copies of tail(e). The set Re′,e contains copies of an edge e′

that connect to a copy of e. Clearly, Re′,e is non-empty only
when e′ ∈ I(v) and e ∈ O(v) for some node v.

For each e ∈ I(v) in the original graph G, there is a one-
to-one correspondence between Re = {e1, e2, · · · , e|Re|} and
Rv = {v1, v2, · · · , v|Rv|} given by vi = head(ei) in the trans-
formed graph G′. Thus, we have the equality |Re| = |Rhead(e)|.
This is because the incoming edges are duplicated everytime
a node is duplicated. So, for e, e′ ∈ I(v) (two incoming
edges of one node), we will have |Re| = |Re′ | and the sets

Re = {e1, e2, · · · , e|Re|} and Re′ = {e′1, e′2, · · · , e′|Re′ |
} will

be ordered such that vi = head(ei) = head(e′i).
For each e ∈ O(v), define the set Rv,e = {head(e′) : e′ ∈

Re} to be the subset of Rv that contains nodes whose outgoing
edge is a copy of e in G′. Note that |Rv,e| = |Re|.

Let the vector fe = [fe(1) fe(2) · · · fe(|S|)] represent the
edge function

∑|S|
j=1 fe(j)Xj sent over edge e ∈ E in the

final linear network code in G. Since the edge compatibility
conditions are satisfied, the edge function on each copy of e
in Re will be a scalar multiple of fe. For e′′ ∈ Re, let the edge
function on e′′ be fe′′ = ce(e

′′)fe. We collect the multiplying
factors ce(e′′), e′′ ∈ Re into a vector ce = [ce(e

′′) : e′′ ∈ Re].
The correspondence between Re and Rhead(e) results in a one-
to-one correspondence between elements of the sets Rhead(e)
and ce given by ce(e′′)↔ head(e′′) for e′′ ∈ Re.

We define sub-vectors ce′,e = [ce′(e
′′) : e′′ ∈ Re′,e]

collecting the multiplying factors on copies of e′ that con-
nect to copies of e. For a fixed e ∈ O(v) and e′, e′′ ∈
I(v) with Rv,e = {v1, v2, · · · , v|Rv,e|}, the sets Re′,e =
{e′1, e′2, · · · , e′|Re′,e|

} and Re′′,e = {e′′1 , e′′2 , · · · , e′′|Re′′,e|
}

will be in one-to-one correspondence and ordered so that
head(e′i) = head(e′′i ) = vi. So, we have |Re′,e| = |Re′′,e| =
|Rv,e| = |Re|.

In Fig. 6, for instance, we have Re1 = {e1(1), e1(2), e1(3)},
Re4 = {e4(1), e4(2)} and Re5 = {e5(1)}. Also, Re1,e4 =
{e1(1), e1(2)} and Re1,e5 = {e1(3)}. Similarily, Re2,e4 =
{e2(1), e2(2)} and Re2,e5 = {e2(3)}. The scaling vector
ce1 = [a1 b1 c1] with ce1,e4 = [a1 b1] and ce1,e5 = [c1].
Similarily, ce2 = [a2 b2 c2] with ce2,e4 = [a2 b2] and
ce2,e5 = [c2]. Note that all one-to-one correspondences are
being preserved in the ordering of coordinates in the scaling
vectors.
Flow matrices at a vertex: For a vertex v, incoming edge
e′ ∈ I(v) and outgoing edge e ∈ O(v), a rank-one flow matrix
Fe′,e is defined as Fe′,e = cTe′,efe′ . The matrix Fe′,e is of
dimension |Re′,e|× |S|, and the (i, j)-th element Fe′,e(i, j) =
ce′(e

′′
i )fe′(j) (letting Re′,e = {e′′1 , e′′2 , · · · , e′′|Re′,e|

}) is the
coding coefficient of the j-th source symbol flowing in the
i-th copy of edge e′ in Re′,e. We readily see that each row of
Fe′,e is the coding vector in a copy of edge e′ in G′.

In Fig. 6, for instance, we have Fe1,e4 =

[
a1
b1

]
[A1] =[

a1
b1

]
[α11 α12 α13] and Fe1,e5 = [c1][α11 α12 α13]. In terms

of path gain variables, Fe′,e(i, j) is equal to the sum of the
path gain variables for all paths starting from (some copy of)
the j-th source and using the i-th copy of edge e′ in Re′,e.

Let I(v) = {e1, e2, · · · , ed}. For e ∈ O(v), let |Rek,e| =
|Re| = D (for all k), and let Rek,e = {e′k1, e′k2, · · · , e′kD} with
head(e′kl) = v′l ∈ Rv,e independent of k. The l-th row of the
flow matrix Fek,e contains the flow in the edge e′kl incident
on the node v′l for 1 ≤ k ≤ |S|. Therefore, the sum Fe =∑d
k=1 Fek,e is a D×|S| matrix whose l-th row is equal to the

sum of all incoming flows into node v′l. By flow conservation,
the outgoing flow on the single outgoing edge from node v′l
is equal to the l-th row of Fe for 1 ≤ l ≤ D = |Re|. So, the
rows of Fe contain the flows in the D copies of the edge e
in G′, and the edge compatibility condition ensures that the
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A1 A2 A3

e1 e2 e3

v

e5e4

a1A1 + a2A2

+a3A3

c1A1 + c2A2

+c3A3

b1A1 + b2A2 + b3A3a1A1 + a2A2

e3(1)

e2(1)

a1A1

e1(3)e1(2)

a2A2 a3A3 b1A1 b2A2 b3A3

e2(2)

e3(2)

e2(3)

e3(3)

v(3)v(2)v(1)

e4(1) e4(2) e5(1)

v in G
Copies of v in G′

ce1 = [a1 b1 c1]

c1A1 + c2A2

+c3A3

c1A1 c2A2 c3A3

e1(1)

+a3A3 = k(a1A1 + a2A2 + a3A3)

ce2 = [a2 b2 c2]

ce4 = [1 k] ce5 = [1]

ce3 = [a3 b3 c3]

Fig. 6. Determining the vectors f and c for outgoing links.

matrix Fe is a rank-one matrix.

B. The Algorithm

The vectors fe and ce are initialized for an outgoing link
e from the source node as follows. For the i-th source node
si ∈ S and e ∈ O(si), fe = [0i−1 1 0|S|−i]. For e′′ ∈ Re, the
coordinate ce(e′′) of ce is equal to the value of the scaling
variable at the source leaf node tail(e′′) ∈ Rsi .

Algorithm 3: Deriving the Network Code
Input: A directed acyclic network G = (V,E), an equivalent
transformed network G′ = (V ′, E′), a topological ordering
of nodes P (from Algorithm 1) and a solution to the derived
system of polynomial equations.
For each node, v in the reverse topological ordering, P ′, of
P , if v /∈ S ∪ T , do

1) Get fe′ , ce′ from tail(e′) ∀ e′ ∈ I(v).
2) For each edge e ∈ O(v)

a) Get ce′,e from ce′ as defined above ∀ e′ ∈ I(v).
b) Fe′,e ← cTe′,efe′ ∀ e′ ∈ I(v).
c) Fe ←

∑
e′∈I(v) Fe′,e, is a matrix such that each

row corresponds to the symbol flowing through a
copy of edge e in G′.

d) fe ← any non-zero row (say, i) of Fe, or the zero
row if Fe is the zero matrix. This is the symbol
that will actually flow through e in G.

e) ae′,e ← ce′,e(i) ∀ e′ ∈ I(v), where i is the row
selected in the previous step. This is the set of net-
work coding coefficients of node v corresponding
to output link e.

f) ce(j) ← (jth row of Fe)/fe or 0 if fe = 0 ∀ j =
1, . . . , |ce|.

The decoding coefficients at a sink node tj are given by the
set {ce; e ∈ I(tj)}. Note that all the matrices in this set have
only one element since there is only one copy of each sink
node (and and all its input links) in G′.
Output: The set of all network coding coefficients, ae′,e, for
the given network.

In the above algorithm, nodes are travered in the reverse of
the topological order obtained from Algorithm 1. At a node v,
the vectors fe and ce are computed for e ∈ O(v) using fe′ and
ce′ for e′ ∈ I(v). The reverse topological order ensures that
fe′ and ce′ are known for e′ ∈ I(v) before node v is visited.

C. An Example
We will now present an example of this algorithm applied to

a sample solution for the modified butterfly network (Fig. 2).
Consider the following solution for the system over GF (4) =
{0, 1, α, α2}, α2 = 1 + α.

a1 = a5 = b2 = b6 = 1

a2 = a6 = b1 = b5 = 0

a3 = a4 = α, b3 = b4 = α2

One reverse topological order of edges is 1−2−3−4−5−
6− 7− 8− 9− 10. Nodes 1,2 are source nodes. So, we have
fe1 = fe4 = [1 0], fe2 = fe5 = [0 1] and from the solution
above, we have ce1 = [0 α 1 0], ce4 = [1 α], ce2 = [0 1 α2 0],
ce5 = [α2 1].

Then, beginning with the iteration for the non-source non-
sink nodes as described in the algorithm above, we will first
process node 3 - we know fe, ce for both its input links, e1, e2.
There are 4 copies of this node as shown in Fig. 2b and all 4
copies have copies of edge e3 as their only output links. Hence,
ce1,e3 = ce1 and ce2,e3 = ce2 . After computing Fe1,e3 , Fe2,e3 ,
we arrive at:

Fe3 =

(
0 α 1 0
0 1 α2 0

)T
Now, let fe3 = [α 1], the second row of Fe3 . Hence, we

have ae1,e3 = α, ae2,e3 = 1, the network coding coefficients
at node 3. Also, ce3 = [0 1 α2 0].

Next, we will move to node 4 which has two output links,
e6, e7. Hence, we have ce3,e6 = [0 1], ce3,e7 = [α2 0]. We can
then compute Fe3,e6 , Fe3,e7 and then arrive at:

Fe6 =

(
0 0
α 1

)
, Fe7 =

(
1 α2

0 0

)
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Now we can choose fe6 = [α 1], the second row of Fe6 and
fe7 = [1 α2], the first row of Fe7 . Then, the network coding
coefficients for node 4 are ae3,e6 = 1, ae3,e7 = α2. Completing
the last step of the iteration, we get ce6 = [0 1], ce7 = [1 0].

Now we come to node 5. For the output link e8, we have
ce4,e8 = [1], ce6,e8 = [0] and for e9, we have ce4,e9 =
[α], ce6,e9 = [1]. Then we get:

Fe8 = [1 0], Fe9 = [0 1]

So, fe8 = [1 0] and fe9 = [0 1], the only rows of the
respective matrices. Then, the network coding coefficients for
node 5 are:

ae4,e8 = 1, ae6,e8 = 0, ae4,e9 = α, ae6,e9 = 1

Also, ce8 = ce9 = [1].
Similarly, the network coding coefficients for node 6 can

also be computed so that sinks 9, 10 receive the required
symbols.

VI. CONCLUSION

In this work, we have used path gains as variables to arrive
at an algebraic formulation for the scalar linear network coding
problem. This provides a useful simplification of the edge-
to-edge gain formulation proposed in [3], as illustrated by
both small and large-sized examples. Given a network coding
problem, we have given algorithms to construct an equivalent
transformed network and arrive at a system of polynomial
equations (of maximum degree 2) in terms of path gains. After
solving for the path gains, we have provided an algorithm
to compute the edge-to-edge gains, which can be used in
implementing the network code.

Each monomial term occuring in a general system of
polynomial equations can be assigned a new variable to obtain
linear equations along with consistency conditions involving
the new variables. However, in a general polynomial system,
the consistency conditions are not guaranteed to be degree-
2 equations without introducing additional monomial terms
not present in the original system. Through this work, we
have shown that the polynomial system representing a scalar
network coding problem reduces to only degree-2 consistency
conditions.
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