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Abstract

The aim of this paper is to design a band-limited optimal input with power constraints for iden-
tifying a linear multi-input multi-output system. It is assumed that the nominal system parameters
are specified. The key idea is to use the spectral decomposition theorem and write the power spec-
trum as φu(jω) = 1

2
H(jω)H∗(jω). The matrix H(jω) is expressed in terms of a truncated basis for

L2 ([−ωcut-off, ωcut-off]). With this parameterization, the elements of the Fisher Information Matrix and
the power constraints turn out to be homogeneous quadratics in the basis coefficients. The optimality
criterion used are the well-known D−optimality, A−optimality, T −optimality and E−optimality. The
resulting optimization problem is non-convex in general. A lower bound on the optimum is obtained
through a bi-linear formulation of the problem, while an upper bound is obtained through a convex
relaxation. These bounds can be computed efficiently as the associated problems are convex. The lower
bound is used as a sub-optimal solution, the sub-optimality of which is determined by the difference in the
bounds. Interestingly, the bounds match in many instances and thus, the global optimum is achieved. A
discussion on the non-convexity of the optimization problem is also presented. Simulations are provided
for corroboration.

Keywords: System Identification; Optimal Input Design; Spectral Decomposition; Fisher Information
Matrix; Convex Optimization

1 Introduction

In this paper, the problem of designing a band-limited optimal input for identifying a continuous time linear
multi-input multi-output (MIMO) system, subject to input and output power constraints, is considered. The
linear system considered is given by

y(t) = G(s; θ)u(t) + e(t), (1)

where

Gij(s; θ) =

∑mij

k=0 b
(k)
ij s

k∑nij

k=0 a
(k)
ij s

k
,

θij =
{
b
(0)
ij , . . . , b

(mij)
ij , a

(0)
ij , . . . , a

(nij)
ij

}
& θ =

⋃
{i,j}

θij .
(2)

For all t ∈ R+, the input u(t) ∈ Rr×1, the output y(t) ∈ Rp×1 and the additive white noise e(t) ∼
N (0,Σ) (Σ ∈ S+

p , the space of positive definite p× p matrices). It is assumed that the linear system under
consideration is stable and the order of elements of the matrix G(s; θ) are specified. The aim of system
identification, in general, is to estimate the set of parameters θ, the nominal values of which are specified,
by exciting the system with inputs and recording the outputs. The schematic in Figure 1 shows the general
system identification framework.
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Figure 1: This figure shows a general optimal input design framework. Gr×p(s; θ0) represents the linear
MIMO system with nominal parameters θ0. The input vector is given by ur×1(t), e(t) is a normal random
vector, i.e. e(t) ∼ N p×1(0,Σ), yp×1 is the observed output. The estimation of the system parameters is done
using subspace methods, which is represented by the box titled system identification. The estimated system
parameters is given by the set θu. The double dashes in the figure represent multi-dimensional signals.

The quality of an unbiased estimator is judged by a suitable functional defined on the covariance matrix
of the estimated system. It turns out that the covariance matrix of an unbiased estimator of a linear system is
a matrix multiple of the inverse of the Fisher Information Matrix (FIM). Suppose that the set of parameters
θ is indexed and its cardinality is N , then the FIM for (1) is defined as (see Kumar et al. [2015]):

[Mθ]l,m =

∞∫
−∞

Tr

(
φ−1
e (jω)

∂G(jω)

∂θl
φu(jω)

∂G(jω)

∂θm

∗)
dω, 1 ≤ l,m ≤ N,

where, φu (jω) = [φij(jω)]{1≤i,j≤r} and φe(jω) = Σ.

(3)

For simplicity of analysis, it is assumed that Σ is the identity matrix. This assumption simplifies the
expression of FIM to:

[Mθ]l,m =

∞∫
−∞

Tr

(
∂G(jω)

∂θl
φu(jω)

∂G(jω)

∂θm

∗)
dω, 1 ≤ l,m ≤ N. (4)

Since the FIM depends on the input power spectrum, it is obvious that the covariance matrix of the estimated
system would depend on the input chosen for exciting the system. Therefore, the goal is to determine a
power spectrum φu(jω) which is optimal with respect one of the following commonly used functionals defined
as :

• D-Optimality which maximizes the determinant of Mθ (Sanchez et al. [2012], Kumar et al. [2015]),

• A-Optimality which minimizes the trace ofM−1
θ (Aoki and Staley [1970], Nahi and DE Wallis [1969]),

• T -Optimality which maximizes the trace of Mθ (Srivastava and Anderson [1974]), and
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Given G(s; θ) and Mθ defined as in (15), find φ∗ such that

φ∗ = arg max
φu

log (det (Mθ)) or − Tr
(
M−1

θ

)
or σmin (Mθ) or Tr (Mθ)

subject to
1∫
−1

Tr (φu(jω)) dω ≤ Ku

1∫
−1

Tr (G(jω)φu(jω)G(jω)∗) dω ≤ Ky.

(6)
Generate a signal u(t) ∈ Rr×1 with a spectral density equal to φ∗u.

Figure 2: The optimal input design problem.

• E-Optimality which maximizes the minimum eigenvalue of Mθ (Cheng [1980], Constantine [1981]).

It is also natural to consider power constraints on the input signals and the output signals. The input power
constraint may arise due to limitations of the excitation system. If the linear system has peak responses
at some frequencies, the output power constraint would limit possible damages during excitation. The
expressions for the input and the output power constraints are given by:

∞∫
−∞

Tr (φu(jω)) dω ≤ Ku and

∞∫
−∞

Tr (G(jω)φu(jω)G(jω)∗) dω ≤ Ky, (5)

where Ku and Ky are specified. It is assumed that the elements of the transfer function matrix are strictly
proper. This assumption holds good in many practical systems and allows for the integral limits to be limited
to a band of frequencies around zero. With the aforementioned definitions and constraints, the mathematical
problem at hand is outlined in Figure 2.

Optimal input design for linear system identification has been studied for a long time and is still an active
area of research (see Mehra [1974], Annergren et al. [2017]). Although not comprehensive, this paragraph
would touch upon some of the seminal pieces of work in this area and discuss in brief, the methodologies
used therein. In each of Barenthin et al. [2008], Kumar et al. [2015], the power spectrum is parameterized as

φu(ω) =

M∑
k=−M

cke
−jωk. (7)

The optimal input design problem is cast as a convex optimization problem in terms of the covariance matrices
{ck}Mk=0. In particular, the Kalman-Yakubovich-Popov lemma and the Hamburger’s moment condition
aid the formulation. The former ensures the positive definiteness of the power spectrum while the latter
guarantees the existence of a valid solution. The idea of optimal input design has many applications. Ljung
et al. [2011] is an excellent article which discusses the applications of system identification in communication
systems, sensor networks and machine learning algorithms. In addition, automotive systems and chemical
engineering processes also find the need for system identification and optimal input design (Alberer et al.
[2011], Kumar et al. [2015]).

The way this paper differs from the earlier references is that the spectral density matrix is parameterized in
terms of H(jω), such that φu(jω) = 1

2H(jω)H∗(jω). The matrix H(jω) is expressed as a linear combination
of a suitable truncated basis of L2 (−ωcut-off, ωcut-off) and the coefficients become the optimization variables.
Observe that this idea readily enforces positivity of φu(jω), which otherwise requires the Fourier basis and
the Kalman-Yakubovich-Popov lemma. This also implies that the proposed method is independent of the
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choice of the basis. Indeed, the resulting optimization problem in this paper is non-convex in general. The
optimization problem has an interesting structure which has been studied in the literature and has wide
applications in signal processing and control systems. Moreover, solving this class of optimization problems
still remains open.

The paper is organized as follows. The second section sets up the optimization problem, presents methods
to compute lower and upper bounds, and discusses aspects related to the convexity of the problem. The third
section presents simulation results, i.e., the input and the output waveforms, and the estimated parameters of
the system. The concluding remarks are presented in the last section followed by references. The appendices
to the paper present a couple of theorems and discuss the methodology of generating inputs from the optimal
power spectrum.

2 The proposed method

This section discusses the formulation of the optimization problem, the non-convex nature of it and a
methodology for obtaining a sub-optimal solution. As mentioned earlier, the input power spectrum is
limited to a pre-defined band given by D = [−ωc, ωc]. Now, each element of φu(jω) must belong to the space
C∞(D). Spectral decomposition theorem states that one can find H(jω) belonging to C1(D) such that
φu(jω) = H(jω)H∗(jω). With the knowledge that C1(D) is dense in L2(D), one can as well approximate
elements H(jω) through a linear combination of a truncated basis of L2(D). Therefore, each element of
H(jω) is assumed to the space of square integrable functions over D denoted by L2(D) (see Nair [2001]).

2.1 Setting up the optimization problem

As mentioned in the beginning of this section, is it assumed that each element of H(jω) belongs to L2(D).
Thus, H(jω) can be approximated with as a linear combination of a truncated basis for L2(D). Suppose the
truncated basis elements are given by the set {w1, w2, . . . , wm}. Then H(jω) is expressed as:

Hm(jω) = WH
where, W =

[
Ir×r w1Ir×r . . . wmIr×r

]
and H =

[
H0 H1 . . . Hm

]>
, ∀i Hi ∈ Rr×r.

(8)

The matrix H comprises of the coefficients which need to be determined by solving an optimization problem.
As a consequence, the input power spectral density can be expressed as:

φmu (jω) =
1

2
W (jω)HH>W (jω)∗. (9)

Using (9), the constraint on the total input power is given by:

∞∫
−∞

Tr

(
1

2
W (jω)HH>W (jω)∗

)
dω ≤ Ku. (10)

Interchanging the integral operator and the trace operator, one obtains∫∞
−∞Tr

(
1
2W (jω)HH>W (jω)∗

)
dω = Tr

(
H>

(∫ 1

−1
1
2W (jω)∗W (jω)dω

)
H
)

= Tr
(
H>WH

)
= h>PIh,

where, h = vec(H) and PI =

 W . . .

W

 .
(11)
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Since W is a positive definite matrix by (24), PI is also positive definite. In short, the total input power
constraint given by (10) is equivalent to

h>PIh ≤ Ku. (12)

Note that h ∈ Rmr2 . Similarly the total output power constraint given by

∞∫
−∞

Tr
(
G(jω)W (jω)HH>W (jω)∗G(jω)∗

)
dω ≤ Ky − p. (13)

can be rewritten as

h>POh ≤ Ky, where

PO =

 WG

. . .

WG

 and WG =
1

2

1∫
−1

W (jω)∗G(jω)∗G(jω)W (jω)dω.
(14)

Note that, as in (24), it can be shown that WG is positive definite and so is PO. Finally, the FIM Mθ can
be rewritten as

[Mθ]l,m =

∞∫
−∞

Tr

(
∂G(jω)

∂θl
φu(jω)

∂G(jω)

∂θm

∗)
dω = Tr

((
H>G̃l

)(
H>G̃m

)>)
, (15)

where G̃l =

∞∫
−∞

∂G(jω)

∂θl
W . In other words, every element of the FIM is a quadratic in the coefficients

h. Now assuming Φ(.) = logdet(.) or σmin(.) or −trace-inv(.) or trace(.), the optimization problem (6) is
equivalent to

max
h∈Rmr

Φ(Mθ(h))

subject to

h>PIh ≤ Ku

h>POh ≤ Ky.

(16)

2.2 Finding a suboptimal solution

To the best of the authors’ knowledge, the optimization problem (16) does not have an efficient algorithm.
The problem, due to its quadratic structure, renders itself to bi-linear forms, as well as semi-definite convex
relaxations. The method proposed here depends on these derived forms and has two steps in it: (i) find
a lower bound to (16) and (ii) find an upper bound to (16). The first step, which obtains a lower bound
to the optimization problem through a bi-linear form, is iterative and in each iteration, a convex problem
is solved. The procedure is asymptotically convergent and produces a feasible solution. The second step
find an upper bound to the optimal value of (16) through a convex relaxation. Hence, it can be computed
efficiently with semi-definite programming. The solution corresponding to the lower bound is a used as a
sub-optimal solution to (16). The sub-optimality of the solution is determined by the difference between the
upper and lower bounds.

Lower bound: To obtain a lower bound, the quadratic form in each of the elements of Mθ is converted
into a bi-linear form. The input and output power constraints, which are convex, are retained as they are.
In other words,

x>Mi,jx is converted to x>Mi,jy for all i, j. (17)

The bi-linear optimization problem is described, for example, in Konno [1976]. Note that once one of the
variables (x or y) is fixed to some vector, (16) becomes a convex optimization problem in the other variable.
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y = y0

while(count ≤ 100 || tol ≤ 1e-6) do

max
x∈RN

Φ(M(x, y)), where Mij(x, y) = x>Mi,jy and Mi,j ∈ RN×N

& Φ(.) = logdet(.)|σmin(.)|-trace-inv(.)|trace(.)
subject to

x>PIx ≤ 1

x>POx ≤ 1

tol = ||x− y||2
y = x

(18)
end

Figure 3: Lower bound algorithm: y0 is a random initial vector, the maximum iteration count is set to 100
and the tolerance bound for convergence is set to 1e-6. M(x, y) represents the bi-linear form of the Fisher
Information Matrix, PI represents the total input power matrix and PO, the total output power matrix. The
functional Φ can be chosen either of the following functions: logdet(.) or σmin(.) or -trace-inv(.) or trace(.).

Starting from an arbitrary feasible point y = y0, the convex optimization problem in x is solved to obtain x∗.
For the next iteration, y is fixed to the vector the x∗. The resulting vector of each iteration acts as a lower
bound to (16) since it is a feasible solution. Note that with each iteration, the value of the cost function can
only increase and hence, the lower bound becomes tighter. The process asymptotically converge to a value
but however, a discussion on the rate of convergence is out of the scope of this paper. The algorithm, also
termed as the ‘hill-climbing’ procedure, is outlined in Figure 3.

Upper bound: The upper bound is determined by a standard semi-definite convex relaxation of (16). It
can be shown that any homogeneous quadratic x′Ax can also be written as (see Boyd and Vandenberghe
[2004])

x′Ax = Tr(AX), where X = xx>. (19)

This transformation implies that (16) is equivalent to

max
X∈RN×N

Φ(Mθ(X)), where [Mθ]ij (X) = Tr(AijX)

subject to
trace(PIX) ≤ 1
trace(POX) ≤ 1
X � 0 and Rank(X) = 1

(20)

Dropping the Rank-1 in (20) results in a convex semi-definite optimization problem shown in Figure 4.
Being a relaxation of the original optimization problem, the solution to (20) gives an upper bound to (16).
Moreover, the bound can be obtained efficiently as the associated problem is convex. However, unlike the
lower bound algorithm, the solution matrix X∗ need not be have a rank of 1, in which case deriving a feasible
solution for (16) from it may not be possible.

Remark : It might be necessary to have more power constraints in the optimization problem. In partic-
ular, it might be necessary to constrain input and output powers at the individual ports, in addition to the
total power constraints. Moreover, the power constraints may also be non-convex, particularly when the
constraint is to deliver a minimum amount of input or output power. In all the cases mentioned here, the
algorithm for the upper bound does not change, except for the increase in the number of constraints. The

6



max
X∈RN×N

Φ(M(X)), where Mij(X) = trace(Mi,jX), Mi,j ∈ RN×N

& Φ(.) = logdet(.)|σmin(.)|trace-inv(.)|trace(.)
subject to

Tr(PIX) ≤ 1
Tr(POX) ≤ 1
X � 0

(21)

Figure 4: Upper bound algorithm: M(X) represents the relaxed form of the Fisher Information Matrix, PI
represents the total input power matrix and PO, the total output power matrix. The functional Φ can be
chosen either of the following functions: logdet(.) or σmin(.) or -trace-inv(.) or trace(.).

lower bound algorithm would need a few changes. Firstly, the constraints are also changed to their corre-
sponding bi-linear forms. Secondly, the step “y = x” in Figure 3 needs to be replaced by “y = xk+xk−1

2 ”. In
other words, y is replaced by the average of the resulting vectors of the last two iterates.

2.3 A discussion on quadratic maps

This subsection discusses the convexity properties of the optimization problem given in (16). As mentioned
earlier, every element of the FIM Mθ(h) is a homogeneous quadratic in h. For clarity, the optimization
problem is written in an expanded form as:

max
h∈Rmr2

Φ


 h>M1,1h . . . h>M1,Nh

...
...

h>MN,1h . . . h>MN,Nh




subject to

h>PIh ≤ Ku

h>POh ≤ Ky,

(22)

where Mi,j ’s are symmetric matrix of dimension mr × mr. Moreover, by construction, the symmetric
matrices are such that the FIM in the argument of Φ is positive semidefinite for all h ∈ Rmr. The convexity
of this optimization problem depends on the convexity of the image of Rmr under the quadratic map

Q : Rmr
2

→ R
N(N+1)

2 +2 given by:

Q(x) =
[
x>M1,1x . . . x>Mi,jx . . . x>MN,Nx x>PIx x>POx

]>
; i ≤ j. (23)

It is assumed here that the total number of coefficients given by mr is much larger than the number of
parameters to be estimated given by N . Quadratic maps and the convexity of its image have been studied
earlier in literature and some of the important results are pointed out here.

Ramana and Goldman [1994] were one of the first few to study, in detail, the convexity of images
under quadratic transformations. They give necessary and sufficient condition for characterizing such maps.
However, the condition are not checkable for general cases. Polyak [1998] proved that the image of the unit
disk under any “definite” quadratic map Q : Rn → R3 is convex for n ≥ 3. Sheriff [2013] presented results
for “stable convexity” and discussed its applications in analyzing coupled systems. Dymarsky [2014] showed
the convexity of the image of an open ball in Rn under quadratic maps. Since the dimension of the range
space in this paper is much larger than 3, these results cannot be applied here. Beck [2009] presented some
startling generalizations of earlier results on the subject. One of the results can be applied to obtain a convex
relaxation of the optimization problem in this paper, but only at the cost of a large number of redundant
variables. Hiriart-Urruty and Torki [2002] provided an excellent overview on the convexity aspects of the
images of quadratic maps in their paper. These references point out that quadratic maps with convex images
are rather exceptions than the rule.
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2.4 Input generation and system identification

The methodology for generating inputs real inputs with the optimal power spectrum obtained from the opti-
mization procedure is outlined in Appendix B. The methodology essentially discretizes the power spectrum,
concatenates it with a random phase and performs inverse Fourier transform to obtain the inputs. The sys-
tem is excited with the the designed optimal inputs and the outputs are recorded. The system identification
is done using the Instrument Variables method, which is an unbiased estimator of the system parameters.
For details on the system identification algorithm, the reader is directed to Söderström and Stoica [2002].

3 Simulations

In most practical applications, a system is fabricated with a desired/nominal set of parameters. But fab-
rication is seldom perfect and therefore, the actual parameters vary to a small extent around the desired
locations. For optimal input design, the nominal system parameters are used for generating the optimal
inputs, while the system with actual parameters generates the outputs when actuated with the optimal
inputs. For simulations, a 2-input and 2-output system was chosen. The nominal transfer function matrix
and the actual transfer function matrix are given by:

3.2

s2 + 1.6s+ 1.5

3.1

s2 + 1.9s+ 1

5.2

s2 + 0.5s+ 0.95

1.5

s2 + 0.9s+ 0.3


︸ ︷︷ ︸

G

,


3.125

s2 + 1.5s+ 1.563

3.188

s2 + 2s+ 1.063

5.313

s2 + 0.5s+ 1.063

1.563

s2 + s+ 0.312


︸ ︷︷ ︸

Gnom

.

The total input power and the total output power were constrained to a maximum of 1000 units. Chebyshev’s
polynomials up to the 13th order were considered for parameterizing H(jω). It was observed that lower
bounds and the upper bounds matched in the D, A and E optimality criterion, while they were off by less
than 0.1% in case of T optimality. It has been observed that the lower and upper bounds match in several
instances. However, there is no mathematical proof for the observation yet. The optimal power spectrums
obtained using the proposed method have been depicted in Figure 5. The inputs generated according to the
optimal spectrums corresponding to the four different optimality criterion are shown in Figures 6, 7, 8. In
addition, the corresponding outputs, corrupted with uncorrelated additive Gaussian white noise vectors, are
also shown in Figures 6, 7, 8. The standard deviation of the measurement noise is assumed to be equal to
one-tenth of the minimum of the root-mean-squared values of the outputs. The system identification was
done using Instrument Variables method and the results corresponding to the different optimality criteria
are given below.

3.21

s2 + 1.603s+ 1.497

3.105

s2 + 1.897s+ 0.998

5.073

s2 + 0.492s+ 0.951

1.387

s2 + 0.856s+ 0.284


︸ ︷︷ ︸

GD

,


3.555

s2 + 1.639s+ 1.501

2.742

s2 + 1.863s+ 0.961

5.252

s2 + 0.502s+ 0.952

1.458

s2 + 0.884s+ 0.295


︸ ︷︷ ︸

GA

,


3.197

s2 + 1.606s+ 1.506

3.082

s2 + 1.920s+ 0.999

5.172

s2 + 0.498s+ 0.951

1.425

s2 + 0.873s+ 0.292


︸ ︷︷ ︸

GT

,


2.787

s2 + 1.502s+ 1.488

3.144

s2 + 1.905s+ 1.006

5.308

s2 + 0.499s+ 0.952

1.473

s2 + 0.887s+ 0.296


︸ ︷︷ ︸

GE

.
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Figure 5: This figure shows the optimal power spectrum obtained using the proposed method for the four
different optimality criterion. The calculations were done by parameterizing H(jω) with Chevyshev’s poly-
nomials upto the 13th order. The absolute value of the cross-spectrum is also plotted.
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Figure 6: The inputs corresponding to the D-optimal spectrum are shown on the left. The outputs obtained
by exciting the system with the inputs are shown to the right.

4 Conclusion

In this paper, a distinct paradigm to design a band-limited optimal inputs for identifying a linear contin-
uous time MIMO system was presented. Unlike conventional schemes where the power spectral density is
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Figure 7: The inputs corresponding to the A-optimal spectrum are shown on the left. The outputs obtained
by exciting the system with the inputs are shown to the right.
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Figure 8: The inputs corresponding to the T -optimal spectrum are shown on the left. The outputs obtained
by exciting the system with the inputs are shown to the right.

parametrized with covariance matrices, this paper used spectral decomposition. The input spectra φu(jω)
was factored as 1

2H(jω)H∗(jω) and H(jω) was approximated by a truncated basis for L2([−ωc, ωc]), where
ωc is the cut-off frequency. The coefficients of the finite linear combination thus became the optimization

10



Sample Number
0 1000 2000 3000 4000 5000 6000 7000 8000

V
al

ue

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
E-optimal Input u

1

Sample Number
0 1000 2000 3000 4000 5000 6000 7000 8000

V
al

ue

-0.1

-0.05

0

0.05

0.1
E-optimal Input u

2

Sample Number
0 1000 2000 3000 4000 5000 6000 7000 8000

V
al

ue

×10-3

-8

-6

-4

-2

0

2

4

6
Output y

1

Sample Number
0 1000 2000 3000 4000 5000 6000 7000 8000

V
al

ue

-0.01

-0.005

0

0.005

0.01
Output y

2

Figure 9: The inputs corresponding to the E-optimal spectrum are shown on the left. The outputs obtained
by exciting the system with the inputs are shown to the right.

parameters. The parameterization ensured the positivity of the power spectral density matrix, irrespective
of the basis chosen for L2(D). The optimization problem of determining the optimal coefficients for D, A,
T or E optimality criteria turned out to be a non-standard optimization problem. A discussion on the con-
vexity aspect of the problem was also presented. A lower bound for the optimal value was obtained by first
converting the optimization problem into a bi-linear form and then solving it using an iterative procedure.
In each of the iterations, a convex problem was solved which made the algorithm computationally efficient.
An upper bound for the optimal value was obtained by first converting the optimization problem into a rank
constrained semi-definite problem. The Rank-1 constraint was then dropped and the resulting convex semi-
definite program was solved using standard routines. If the upper bound turned out to be a Rank-1 solution,
the vector defining its column space was chosen as the optimal solution; else the solution corresponding to
the lower bound was chosen. The sub-optimality of the final solution was determined by the difference in
the bounds. Interestingly, the bounds matched in many instances of simulations. With the optimal spectral
density, the corresponding inputs were generated. The linear MIMO system was stimulated with these inputs
and the outputs, corrupted with measurement noise, were recorded. The Instrument Variables method was
used to estimate the system parameters. The estimated system was observed to be in close agreement with
the original system.

As for future directions of work, several interesting questions can be posed. The authors would like to
point to a few: (i) The choice of basis for L2(D) and its effect on the obtained optimality, and (ii) the ratio
of the lower bound to the upper bound, in general.

References

D. Alberer, H. Hjalmarsson, and L. Del Re. Identification for automotive systems, volume 418. Springer
Science & Business Media, 2011.

M. Annergren, C. A. Larsson, H. Hjalmarsson, X. Bombois, and B. Wahlberg. Application-oriented input

11



design in system identification: Optimal input design for control [applications of control]. IEEE Control
Systems, 37(2):31–56, 2017.

M. Aoki and R. Staley. On input signal synthesis in parameter identification. Automatica, 6(3):431–440,
1970.

M. Barenthin, X. Bombois, H. Hjalmarsson, and G. Scorletti. Identification for control of multivariable
systems: Controller validation and experiment design via lmis. Automatica, 44(12):3070–3078, 2008.

A. Beck. Convexity properties associated with nonconvex quadratic matrix functions and applications to
quadratic programming. Journal of Optimization Theory and Applications, 142(1):1–29, 2009.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

C.-S. Cheng. On the e-optimality of some block designs. Journal of the Royal Statistical Society. Series B
(Methodological), pages 199–204, 1980.

G. M. Constantine. Some e-optimal block designs. The Annals of Statistics, pages 886–892, 1981.

A. Dymarsky. On the convexity of image of a multidimensional quadratic map. arXiv preprint
arXiv:1410.2254, 2014.

J.-B. Hiriart-Urruty and M. Torki. Permanently going back and forth between the“quadratic world”and
the“convexity world”in optimization. Applied Mathematics & Optimization, 45(2):169–184, 2002.

H. Konno. Maximization of a convex quadratic function under linear constraints. Mathematical programming,
11(1):117–127, 1976.

A. Kumar, M. Nabil, and S. Narasimhan. Economical input design for identification of multivariate systems.
IFAC-PapersOnLine, 48(28):1313–1318, 2015.

L. Ljung, H. Hjalmarsson, and H. Ohlsson. Four encounters with system identification. European Journal
of Control, 17(5-6):449–471, 2011.

R. K. Mehra. Optimal input signals for parameter estimation in dynamic systems–survey and new results.
Automatic Control, IEEE Transactions on, 19(6):753–768, 1974.

N. Nahi and J. DE Wallis. Optimal inputs for parameter estimation in dynamic systems with white obser-
vation noise. 1969.

M. T. Nair. Functional analysis: A first course. PHI Learning Pvt. Ltd., 2001.

B. Polyak. Convexity of quadratic transformations and its use in control and optimization. Journal of
Optimization Theory and Applications, 99(3):553–583, 1998.

M. Ramana and A. Goldman. Quadratic maps with convex images. Rutgers University. Rutgers Center for
Operations Research [RUTCOR], 1994.

B. Sanchez, C. R. Rojas, G. Vandersteen, R. Bragos, and J. Schoukens. On the calculation of the d-optimal
multisine excitation power spectrum for broadband impedance spectroscopy measurements. Measurement
Science and Technology, 23(8):085702, 2012.

J. L. Sheriff. The convexity of quadratic maps and the controllability of coupled systems. PhD thesis, 2013.
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A Theorems and proofs

Theorem. Suppose W = 1
2

∫ 1

−1
W (jω)∗W (jω)dω. Then W is an r(m + 1) × r(m + 1) positive definite

matrix.

Proof. It is clear that W is positive semidefinite. Suppose for some x 6= 0

0 = x∗Wx =

1∫
0

x∗W (jω)∗W (jω)xdω,

⇒ x∗W (jω)∗W (jω)x = 0,∀ω
⇒ W (jω)x = 0, ∀ω
⇒ x = 0, a contradiction.

Theorem. Suppose Φ is a matrix function defined on [−π, π] such that (i) Φ(θ) ∈ Cq×q is a Hermitian
nonnegative definite matrix for all θ ∈ [−π, π], (ii) Φ(θ) = Φ>(−θ) and (iii) Φ is integrable and admits
a Fourier series. Then there exists a matrix function Ψ defined on [−π, π] such that Φ(θ) = Ψ(θ)Ψ∗(θ).
Moreover, Ψ admits a Fourier series.

Proof. See Wilson [1972].

B Design of inputs from optimal power spectrum

An algorithm for generating a u(t) from H(jω), which is obtained from the proposed method, is discussed in
this section. For brevity, the case for generating a 2× 1 input is illustrated. The extension for generating a
r× 1 input is presented in Figure 10. Conventionally, the input is generated as a sample path of a stochastic
process with the desired power spectral density. The same principle is adopted in this paper as well. To
elaborate further, let

H(jω) =

[
H11(jω) H12(jω)
H21(jω) H22(jω)

]
and φ(jω) =

1

2
H(jω)H∗(jω) =

[
φ11(jω) φ12(jω)
φ21(jω) φ22(jω)

]
. (24)

Naturally,

φ11(jω) = 1
2

(
|H11(jω)|2 + |H12(jω)|2

)
, φ22(jω) = 1

2

(
|H21(jω)|2 + |H22(jω)|2

)
φ12(jω) = 1

2 (H11(jω)H∗21(jω) +H12(jω)H∗22(jω)) = φ21(jω)∗.
(25)

The goal is then to determine a real-valued random vector u(t) = [u1(t), u2(t)]
>

such that

Ru(τ) = E {u(t)u∗(t− τ)} =
1

2π

ωc∫
−ωc

φu(jω)ejωτdω, (26)

where E{.} denotes the expected value. To that end, consider the one sided frequency functions i.e. defined
for ω ≥ 0,

U1(jω) =
√
π(H11(jω)ejΦω

1 +H12(jω)ejΦω
2 ) and U2(jω) =

√
π(H21(jω)ejΦω

1 +H22(jω)ejΦω
2 ), (27)
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where the families of random variables {Φω1 , ω ≥ 0} and {Φω2 , ω ≥ 0} are such that

E
{
ejΦ

ω
i

}
= 0, ∀ω ≥ 0, i = 1, 2 and E

{
ejΦ

ω1
1 e−jΦ

ω2
2

}
= 0, ∀ω1, ω2 ≥ 0

E
{
ejΦ

ω1
i e−jΦ

ω2
i

}
= δ(ω1 − ω2), ∀ω1, ω2 ≥ 0, i = 1, 2.

(28)

For the input signals have to be real-valued, extend U1 and U2 to the negative imaginary axis as:

U1(−jω) = U∗1 (jω) and U2(−jω) = U∗2 (jω). (29)

Define the inputs as:

u1(t) =
1

2π

ωc∫
−ωc

U1(jω)ejωtdω and u2(t) =
1

2π

ωc∫
−ωc

U2(jω)ejωtdω. (30)

The claim is that the power spectral density of [u1(t), u2(t)] is equal to φu(jω). For proving the claim, note
that by using Fubini’s Theorem Nair [2001],

R11(τ) = E {u1(t)u∗1(t− τ)}

= E

 1

2π

ωc∫
−ωc

1

2π

ωc∫
−ωc

U1(jω1)U∗1 (jω2)ejω1te−jω2(t−τ)dω1dω2


=

1

2π

ωc∫
−ωc

1

2π

ωc∫
−ωc

E {U1(jω1)U∗1 (jω2)} ejω1te−jω2(t−τ)dω1dω2 (31)

From (27) and (28), it can be deduced that

E {U1(jω1)U∗1 (jω2)} = π
(
|H11(jω1)|2 + |H12(jω2)|2

)
δ(ω1 − ω2). (32)

Therefore,

R11(τ) =
1

2π

ωc∫
−ωc

1

2

(
|H11(jω)|2 + |H12(jω)|2

)
ejωτdω. (33)

On similar lines, it follows that

R22(τ) =
1

2π

ωc∫
−ωc

1

2

(
|H21(jω)|2 + |H22(jω)|2

)
ejωτdω and

R12(τ) =
1

2π

ωc∫
−ωc

1

2
(H11(jω)H∗21(jω) +H12(jω)H∗22(jω)) ejωτdω.

(34)

It is now easy to note from the relation (26) applied to (34) that the power spectral density of [u1(t)u2(t)]>

is equal to φ(jω) = H(jω)H∗(jω). Now, a closed form expression for the integrals in (30) is difficult to
obtain and therefore it needs to be evaluated numerically by discretization of the frequency band. To this
end, choose Φω1 and Φω2 to be independent Gaussian white noise vectors. Since U1(jω) is zero outside the
interval [−ωc, ωc],

u1(t) =
1

2π

∫ ωc

−ωc

U1(jω)ejωtdω. (35)
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Generate independent white random vectors Ψ1,Ψ2, . . . , and Ψr

Define Ui

(
j
k

N

)
=
√
π

r∑
m=1

Hm

(
j
k

N

)
ejΨm(k), ∀k = 1, . . . , N, ∀i = 1, . . . , r.

Compute ũi(t) =
1

2πN

N∑
k=−N

Ui

(
j
k

N

)
ej

k
N t, ∀k = 1, . . . , r, ∀i = 1, . . . , r.

(37)

Figure 10: Input Design Methodology.

With a positive integer N such that 1
N � 1, a Riemann sum approximation of (35) would be

ũ1(t) =
1

2πN

N∑
k=−N

U1

(
j
k

N

)
ej

k
N t. (36)

In a similar way, ũ2(t) can also be defined. The signal ũ(t) = [ũ1(t) ũ2(t)] is then used for simulations and
computations. For a general r-input system, the procedure has been shown in Figure 10.

15


	1 Introduction
	2 The proposed method
	2.1 Setting up the optimization problem
	2.2 Finding a suboptimal solution
	2.3 A discussion on quadratic maps
	2.4 Input generation and system identification

	3 Simulations
	4 Conclusion
	A Theorems and proofs
	B Design of inputs from optimal power spectrum

