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The Treewidth of MDS and Reed-Muller Codes
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Abstract

The constraint complexity of a graphical realization ofreelir code is the maximum dimension
of the local constraint codes in the realization. The treéwof a linear code is the least constraint
complexity of any of its cycle-free graphical realizatioi$is notion provides a useful parametriza-
tion of the maximum-likelihood decoding complexity fordéiar codes. In this paper, we prove the
surprising fact that for maximum distance separable codd®&ed-Muller codes, treewidth equals
trelliswidth, which, for a code, is defined to be the leaststmint complexity (or branch complex-
ity) of any of its trellis realizations. From this, we obtaract expressions for the treewidth of these
codes, which constitute the only known explicit expressifam the treewidth of algebraic codes.

1 Introduction

A (normal) graphical realization of a linear codeconsists of an assignment of the coordinate§ of
to the vertices of a graph, along with a specification of lir&ate spaces and linear “local constraint”
codes to be associated with the edges and vertices, reshgotif the graph[[4]. Cycle-free graphical
realizations, or simplyree realizationsare those in which the underlying graph is a tree. Treezaali
tions of linear codes are interesting because the sum-pradlyorithm (SPA) on such a realization is an
exact implementation of maximume-likelihood (ML) decodifi@]. The notion of constraint complexity
of a tree realization was introduced by Forney [5] as a measithe computational complexity of the
corresponding SPA algorithm. It is defined to be the maximimmedsion among the local constraint
codes constituting the realization. Ttreewidthof a linear code is the least constraint complexity of
any of its tree realizations.

The minimal tree complexity measure defined for linear cdneslalford and Chugd [6] is a close
relative of treewidth. There are also closely related mstiof treewidth defined for graphs! [3] and
matroids [7]; these relationships are discussed in moildet[10]. Known facts about the treewidth
of graphs and matroids imply that computing the treewidth obde is NP-hard.

For a lengthr linear code over the fieldl,, the computational complexity of implementing ML
decoding, via the SPA on an optimal tree realization){%q'), wheret is the treewidth of the code
[1Q]. In particular, ML decoding is fixed-parameter tradtatvith respect to treewidth, which means
that for codes whose treewidth is bounded by a fixed congtavi. decoding can be performed in
polynomial time. Thus, treewidth provides a useful parain&tion of ML decoding complexity.

Trellis representations (or trellis realizations) of cedee special cases of tree realizations which
have received extensive attention in the literature (spe[@4]). In the context of trellis representations,
constraint complexity is usually called branch complexitye define here theelliswidth of a code to
be the least branch complexity of any of its trellis représtions (optimized over all possible orderings
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of the coordinates of the code). As trellis representatemesinstances of tree realizations, trelliswidth
is at least as large as treewidth. In fact, it is known thaligreidth can be much larger than treewidth:
it was shown in[[111] that the ratio of trelliswidth to treewhidcan grow at most logarithmically with
blocklength, and that there are codes with arbitrarily daogpcklengths that achieve this logarithmic
growth rate. The only known code family achieving logaritbrgrowth rate of this ratio is a family
consisting of cut-set codes of a certain class of graphs.cddes in this family all have treewidth equal
to 2, and rate approximatell/4, but minimum distance only 4 [10].

It is not known if there are any other code families for whitlere is a significant advantage to
be gained in going from trellis representations to treeizatibns that are topologically more complex.
In the only previous investigation reported on this questieorney [5] considered the family of Reed-
Muller codes. He showed that for a certain natural tree zatiin of Reed-Muller codes, obtained
from their well-known recursivéu|u + v| construction, the constraint complexity is, in generalcty
larger than the trelliswidth of the code. But this still leawopen the possibility that there may be other
tree realizations whose constraint complexity beatsidgreitith. In particular, it leaves undecided the
qguestion of whether the treewidth of a Reed-Muller code @sthctly less than its trelliswidth.

In this paper, we show that for Reed-Muller codes, treewislthqual to trelliswidth. The proof of
this makes use of structural properties known for optinllisrrealizations of Reed-Muller codes, and
also relies strongly on a certain separator theorem fostrAesimilar proof strategy also works on the
much simpler case of maximum distance separable (MDS) codeye again we show that treewidth
equals trelliswidth. These results yield the first expl@ipressions for the treewidth of classical alge-
braic codes.

The rest of this paper is organized as follows. After pravidihe necessary definitions and notation
in Sectior 2, we describe, in Sectidn 3, our proof strateggiiowing that treewidth equals trelliswidth
for certain codes. Sectioh$ 4 dnd 5 deal with MDS and Reedekecbdes, respectively. The technical
details of some of the proofs are given in appendices.

2 Preliminaries and Notation

The notation[n] denotes the set of positive integers from Into[a, b] denotes the sefti € Z : a <

i < b}. An (n, k) linear code is a code of lengthand dimensiork. Then coordinates of the code are
indexed by the elements of an index $eunless specified otherwisé,= [n]. Given a linear cod€
with index setl, for J = {j1, jo2,...,js} C I, the shortening of to the coordinates id is denoted’;
and defined as follows:

Cr={cjcjy...cj,: cica...cn €C,c; =0fFori ¢ J}.

The notions of treewidth and trelliswidth are central tsthiticle, and we define these next.

2.1 Treewidth and treliswidth

For brevity, we provide only the necessary definitions anthmesults; for details, segl[5].[10].

A tree is a connected graph with no cycles. The set of nodeshendet of edges of a treéé are
denoted by (T") andE(T'), respectively. Degree-1 nodes in a tree are cddlades and all other nodes
are callednternal nodes We let L(T") denote the set of leaves &t A tree is apathif all its internal
nodes have degree 2; and isubic treeif all its internal nodes have degree 3. A path with at leagt on
edge has exactly two leaves; a cubic tree witleaves has — 2 internal nodes.

LetC be an(n, k) linear code with index sett. A tree decompositionf C is a pair(7’,w), whereT’
isatree and : I — V(T') is an assignment of coordinatesfo the nodes of .

Given a tree decompositioff’, w) of C, for each node of 7', we define a quantity:, as follows.
Let E(v) denote the set of edges ®fincident onv. Fore € E(v), letT, , denote the component of



T — e (T with e removed) notontainingv. Finally, let/. , = w‘l(V(Te,v)) be the set of coordinates
of C that are assigned to nodesTip,. Then,

Ky =k— Y  dim(Cy,,). (1)

ecE(v)

The quantityx,, above is the dimension of the local constraint code at nadehe minimal realization
of C on (T, w), denoted byM (C; T, w).

Let x(C; T, w) = H%/zi()%) Kk, denote the constraint complexity 8#((C; T, w). The treewidth of a
ve

codeC, denoted by:(C), is then defined as

k(C) grlgl) k(C; T, w). 2
It is, in fact, enough to perform the minimization [d (2) owerbic treesl” with n leaves, and mappings
w that are bijections betwednand L(T").
The trelliswidth ofC, which we will denote byr(C), can be defined using the above notation as
follows:
7(C) = H;in k(C; P,m), (3)

whereP is the path om nodes, and the minimization is over mappingghat are bijections between
andV (P). From [2) and[(B), it is clear that(C) < 7(C).

Let v1,v9,...,v, be the nodes of the path, listed in order from one leaf to the other. For the
bijection7 : I — V(P) that maps to v; (1 < i < n), we obtain from[{LL),

wherer[a,b] = {7(j) : a < j < b}.

2.2 Generalized Hamming weights

The generalized Hamming weights of a linear code, introdwoed studied in[[15], limit the possible
dimensions of shortened versions of the code. So, they Etedeo the complexity of tree realizations
in a natural way.

Let C be an(n, k) linear code with index set. We will use the notatiorD C C to say thatD is a
subcode of’. For a subcod® C C, we define its support(D) = {i : Jcica...cp, € DSite; # 0}
The p-th generalized Hamming weight @f, denotedd,(C), is the size of the smallest support of a
p-dimensional subcode df, i.e., d,(C) = min{|x(D)| : D C C,dim(D) = p} for1 < p < k. Itis
known that) < d;(C) < d2(C) < -+ < di(C) < n. Also, d;(C) is the minimum distance af.

A closely related definition is that of maximal limited-suppsubcode dimensions. For< s <
n, Us(C) is defined to be the maximum dimension of a subcod€ efith support at moss, i.e.,
Us(C) = max{dim(D) : D C C, |x(D)| < s}. The maximal limited-support subcode dimensions can
be computed using the generalized Hamming weights as fellow

Us(C) = u such thatl,(C) < s < dy4+1(C) (5)

with the convention thaiy(C) = 0 anddj+1(C) = n + 1. We also definé/(C) = 0.

3 TheProof Strategy

From the relevant definitions, treewidth cannot exceedidvétith for any code’, i.e., x(C) < 7(C).
We now describe a general strategy that can be used to shaypplosite inequality in certain cases.



Consider ann, k) linear codeC, with index set/. The idea of using maximal limited-support
subcode dimensions to study the complexity of trellis redions ofC was introduced i [9]. We extend
that idea to tree realizations here. EbrC I, C; is a subcode of with support at mostJ|. So,
dim(Cy) < U),;/(C). Therefore, given any tree decompositi@h w) of C, we obtain from[(1L) that for
anyv € V(T),

Ko 2 k= Y Uy, (C). (6)
e€E(v)

Now, recall from the definition of treewidth that it sufficesdarry out the minimization i {2) over
tree decomposition§l’, w) in which 7" is a cubic tree with: leaves, and is a bijection betweeii and
L(T). For such gT,w), we note that!. ,| is simply the number of leaves ifi. ,,, and for an internal
nodev € V(T'), the summation ir{6) contains exactly three terms.

Letn. , denote the number of leavesin,, and note that these numbexrs, are determined purely
by the topology off". At an internal node in a cubic tre€l” with n leaves, we will list the edges ifi(v)
in the form of an ordered triplge; (v) ea(v) e3(v)] such thatl < ng, (y)v < Ney(w)o < Neg(v),o < N I
the nodev is clear in the context, we will use the simplified notation= n., (., for: = 1,2, 3.

Suppose thaf" is a cubic tree withn leaves having an internal nodesuch that the numbers
ny,ng,ng satisfy 32 U,.(C) < k — 7(C). Then, by[(8), for any bijectiony betweenl and L(T’),
we havex, > 7(C), and hence:(C; T, w) > 7(C). Consequently, if every cubic tree withleaves had
such a node, then we would have(C) > 7(C). Since the opposite inequality is always true, we have
proved the following proposition.

Proposition 1. LetC be an(n, k) linear code with the property that for any cubic tréewith n leaves,
there always exists an internal node= V(7)) such thaty">_, U,,,(C) < k—7(C), wheren; = ey (v),0-
Then,x(C) = 7(C).

A comment on the proof strategy implied by Proposifion 1 isider. To show that(C) > 7(C)
(and hencex(C) = 7(C)), the obvious strategy would be to show, for each tree deositipn (T, w)
of C, the existence of a nodee V(T) for which s, > 7(C), wherex, is given by [6). In general, the
nodev would depend on the trég as well as on the coordinate assignmentHowever, in the proof
method based upon Proposition 1, the idea is to find, for angiVew), a nodev € V(T') that depends
only on the topology of", and thus, isndependenof w, for whichx, > 7(C) holds. Itis a remarkable
fact that this proof strategy can be made to work for MDS anddRduller codes, as we will see in
Sectiong ¥ and]5.

The hypothesis of Propositidn 1 requires the existence afde i any cubic tree, whose removal
partitions the tree into components with a certain propeftye property in this case is that the cor-
responding partition of the number of leaves,into ny, ny, n3 satisfieszg’:1 Un,(C) < k—7(C).
Structural results of this form are known as separator grasr(see.g, [13])

A classical separator theorem is a theorem of Jordan [8]dfiaées that any tree am nodes has
an internal node whose removal leaves behind connectedar@nts with at most /2 nodes each. A
trivial modification of the simple proof of this theorem st®that the two occurrences of “nodes” in the
theorem statement can be replaced by “leaves”. For easgnefe we record this as a proposition for
the special case of cubic trees.

Proposition 2. In any cubic tree witm > 3 leaves, there exists an internal nodsuch thatn,, (., <
n/2fori=1,2,3.

Another classical (edge) separator theorem is the follgwasult (cf. [13]): every cubic tre€ with
n leaves contains an edgesuch that both components 8f— e have at mos2n /3 leaves. Now, one
of these two components must have at leg&t leaves; lety be the node incident with for which this
component i€, ,,. Then, for thisv, we havens € [n/2,2n/3]. We record this fact below.

Proposition 3. In any cubic tree witlm > 3 leaves, there exists an internal nodsuch thatn
[n/2,2n/3].

€

e3(v),v



As we will see in the next two sections, Propositibhs 2[dnd@alis to deal with MDS and Reed-
Muller codes, respectively. We consider MDS codes first.

4 Treewidth of MDS Codes

MDS codes arén, k) linear codes for which the minimum distance equals k + 1. Basic facts about
MDS codes can be found in [12].
LetC be an(n, k) MDS code, with index set = [n]. The generalized Hamming weights®fvere
computed in[[15] as follows:
d,(C)=n—k+p, 1<p<k.

From this, the maximal limited-support subcode dimensidh$C) for 1 < s < n, can be determined
using [®). They are given by

U.(C) = 0, 1<s<n-—k, @)
° B q, S:n_k+q7q:1>27"'7k'

Equivalently,Us(C) = max{0,s — (n — k)}. We use this to compute(C) next.

Let H be a parity-check matrix fof. For a subset/ C I, the codeC; has dimension equal to
|J| —rank(H|;), whereH| ; refers to the restriction aoff to the columns indexed by. AsC is MDS,
rank(H|;) = min{|J[,n — k}. Hencedim(C;) = max{0,|J| — (n — k)} = U,(C). Therefore, for
any permutationr of I, we have for integers < a < b < n, dim(Cw[&b]) = Up_qs1(C). Therefore,
the right-hand-side of{4) is always equalite- U;_1(C) — U,,—;(C). It follows directly from this that

T(C) = Imax (k? — Ui_l(C) — Un_Z(C)) =k — min (Ul_l(C) + Un_l(C))

1<i<n 1<i<n
A straightforward computation usingl(7) yields

0, if n—k >k,

min (U;—1(C) + ©)) {2;{7_”_17 ifn—Fk<k.

1<i<n

achieved for = n — k 4+ 1. We thus have the following result.
Proposition 4. The trelliswidth of ann, k) MDS codeC is given byr(C) = min{k,n — k + 1}.

With this, we have
k—7(C) = max{0,2k —n — 1}. (8)

We can now prove that the treewidth of an MDS code equalsalisstvidth.

Theorem 5. For an (n, k) MDS codeC, we have

k(C) = 7(C) = min{k,n — k + 1}.

Proof. The statement is trivial for = 1,2, or whenk = n, so we assume > 3 andl <n — k. Let
T be a cubic tree with leaves, and let be the node guaranteed by Proposifibn 2. We will show:that
satisfies the hypothesis of Propositidn 1.

Setn; = ng,v),0, ¢ = 1,2,3, and recall that, by definitiom; < ny < n3. By choice ofv, we also
haven; < n/2fori = 1,2, 3. For convenience, we writg,,, for U,, (C).

Caseln — k > k.
In this casen; < n/2 < n —k, sothaty_, U,, = 0 by (@). Moreover, by[(B)k — 7(C) = 0.




Case?21<n—k<k.

Now, we haven; < n/2 < k. We must show tha} ", U,,, < 2k —n — 1. If n3 < n —k, then
> ;Un, = 0. So,we assumes = k—9,with1 < § < 2k—n. ThenU,, =nz—(n—k) =2k—n—9¢
andn; +ns =n—ng3 =n—k+ 6. So, we have

Upny, +Uny +Upy = max{0,k —n+n1} +max{0,k —n+na}+2k—n—9
max{0,k —n+ny,k—n+n9,2k —2n+ny +no}+2k—n—9
max{2k —n — 0,3k — 2n + ng — 6,3k — 2n}

2k —n —1,

IN

IN

where the last inequality holds because 1,n, <n—k+d—1landn —k > 1.

Thus, in both cases, we see tha} U,, < k — 7(C), and so, by Propositidn 1, we haw¢C)
7(C).

Ol

5 Reed-Muller codes

For a positive integefn and a non-negative integerwith 0 < r < m, ther-th order binary Reed-
Muller code of length2™, denoted RMr,m), is defined as follows. LeP™ denote the set of all
Boolean polynomials im: variables of degree less than or equat téor an integef, 0 < i < 2™ — 1,
with binary expansion = Z;”Z_Ol bj(i)27, b;(i) € {0,1}, we letb(i) = (bo(4),b1(3), -, bym—1(i)).
Forf e P let f(b(i)) = f(bo(i),b1(7), - ,bm—1(7)). The code RMr,m) is defined as

RM(r,m) = {[f(b(0)) f(b(1)) --- f(b2™ =1))]: f € P"}. (9)

The code RMr, m) has length = 2™, dimensionk(r,m) = >7_, ("7), and minimum distancg™ "
[12]. In @), the order of evaluation of the functighis according to the index sét= [0, 2™ — 1]. This
is called the standard bit order.

We will denote the treewidth and trelliswidth of RMm) by x(r, m) andr(r, m), respectively.

51 Treliswidth of RM(r,m)

Let C be the Reed-Muller code R, m) in the standard bit order, so that= [0,2™ — 1]. In this
section, we derive an exact expression for the trelliswidtf.

Let P be the path om = 2" nodes, withvg, vy, ...,v,_1 being the nodes o, listed in order
from one leaf to the other. For any: I — V(P), we obtain from[(#), in a manner analogous to the
derivation of [6),

R, 2 k:(r,m) — UZ(C) — Un_l_i(C),

fori =0,1,...,n— 1. Thus,

k(C; Pym) > k(r,m) — O<m<in 1(UZ-(C’) + Up—1-i(C)). (10)
Note that the right-hand-side is independentrp§o that by[(B),
7(C) > k(r,m) — 0<rgin_l(U,-(C) + Up—1-i(C)). (11)

It is shown in [9] that for RMr, m) in the standard bit order, we have foe 0,1,...,n — 1,
dim(Cyp ;) = Ui+1(C) and dim(Cf; 1)) = Un—i(C). (12)

It follows that whenr simply maps to v; for all i € I, then we have equality i (10), and hence[dd (11).
To put this another way, the branch complexity of the minitnellis representation of Ri, m) in the
standard bit order attains the lower bound on, and thus gqthe trelliswidth of the code. Techniques
from [2] allow us to compute, with very little effort, the breh complexity of this trellis representation.
We give the details of this computation in Appendix A. Fronsthive obtain the following result.



Proposition 6. The trelliswidth of the Reed-Muller code RiVim) is given by

ST (AT ifm<2r 41
Recall that the dimension of the code RMm) is given byk(r,m) = >77_, (7). We will find
it convenient to definé(r’, m’) to bezglzo (7?) for all non-negative integers, m’, including when
' > m/. with the usual conventions thé) = 1 and (7?) = 0for j > m/. Thus, forr’ > m’ > 0,
k(r',m’) = 2. Following these conventions, we give an expression fordifferencek(r, m) —
T(r,m).

Proposition 7. For the Reed-Muller code R, m ), we have

min{2(r—1),m—1}

k(r,m) —7(r,m) = > k(r—1—"Ti/2],m —1—14).

=0

We present the algebraic manipulations required to prageptioposition in Appendix A.

It is instructive to explicitly write out some of the terms thie summation in the last proposition.
Whenm > 2r, we have

k(r,m) —71(r,m) = k(r—1,m —1)+k(r —2,m —2) + k(r —2,m — 3)
+ k(r—3,m—4)+ k(r —3,m —15)
4o k0, m — 20 +2) + k(0,m — 2r + 1), (13)

and whenm < 2r — 1, we have

k(r,m) —71(r,m) = k(r—1,m —1)+k(r —2,m —2) + k(r —2,m — 3)
+ k(r—3,m—4) + k(r —3,m —5)
+ o k(r—1— 22271 + k(r — 1 - [2517,0). (14)

5.2 Treewidth of RM (7, m)
We state below our main result showing that the treewidthRéad-Muller code equals its trelliswidth.

Theorem 8. The treewidth of the Reed-Muller code Rivin) is given by

T (Mot if m>2r 41
Kk(r,m) =T7(r,m) = {zj:o (m—C‘_—JI 2n—2j—1 if B 7
L+ (M) ifm<2r+ 1

The rest of this section is devoted to a proof of the abovdtieshich follows the strategy outlined
in Sectior 8. Some of the technical details of the proof aesgmted in Appendices B and C.

Let RM(r, m) be given. Ifm < 2, orr = m, then RMr, m) is an MDS code, which has been dealt
with in Sectior 4. Henceforth, we will assume > 3 andr < m — 1.

Let 7' be a cubic tree witm = 2 leaves,m > 3, and letW = {v € V(T) : ney),0 €
[n/2,2n/3]}. By Propositior BV is non-empty. Let* € T be a node that achievesax{n., )., :
v e W} Write nf = Me,(v*),0* 1 =1,2,3.

Lemma9. We haven/6 < n} < n/3.



TR

TR

I
|
|
\

BLASE RS

n3

Figure 1: For, we havens = n] + nj.

Proof. If n3 < n/6, then from the fact that]; < n3, we obtainn} 4+ n3 < n/3, so thatn; > 2n/3, a
contradiction. Sopy > n/6. However,n /6 is not an integer fon = 2™, and sonj > n/6.

If n5 > n/3, thenn] + n§ < 2n/3. Letv be the neighbour of* incident with edges»(v*). Then,
settingns = ney(,),0» We see thabs = ny + nj; see Figur€]l. But this means that < n3 < 2n/3,
which contradicts our choice of. O

We will show thatzg’:1 Un: < k(r,m) —7(r, m), which will prove Theorerhl8 by virtue of Propo-
sition[d. Here, and in all that follows, we ugg as shorthand fob/;,(RM(r,m)),
Denote byn™ and3(™ the largest integers if, 2n./3] and[0, n/3], respectively. Explicitly,

2.9m_ L1 if misodd,
al™ = {3 S (15)
$-2m—g5 if miseven
and
L.om _ 2 if mis odd,
B =0t . (16)
3:2m—g5 if miseven
Equivalently, in binary form,
1,0,1,0,1,--- ,0,1) if misod
T (17)
(0,1,0,1,---,0,1) if m is even
and
1,0,1,0,--- ,1 if m is od
b(gm) = ¢ (01,010, 1,0) i m s odd (18)
(1707 1707 Tt ,170) |f m IS even

When there is no ambiguity, we will drop the superscriptsrfid™ and3(™ for notational ease.
Now, what we know is that} € 2™, o] andnj € [[£ 2™], B]. In fact, it can be directly verified
from the expression for that [£ 2™] = a — 2™~! + 1. We wish to show tha}" Up: < k(r,m) —
7(r,m). We will do this in two steps: first, we show in Lemind 10 beloatth’ Un: <Uq + U+ Un,
and then, we prove in Lemnialll thét + Us + Uy = k(r,m) — 7(r,m).
Write n} = a—iandn} = 8—j, so thaty] = 2™ — (n}+n3) = i+j+ 1, wherei € [0, —2™71]
andj € [0, 8 — (o — 2! + 1)]. The following lemma shows that U,,» < U, + Uz + Us.



Lemma 10. Fori € [0, — 2™}, andj € [0, 8 — (o — 2™~ + 1)], we have

(Ua = Ua—i) + (Ug = Up—j) 2 Uit j41 — Us.

Proof. See Appendix B. O
Lemmall. U, + Ug + Uy = k(r,m) — 7(r,m).

Proof. The minimum distance of Ri, m) is2™~". Since we have assumed< m — 1, the minimum
distance is at least 2, and hentg,= 0. In Appendix C, we show the following: when > 2r,
r—1 . . .
U, — Eiz_olk‘(r—l—z‘,m—l‘—%) ffs:oz, (19)
Yo k(r—1—1i,m—29) if s=5.
Examining the above summations term-by-term, it may bdiedrthat the alternate terms on the right-
hand side of{(I13), beginning with(r — 1, m — 1), sum toU,, while the remaining terms sum ts.
Hence, whemn > 2r, the statement of the lemma holds.
Whenm < 2r, we show in Appendix C that

m—1

S b k(r—=1—i,m—1-2i) if misodd
m—2

S k(r—1—i,m—1-2i) if miseven

Ua = (20)

and

S k(r—1—i,m—2) if misodd

Ug = S
21 k(r—1—14i,m—2i) if miseven

(21)

This time, it can be seen that the alternate terms on the-highd side of[(14), beginning with(r —
1,m—1), sumtolU,, while the remaining terms sum &d;. This completes the proof of the lemmal]

With this, the proof of Theorem 8 is complete.

6 Concluding Remarks

In this paper, we proved the surprising fact that for the fiamiof MDS and Reed-Muller codes, if we
use the maximum dimension of local constraint codes to rmedaka complexity of a graphical realiza-
tion, then there is no advantage to be gained in going froliistrealizations to cycle-free realizations
on more complex tree topologies. This is particularly sigipg for Reed-Muller codes, given that they
have a natural binary-tree structure arising from the @eelfu|u + v| construction (see e.d./[5]). Of
course, the situation could be different if we used someratteasure for the complexity of a graphical
realization, for example, the sum of the local constraintetisions.

It is also quite remarkable that the proof strategy outlime8ectior 8 — namely, identifying in any
cubic treeT" a nodev € V(T') such thatx, > 7(C) for everytree decomposition of the codeon
T — succeeds for MDS and Reed-Muller codes. As noted in thaiosedhis strategy ignores the
role played by the coordinate assignmenin determining the local constraint code dimensiap, It
seems unlikely that this method of proof would succeed foeotode families. It would of course
be interesting to devise a set of tools that could be usedrtguate treewidth, or simply to determine
whether or not treewidth can be strictly less than trelldttvj for other families of algebraic codes.



Appendix A: Proofs of Propositions(@ and [7

In this appendix, we compute the branch complexity of theimmah trellis representation of R, m)

in the standard bit order, from which the expressions in &sitipn[6 and17 are obtained. We refer the

reader to the survey by Vardy [14] for the necessary backgtaun the theory of trellis representations.
Let 7(r,m) ando(r, m) denote, respectively, the branch complexity and state tmxity of the

minimal trellis representation of R, m) in the standard bit order. Berger and Be’ery [1] gave an

explicit expression foe (r, m):

min{r,m—r—1} (m _9j— 1>
o(r,m) = Z _ .

r—
=0 J

A different derivation of the above was given by Blackmore &torton [2]. We rely heavily on tools
from [2] to prove the following result, which is equivalemt Proposition b.

Proposition 12.
o(r,m) if m>2r+41,
T(r,m) = .
olrom)+1 ifm<2r41.

We introduce some terminology and notation that will be eelid the proof of the proposition. Let
C be the code RNF, m) in the standard bit order, and let= 2. Let 7 be the minimal trellis of. For
i=0,1,...,n, the dimension of the state space at depth7 is denotedr;. Thus,o(r, m) = max; o;.
Fori =0,1,...,n — 1, we denote by; the dimension of the branch space between the state spaces at
depths; andi + 1; then,7(r, m) = max; 7.

The following definitions were made inl[2] for<: <n — 1:

(@) if dim(Ci41,n—1)) = dim(Cj;_; ,—17) — 1, theni is called gpoint of gainof C; and
(b) if dim(Cjo;)) = dim(Cp;—1)) + 1, theni is called apoint of fall of C.

As per our notation from Sectiéh b{:) denotes then-bit binary representation 6f0 < i < n—1.
Let |b(i)|o and|b(i)|; denote the number @k andls, respectively, itb(7).

Lemma 13 ([2], Proposition 2.2) For0 <i <n —1,
(a) 7 is a point of gain ot iff [b(z)|; < r;

(b) i is a point of fall ofC iff [b(i)|p < 7.

Proof of Proposition IR It is a fact that for any minimal trellis representationatch complexity
either is equal to the state complexity or is exactly one ntbam the state complexity. In particular,
o(r,m) < 7(r,m) < o(r,m) + 1. So, to prove Propositidn L2, it suffices to show that

T(r,m) = o(r,m) + 1iff m < 2r. (22)

Suppose that(r, m) = 7; for somei € [0,n — 1]. From the local behaviour ¢f described in[[2,
p. 44], it follows that we can have = o(r,m) + 1 iff 0; = o(r,m) andi + 1 is a point of gain as well
as a point of fall ofC.

Thus, ifr; = o(r,m) + 1, then by Lemma 35 = |b(i + 1)|1 + |b(i + 1)|p < 2r. This proves the
“only if” direction of [22).

Conversely, supposer < 2r. The proposition is clearly true ifn = r, sihnce RMm, m) =
{0,1}2", and we haver(m,m) = 0 and7(m,m) = 1. So, we may assume > r + 1. Takei to be



such thab(i) = (0,0...,0,1,0,1,0,...,1,0), with |b(7)|; = m —r — 1. Then, by Theorem 2.11 in
2], o; = o(r,m). Also,b(i+1) = (1, O ,0,1,0,1,0,...,1,0), with |b(: + 1)[; = m —r < rand
|b(i +1)|o = m — (m —r) = r. Hence, by LemmELB,+ lisa point of gain as well as a point of fall
of C. Hence,;r; = o(r,m) + 1, which completes the proof df(22), and hence, of Proposfd. [

We next present the algebraic manipulations needed to [Fraygositior V.

Proof of Propositiori l7 We divide the proof into three cases.
Case 1m > 2r + 1. We have

k(r,m) — r(r,m) = ]ZO (T) _jz;) <m ;ij]— 1>
- 2 (?) _ ;0 <m - 2(7“]—,7) - 1>
S )

=
&
[]-
|3}
=
=
<
=
/E
<.
|
(-
=
-~
N—

1=
<
Il
()
Il
—_
/\3
. |
-
=
~.
~_~

= k(r—1—1i/2],m —1—1).

In the above chain of equalities, equality (a) uses the faat for integersa < b andj > 1, we

have (;’) — (‘;) = Eg;i (;9,); this is just repeated application of the ident(@ = (2D + (5.
Equality (b) is obtained by exchanging the order of the sutronga in: and;.

Case 2:m = 2r. Here,

s

Krm) —7(nm) = 3 > (™ Z( e

o \J

)y
> (7) % (")

()

and now we carry on from equality (a) of Case 1.

Il Il
M- 1M 1
-3

<.
Il



Case 3:m < 2r — 1. This is the most tedious case. We start with

st = 3 (7)-1="3 (M)

- () (-0

m—1—1
f) e

Now, for j > 1, write (’;L) = (") - (?) =St (™ 17"). Hence,
2r—m m m—12r—m m—1—3i
Z<j>:. Z( j—1 > 9

Also,
2(m—r—1) r—[i/2]

m—1-7\ 3 "I o1
2 X ( j—1 )ZZ._Z < j-1 ) )
1=0 Jj=2r—m+1 1=0 j=2r—m+1

aswhen > 2(m —r — 1)+ 1, we haver — [i/2] < 2r —m, so that the inner summatloﬁj 2/2]%1
is empty. Plugging(24) an@(P5) into (23), we find that

m—17—[i/2] . m—1
m—1—1 . .
k(r,m) — > < i )sz(r—l—ﬁ/Q],m—l—z).
=0 j=1 i=0
This completes the proof of Propositibh 7. O

Appendix B: Proof of Lemmal[l0

We recast the statement of Lemind 10 into an equivalent séaeabout binary representations of
integers. From[(12) and the notion of points of fall from [8g€ Appendix A), we see that far <

s < 2™ Uy is equal to the number of points of fall of RM m) within the interval[0, s — 1]. Thus, by
Lemmd 1Bl is equal to the number of integers|ih s — 1] whosem-bit binary representations have
at leastm — r 1s.

For an integey € [0,2™ — 1], let wt(j) denote the Hamming weight of (i.e., the number of 1s in)
the binary representatidn(j). For a subsef C [0,2™ — 1], let w;(S) denote the number of integers
j € S withwt(j) > i. We setw;() = 0. Then, Lemma&10 is equivalent to the following assertiom: fo
i€[0,a—2m"1andj €[0,8 — (o — 2™~ + 1)], we have

Wy ([0 = 1,0 = 1)) + Wi ([B = 4, 8 = 1]) > wp—r([1,7 + j]). (26)

Since Lemma_10 needs to be shown for any ([RWh) with 0 < » < m — 1, we see tha{(26) must be
shown for anym — r € {1,2,...,m}. With this in mind, we define fof C [0,2™ — 1],

w(S) = [wi(S) wa(S) -+ w(S)].



As usual, we will drop the superscript:) when it can be gleaned unambiguously from the context.

Proposition 14. Form > 2 and0 < i, j < o™ —2™~1 we have
w (o™ — i o™ —1]) 4w ([0 — j, g0 — 1)) > W™ (L0 + j]), (27)
with the inequality above holding componentwise.

Observe that this proposition is slightly stronger than beadl0, since the latter only requires
0<j < pBm —(alm —2m=141) Itis easy to verify thap(™) — (o™ —2m—1 4 1) < o(m) —gm—1,
The remainder of this appendix is devoted to a proof of PritipagI4. The proof is by induction on
m, which is why we have taken care to include the superscripta: @and 3 in the statement of the
proposition. The main ingredients in the inductive proda dre simple facts that for a non-negative
integery, wt(25) = wt(j) and wi2j + 1) = wt(j) + 1. The rest is merely careful bookkeeping.

Let P(™) (i,7) denote the inequality in{27). The induction argument idtlupon certain implica-
tions among the”(") (i, j), as stated in the series of lemmas below. We introduce hene sotation
that we will use in the proofs of these lemmas. For a set ofeneS, we write2S and2S5 + 1 to mean
the sets{2j : j € S} and{2j + 1 : j € S}, respectively. Bylfc’fg], with 1 < a < b < m, we mean
the vector(z; zo ... z,], with z; = 1 fora < i < b, andz; = 0 otherwise. Again, we will drop the
superscripi{m) when there is no ambiguity.

Lemma 15. For evenm, P (i, j) implies PU"*+D(2; + 1,25). For odd m, P (i, j) implies
P (24,25 +1).

Proof. For evenm, we haven Y = 2a(™ + 1, andg(m+1) = 25" SetS = [a(™ — i, a(™ —1]
and7T = [3™ — j, 3™ — 1]. Now, P(™) (i, j) implies

W(m+1) (25) + W(m+1) (2T)
w285 + 1) + wlmt (2T + 1)

wm D (2[1,i + ]) (28)

>
> w21, + 4] + 1) (29)

since wf2;j) = wt(j) and w{2j + 1) = wt(j) + 1 for any non-negative integgt Henceforth, all the
w’s in this proof arew (™*1)’s. Combining [28) and (29), we have
w([2a™ — 2i,2a™ —1]) + w([26™) — 25,26 —1]) > w([2,2i +2j + 1]),
which is the same as
w([a™) =2 — 1,0l 2]) 4 w([BmD — 25, 80D 1)) > w([2,2i +2j +1]).  (30)

Now, w([1,2i +2j + 1]) = w([2, 2i +2j + 1)) + 1" . Also, w([a 0™+ — 2 — 1,a(m+D) — 1)) =

w([amt) —2; — 1, oM+ —9]) + IET;:}%] since Wit — 1) = wt(2a™)) = wt(a™) = m/2,
by (17). Therefore,

w([a™) —2; — 1,0 ) —1]) + w (™D — 25, 5T 1)) > w([1,2i +25 +1]), (31)

which is P(™+1)(2; + 1,25).
The proof for oddn is along similar lines. O

Lemma16. (a) Whena(™ — i is even, the two inequalitieB(™ (i, j) and P (i + 2, j) together
imply PU™) (i + 1, 5).

(b) When3(™ —j is even, the two inequalitieB(™) (4, j) and P\ (4, j+2) together implyP (™) (i, j+
1.



Proof. We only prove (a), as the proof of (b) is completely analogdnghis proof, all omitted super-
scripts are to be taken to ije).

Letz = wt(a—i—1) andy = wt(i+;j+1). We havew ([a—i—1,a—1]) = w([a—i,a—1])+1} 4,
andw([1,i+ j +1]) = w([L,i + j]) + 11 ;. We want to show”(™ (i + 1, j):

wila— i~ 1) + Ly + w8~ .S — 1) = w(lLi 4 ) + L1 (32)
If z >y, thenP(™ (4, j) clearly implies [3R). So, suppose< y. Then, [32) becomes
wila —iyo— 1)+ w((B — 4,8 — 1) = w(lLi + ) + L1y,
or equivalently,

. . w([li+j))+1 fz+r1<i<y
wy([o — i, — 1)) +wy([B — 4,8 - 1]) > {wz([l,z‘ﬂ]) otherwise (33)

Letz’ = wt(a — i — 2) andy’ = wt(i + j + 2). Sincea — i is even, we see that + 1 = z or
x’ < xz. Now, we have

w(la—i—=2,a—1]) = w(la—ia—1])+ 1, + 1, (34)
w([Li+j+2) = w(Li+j])+1py+1py (35)
Thus, P(™) (i + 2, ) is equivalent to
w(la—i,a—1]) +1p e+ w((B =78 =1]) =2 W([L,i+j]) + 1py1y) + 1py) (36)
Using the fact that’ < z, (38) implies that forr + 1 < 1 < y,
wi(la —i,a = 1)) +w([B — 7,8 —1]) =2 wi([l,i +j]) + 1.

SinceP (™) (i, j) clearly implies the “otherwise” part df (B3), we have showattP"™ (i, j) and P("™) (i+
2, j) together imply[(3B), i.e.L™ (i + 1, ). H

Lemma 17. For evenm, the following implications hold:

(@) P (i, j) = Pt (2i +1,2§);

(c) pm)

(

(b) PO™ (i —1, j)/\P( )(i,j) = P+ (24, 2j);
(i,5) AP (i, j + 1) = PO (2 + 1,25 + 1);
(

(d) P (i —1 ])/\P( )(i,7) AP (G — 1,5 + 1) AP™ (i, 5 +1) = P+ (24,25 + 1).

Proof. (a) follows directly from Lemma15.

(b): If PU™) (i — 1, 5) and P(™) (i, §) are true, then by Lemniall5, we ha&"+) (2 — 1,2;) and
P+ (25 4+ 1,25) being true. Sincen + 1 is odd, a(™*1) is odd (see[(17)). It now follows from
Lemma16(a) thaP(™+1)(2i, 25) holds.

(c): This follows by an argument similar to part (b), exceamttLemmaI6(b) is applied.

(d): By part (b),P+1) (24, 27) andP™+1) (24, 2j+2) hold. Therefore, by Lemniall6 (k™1 (2i, 25+
1) holds. O

Arguments similar to those used in the above proof show tkeresult.



Lemma 18. For oddm, the following implications hold:
(@ PM™(i,j) = PM™+1(2i 25 + 1);
(b) P™) (i, — 1) APM™ (i, 5) = PMm+1)(24,25);
() P (i, ) AP (i +1,5) = PH(2i 4+ 1,25 + 1);
(i

(d) Pt (i, — 1)/\P( )(i,7) AP (41,5 — 1) AP™ (i +1,5) = P™HD (24 4 1,27).

We are now in a position to prove Propositlod 14.

Proof of Propositioi 14 Set/(™) = (™) — 2m~1, We wish to show that fom > 2, P(™)(i, j) holds
for 0 < i,5 < £ Itis easy to verify this directly forn = 2 andm = 3, so we start the induction by
assuming that for some odd > 3, P(") (4, 5) holds for0 < 4, j < ¢(™),

For oddm, the implications in Lemmia_18 are enough to show tR&t+1 (i, j) holds forl < i <
20(m) and1 < j < 2¢™) 4+ 1. Note also that for oddr, we have/™+1) = 2/(m) as can be verified
from (I8). SinceP™+1)(0,0), P+ (0,1) andP™+1) (1, 0) trivially hold, we have thaP ™1 (i, 5)
holds for0 < i < ¢(m+1) and0 < j < ¢(m+1) 4 1.

Now, m + 1 is even, and we have shown above tR&'*+1 (i, ) is true for0 < i < ¢(m*+1) and
0 < j < ¢m+D) 4 1. The implications in Lemmia_l7 are then sufficient to show A&t +2) (s, 5) holds
for 1 <i,j < 200+ 41, Again, P(™+2)(0,0), P(™+2)(0,1) and P(™*+2)(1,0) can be seen to hold
trivially, so P(+2) (i, j) in fact holds for0 < i,j < 2¢(™+1) 4 1. This completes the induction step,
since for evenn + 1, it follows from (IB) that/("+2) = 2¢(m+1) 4 1, O

As observed earlier, Propositibnl14 proves Leninja 10.

Appendix C: Computing U, and Up

To derive the expressions ih_(19){21), we make usé lof (5)aanesult of Wei[[15] that explicitly
determines the generalized Hamming weight hierarchy of ®M). Any non-negative intege <
k(r,m) can be uniquely expressed as a sum

¢
w="Y_k(ri,m), (37)
=1
wherer > r; >rg > ... > 1, >0, m > mqy > mg > ... > my > 0, and for alli, m; —r; =
m —r + 1 —1i[15, Lemma 2]. The above representation is called(the:)-canonical representation
of u.

Theorem 19 ([15], Corollary 6) For 0 < u < k(r,m), given the uniquér, m)-canonical representa-
tion of u as in [37), we have, (RM(r,m)) = S3¢_, 2,

For convenience, we will henceforth wridg (RM(r, m)) simply asd,,.

Assume thatn > 2r. We want to show thaf (19) holds. We will only prove here theutefor
s = a, as the result fos = 5 can be proved analogously. Lebe the integer given by

i=Y k(r—im+1-2i). (38)
=1

Note that the above is the-, m)-canonical representation af. By Theorem[ 1P, we havd; =
Sr_, 2m =2 In binary form,b(d;) = (0,0,...,0,0,1,0,1,...,0,1), the number of 1s ib(d;)
beingr. Comparing this with the binary form ef given in [17), it is clear thai; < o.



Next, writew + 1 as

i41="> k(r—im+1-2i)+k0,m—2r),
i=1

using the fact thak(0, m — 2r) = (’”62’”) = 1. This is again in(r, m)-canonical form, and hence by
Theoreni 1D, we havg; . = >, 2T 1=242m=2" |n binary form, this id(da41) = (0,0,...,0,1,
1,0,1,...,0,1), the number of 1s here beimg+ 1. Comparing with[(II7), we see that< dg .
Sinced; < « < dgy1, we have by[(b)[/, = . Observe that; as given by[(3B) is precisely equal
to the claimed value df’,, in (19).
Now, assumen < 2r. We wish to show{(20) and (21). We sketch the proof fott (21gh#re proof
for (20) is similar. Set

m=—1
i )2 k(r—1—i,m—2i) ifmisodd
Zok(r—1—i,m—2i) if miseven

The above is thér, m)-canonical representation of and hence,

m—1 .
g {zia 2m=2 if m is odd

2.2m720if mis even

Comparingb(d;) with b(3) given in [18), it can be seen that < j.
The (r, m)-canonical representation 6f+ 1 is given by

m_q

m—1
S k(r—1—di,;m—2i)+k(r—1—2:L0) if misodd
21 k(r—1—i,m—2i) +k(r —%,1) if m is even

Again, d; 1 can be obtained from Theordm|19, and the subsequent compafibinary forms shows
thats < ds+1. Hence, byl[(b), we hav€s = @, which proves[(21).
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