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Abstract. As is well known, the non-Gaussianity parameter f
NL
, which is often used to

characterize the amplitude of the scalar bi-spectrum, can be expressed completely in terms
of the scalar spectral index ns in the squeezed limit, a relation that is referred to as the
consistency condition. This relation, while it is largely discussed in the context of slow roll
inflation, is actually expected to hold in any single field model of inflation, irrespective of the
dynamics of the underlying model, provided inflation occurs on the attractor at late times. In
this work, we explicitly examine the validity of the consistency relation, analytically as well
as numerically, away from slow roll. Analytically, we first arrive at the relation in the simple
case of power law inflation. We also consider the non-trivial example of the Starobinsky
model involving a linear potential with a sudden change in its slope (which leads to a brief
period of fast roll), and establish the condition completely analytically. We then numerically
examine the validity of the consistency relation in three inflationary models that lead to the
following features in the scalar power spectrum due to departures from slow roll: (i) a sharp
cut off at large scales, (ii) a burst of oscillations over an intermediate range of scales, and
(iii) small, but repeated, modulations extending over a wide range of scales. It is important
to note that it is exactly such spectra that have been found to lead to an improved fit to
the CMB data, when compared to the more standard power law primordial spectra, by the
Planck team. We evaluate the scalar bi-spectrum for an arbitrary triangular configuration of
the wavenumbers in these inflationary models and explicitly illustrate that, in the squeezed
limit, the consistency condition is indeed satisfied even in situations consisting of strong
deviations from slow roll. We conclude with a brief discussion of the results.
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1 Introduction

Over the past two decades, cosmologists have dedicated a considerable amount of attention to
hunting down credible models of inflation. The inflationary scenario, which is often invoked
to resolve certain puzzles (such as the horizon problem) that plague the hot big bang model,
is well known to provide an attractive mechanism for the origin of perturbations in the early
universe [1–3]. In the modern viewpoint, it is the primordial perturbations generated during
inflation that leave their signatures as anisotropies in the Cosmic Microwave Background
(CMB) and later lead to the formation of the large scale structure. Ever since the discovery of
the CMB anisotropies by COBE [4], there has been a constant endeavor to utilize cosmological
observations to arrive at stronger and stronger constraints on models of inflation. While the
CMB anisotropies have been measured with ever increasing precision by missions such as
WMAP [5–7], Planck [8–10] and, very recently, by BICEP2 [11, 12], it would be fair to say
that we still seem rather far from converging on a small class of well motivated and viable
inflationary models (in this context, see Refs. [13–15]).

The difficulty in arriving at a limited set of credible models of inflation seems to lie in
the simplicity and efficiency of the inflationary scenario. Inflation can be easily achieved with
the aid of one or more scalar fields that are slowly rolling down a relatively flat potential.
Due to this reason, a plethora of models of inflation have been proposed, which give rise
to the required 60 or so e-folds of accelerated expansion that is necessary to overcome the
horizon problem. Moreover, there always seem to exist sufficient room to tweak the potential
parameters in such a way so as to result in a nearly scale invariant power spectrum of the
scalar perturbations that lead to a good fit to the CMB data. In such a situation, non-
Gaussianities in general and the scalar bi-spectrum in particular have been expected to lift
the degeneracy prevailing amongst the various inflationary models. For convenience, the
extent of non-Gaussianity associated with the scalar bi-spectrum is often expressed in terms
of the parameter commonly referred to as f

NL
[16], a quantity which is a dimensionless ratio of

the scalar bi-spectrum to the power spectrum. The expectation regarding non-Gaussianities
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alluded to above has been largely corroborated by the strong limits that have been arrived
at by the Planck mission on the value of the f

NL
parameter [17]. These bounds suggest that

the observed perturbations are consistent with a Gaussian primordial distribution. Also, the
strong constraints imply that exotic models which lead to large levels of non-Gaussianities
are ruled out by the data.

Despite the strong bounds that have been arrived at on the amplitude of the scalar bi-
spectrum, there exist many models of inflation that remain consistent with the cosmological
data at hand. The so-called scalar consistency relation is expected to play a powerful role in
this regard, ruling out, for instance, many multi-field models of inflation, if it is confirmed
observationally (for early discussion in this context, see, for instance, Refs. [18, 19]; for recent
discussions, see Refs. [20]; for similar results that involve the higher order correlation func-
tions, see, for example, Refs. [21]). According to the consistency condition, in the squeezed
limit of the three-point functions wherein one of the wavenumbers associated with the per-
turbations is much smaller than the other two, the three-point functions can be completely
expressed in terms of the two-point functions1. In the squeezed limit, for instance, the scalar
non-Gaussianity parameter f

NL
can be expressed completely in terms of the scalar spectral

index n
S
as f

NL
= 5 (n

S
− 1)/12 [18, 19]. As we shall briefly outline later, the consistency

conditions are expected to hold [27] whenever the amplitude of the perturbations freeze on
super-Hubble scales, a behavior which is true in single field models where inflation occurs
on the attractor at late times (see Refs. [1]; in this context, also see Refs. [28]). While the
scalar consistency relation has been established in the slow roll scenario, we find that there
has been only a limited effort in explicitly examining the relation in situations consisting
of periods of fast roll [29, 30]. Moreover, it has been shown that there can be deviations
from the consistency relation under certain conditions, particularly when the field is either
evolving away from the attractor [31] or when the perturbations are in an excited state above
the Bunch-Davies vacuum [32]. In this work, our aim is to verify the validity of the scalar
consistency relation in inflationary models which exhibit non-trivial dynamics. By consid-
ering a few examples, we shall explicitly show, analytically and numerically, that the scalar
consistency relation holds even in scenarios involving strong deviations from slow roll.

The remainder of this paper is organized as follows. In the next section, we shall quickly
summarize a few essential points and results concerning the scalar power spectrum and the
bi-spectrum. We shall also briefly revisit the proof of the scalar consistency relation in
the squeezed limit. In the succeeding section, we shall explicitly verify the validity of the
consistency condition analytically in the cases of power law inflation and the Starobinsky
model which is described by a linear potential with a sudden change in its slope. We shall
then evaluate the scalar bi-spectrum numerically for an arbitrary triangular configuration of
the wavenumbers in three inflationary models that lead to features in the power spectrum,
and examine the consistency condition in the squeezed limit. We conclude with a brief
discussion on the results we obtain.

A few remarks on our conventions and notations seem essential at this stage of our
discussion. We shall work with natural units wherein ~ = c = 1, and define the Planck mass
to be M

Pl
= (8π G)−1/2. We shall adopt the signature of the metric to be (−,+,+,+). We

shall assume the background to be the spatially flat, Friedmann-Lemâıtre-Robertson-Walker
(FLRW) line element that is described by the scale factor a and the Hubble parameter H.
As is convenient, we shall switch between various parametrizations of time, viz. the cosmic

1It should be added here that, in a fashion similar to that of the purely scalar case, one can also arrive at
consistency conditions for the other three-point functions which involve tensors [22–27].
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time t, the conformal time η or e-folds denoted by N . An overdot and an overprime shall
represent differentiation with respect to the cosmic and the conformal time coordinates,
respectively. We shall restrict our attention in this work to inflationary models involving the
canonical scalar field. Note that, in such a case, the first and second slow roll parameters are
defined as ǫ1 = −Ḣ/H2 and ǫ2 = d ln ǫ1/dN .

2 The scalar bi-spectrum in the squeezed limit

In this section, we shall quickly summarize the essential definitions and governing expres-
sions concerning the scalar power spectrum, the bi-spectrum and the corresponding non-
Gaussianity parameter f

NL
. We shall also sketch a simple proof of the consistency relation

obeyed by the non-Gaussianity parameter f
NL

in the squeezed limit of the scalar bi-spectrum.

2.1 The scalar power spectrum and bi-spectrum

Consider the following line-element which describes the spatially flat, FLRW spacetime, when
the scalar perturbations, characterized by the curvature perturbationR, have been taken into
account:

ds2 = −dt2 + a2(t) e2R(t,x)dx2. (2.1)

Let fk denote the Fourier modes associated with the curvature perturbation at the linear
order in the perturbations. In the case of inflation driven by the canonical scalar field that
is of our interest here, the modes fk satisfy the differential equation [2, 3]

f ′′
k + 2

z′

z
f ′
k + k2 fk = 0, (2.2)

where z =
√
2 ǫ1 MPl

a. Upon quantization, the curvature perturbation can be decomposed
in terms of the Fourier modes fk as

R̂(η,x) =

∫

d3k

(2π)3/2
R̂k(η) e

ik·x =

∫

d3k

(2π)3/2

[

âk fk(η) e
i k·x + â†

k
f∗
k (η) e

−i k·x
]

, (2.3)

where âk and â†
k
are the usual creation and annihilation operators that obey the standard

commutation relations.
The scalar power spectrum P

S
(k) is defined in terms of the two-point correlation function

of the curvature perturbation as follows:

〈0|R̂k(η) R̂k′(η)|0〉 = (2π)2

2 k3
P

S
(k) δ(3)

(

k+ k
′
)

, (2.4)

where |0〉 denotes the Bunch-Davies vacuum annihilated by the operator âk [33]. In terms
of the modes fk, the scalar power spectrum P

S
(k) is given by

P
S
(k) =

k3

2π2
|fk|2. (2.5)

The inflationary model governed by a given potential determines the behavior of the quan-
tity z. In order to arrive at the scalar power spectrum using the above expression, one first

– 3 –



solves the differential equation (2.2) for the modes fk with the Bunch-Davies initial condi-
tions [33], and then evaluates the amplitude of the modes at sufficiently late times when they
are well outside the Hubble radius during inflation. The scalar spectral index is defined as

n
S
(k) = 1 +

d lnP
S
(k)

d ln k
. (2.6)

It should be stressed here that the scalar spectral index proves to be a constant only in simple
situations such as power law and slow roll inflation. In general, when the power spectrum
contains features, the quantity n

S
depends on the wavenumber k.

The scalar bi-spectrum B
S
(k1,k2,k3) evaluated, say, in the vacuum state |0〉, is defined

in terms of the three-point function of the curvature perturbation as follows [6]:

〈0|R̂k1
R̂k2

R̂k3
|0〉 = (2π)3 B

S
(k1,k2,k3) δ

(3) (k1 + k2 + k3) . (2.7)

Note that the delta function on the right hand side imposes the triangularity condition, viz.
that the three wavevectors k1, k2 and k3 have to form the edges of a triangle. For the sake
of convenience, we shall set

B
S
(k1,k2,k3) = (2π)−9/2 G(k1,k2,k3). (2.8)

The non-Gaussianity parameter f
NL

that is often used to characterize the extent of non-
Gaussianity indicated by the bi-spectrum is introduced through the relation [16]

R(η,x) = R
G
(η,x) − 3 f

NL

5

[

R2
G
(η,x) −

〈

R2
G
(η,x)

〉]

, (2.9)

where R
G
denotes the Gaussian part of the curvature perturbation. Using the above relation

and Wick’s theorem (which applies to Gaussian perturbations), one can arrive at the following
expression for the dimensionless non-Gaussianity parameter f

NL
in terms of the bi-spectrum

G(k1,k2,k3) and the scalar power spectrum P
S
(k):

f
NL
(k1,k2,k3) = −10

3

1

(2π)4
(k1 k2 k3)

3 G(k1,k2,k3)

×
[

k31 P
S
(k2) PS

(k3) + two permutations
]−1

. (2.10)

The scalar bi-spectrum generated during inflation can be evaluated using the Maldacena
formalism [18]. The approach basically makes use of the third order action governing the
curvature perturbation and the standard rules of perturbative quantum field theory to arrive
at the scalar three-point function [18, 34, 35]. It is found that, in the case of inflation driven
by the canonical scalar field, the third order action consists of six terms and the scalar bi-
spectrum receives a contribution from each of these ‘vertices’. In fact, there also occurs
a seventh term which arises due to a field redefinition, a procedure which is necessary to
reduce the action to a simpler form. One can show that the complete contribution to the

– 4 –



scalar bi-spectrum in the perturbative vacuum can be written as [36–38]

G(k1,k2,k3) ≡
7

∑

C=1

G
C
(k1,k2,k3)

≡ M2
Pl

6
∑

C=1

{

[fk1(ηe) fk2(ηe) fk3(ηe)] GC
(k1,k2,k3)

+
[

f∗
k1(ηe) f

∗
k2(ηe) f

∗
k3(ηe)

]

G∗
C
(k1,k2,k3)

}

+G7(k1,k2,k3), (2.11)

where fk are the Fourier modes in terms of which we had decomposed the curvature per-
turbation at the linear order in the perturbations [cf. Eq. (2.3)]. In the above expression,
the quantities G

C
(k1,k2,k3) with C = (1, 6) correspond to the six vertices in the interaction

Hamiltonian (obtained from the third order action), and are described by the integrals

G1(k1,k2,k3) = 2 i

∫ ηe

ηi

dη a2 ǫ21
(

f∗
k1 f

′∗
k2 f

′∗
k3 + two permutations

)

, (2.12a)

G2(k1,k2,k3) = −2 i (k1 · k2 + two permutations)

∫ ηe

ηi

dη a2 ǫ21 f
∗
k1 f

∗
k2 f

∗
k3 , (2.12b)

G3(k1,k2,k3) = −2 i

∫ ηe

ηi

dη a2 ǫ21

[

(

k1 · k2

k22

)

f∗
k1 f

′∗
k2 f

′∗
k3 + five permutations

]

, (2.12c)

G4(k1,k2,k3) = i

∫ ηe

ηi

dη a2 ǫ1 ǫ
′
2

(

f∗
k1 f

∗
k2 f

′∗
k3 + two permutations

)

, (2.12d)

G5(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ǫ31

[

(

k1 · k2

k22

)

f∗
k1 f

′∗
k2 f

′∗
k3 + five permutations

]

, (2.12e)

G6(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ǫ31

{

[

k21 (k2 · k3)

k22 k
2
3

]

f∗
k1 f

′∗
k2 f

′∗
k3 + two permutations

}

. (2.12f)

These integrals are to be evaluated from a sufficiently early time, say, ηi, when the initial
conditions are imposed on the modes until very late times, say, towards the end of inflation
at ηe. The additional, seventh term G7(k1,k2,k3) arises due to the field redefinition and its
contribution to the bi-spectrum G(k1,k2,k3) is given by

G7(k1,k2,k3) =
ǫ2(ηe)

2

(

|fk1(ηe)|2 |fk2(ηe)|2 + two permutations
)

. (2.13)

2.2 The consistency relation

The squeezed limit refers to the case wherein one of the wavenumbers of the triangular
configuration vanishes, say, k3 → 0, leading to k2 = −k1. Or, equivalently, one of the modes
is assumed to possess a wavelength which is much larger than the other two. The long
wavelength mode would be well outside the Hubble radius. In models of inflation driven by
a single scalar field, the amplitude of the curvature perturbation freezes on super-Hubble
scales, provided the inflaton evolves on the attractor at late times [28, 31]. As a result,
the long wavelength mode simply acts as a background as far as the other two modes are
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concerned. If RB is the amplitude of the curvature perturbation associated with the long
wavelength mode, then the unperturbed part of the original FLRW metric will be modified
to

ds2 = −dt2 + a2(t) e2R
B

dx2. (2.14)

In other words, the effect of the long wavelength mode is to modify the scale factor locally,
which is equivalent to a spatial transformation of the form x

′ = Λx, with the components
of the matrix Λ being given by Λij = eR

B

δij . Under such a transformation, the modes of
the curvature perturbation transform as Rk → det (Λ−1)RΛ−1k. Further, we have |Λ−1

k| =
(1 −RB ) k and δ(3)(Λ−1

k1 + Λ−1
k2) = det (Λ) δ(3)(k1 + k2). Utilizing these relations, the

scalar two-point function can be written as

〈R̂k1
R̂k2

〉k =
(2π)2

2 k31
P

S
(k1) [1− (n

S
− 1)RB ] δ(3)(k1 + k2), (2.15)

where the suffix k on the two-point function indicates that the correlator has been evaluated
in the presence of a long wavelength perturbation. Upon using the above expression for the
scalar power spectrum, we can write the scalar bi-spectrum in the squeezed limit as [19, 26, 27]

〈 R̂k1
R̂k2

R̂k3
〉k3 ≡ 〈 〈 R̂k1

R̂k2
〉k3 R̂k3

〉

= − (2π)5/2

4 k31 k
3
3

(n
S
− 1) P

S
(k1)PS

(k3) δ
3(k1 + k2). (2.16)

On making use of this expression for the scalar bi-spectrum in the squeezed limit and the
definition of the scalar power spectrum, one can immediately arrive at the consistency relation
for f

NL
, viz. that f

NL
= 5 (n

S
− 1)/12 [18–20].

3 Analytically examining the validity of the condition away from slow roll

As was outlined in the previous section, the only requirement for the validity of the consis-
tency relation is the existence of a unique clock during inflation. Hence, in principle, this
relation should be valid for any single field model of inflation irrespective of the detailed
dynamics, if the field is evolving on the attractor at late times. Therefore, it should be valid
even away from slow roll. In this section, we shall analytically examine the validity of the
consistency condition in scenarios consisting of deviations from slow roll. After establishing
the relation first in the simple case of power law inflation, we shall consider the Starobinsky
model which involves a brief period of fast roll.

3.1 The simple example of power law inflation

We shall first consider the case of power law inflation with no specific constraints on the
power law index, so that the behavior of the scale factor can be far different from that of its
behavior in slow roll inflation. In power law inflation, the scale factor can be written as

a(η) = a1

(

η

η1

)γ+1

, (3.1)

where a1 and η1 are constants, and γ < −2. In such a background, the Fourier modes fk
associated with the curvature perturbation that satisfy the Bunch-Davies initial conditions
are found to be [37, 39]

fk(η) =
1√

2 ǫ1 MPl
a(η)

√

−π η

4
e−i π γ/2 H

(1)
−(γ+1/2)(−k η), (3.2)
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where the first slow roll parameter ǫ1 is a constant given by ǫ1 = (γ + 2)/(γ + 1). Note that

H
(1)
ν (x) denotes the Hankel function of the first kind [40], while the scale factor a(η) is given

by Eq. (3.1). For real arguments, the Hankel functions of the first and the second kinds, viz.

H
(1)
ν (x) and H

(2)
ν (x), are complex conjugates of each other [40]. Moreover, as x → 0, the

Hankel function has the following form

lim
x→0

H(1)
ν (x) =

i

π ν

[

Γ(1− ν) e−i π ν
(x

2

)ν
− Γ(1 + ν)

(x

2

)−ν
]

. (3.3)

Upon using this behavior, one can show that the corresponding scalar power spectrum,
evaluated at late times, i.e. as η → −0, is given by

P
S
(k) =

1

2π3 M2
Pl
ǫ1

( |η1|γ+1

a1

)2 ∣

∣

∣

∣

Γ[−(γ + 1/2)]

∣

∣

∣

∣

2 (

k

2

)2 (γ+2)

, (3.4)

where Γ(x) represents the Gamma function [40]. The scalar spectral index corresponding to
such a power spectrum is evidently a constant and can be easily determined to be n

S
= 2 γ+5.

If the consistency condition is true, it would then imply that the scalar non-Gaussianity
parameter has the value f

NL
= 5 (γ + 2)/6 in the squeezed limit.

Let us now evaluate the scalar bi-spectrum in the squeezed limit using the Maldacena
formalism and illustrate that it indeed leads to the above consistency condition for f

NL
. It

should be clear that, in order to arrive at the complete scalar bi-spectrum, we first need to
carry out the integrals (2.12) associated with the six vertices, calculate the corresponding
contributions G

C
(k1,k2,k3) for C = (1, 6), and lastly add the contribution G7(k1,k2,k3)

[cf. Eq. (2.13)] that arises due to the field redefinition. However, since ǫ1 is a constant in
power law inflation, the second slow roll parameter ǫ2 vanishes identically. As a result, the
contribution corresponding to the fourth term that is determined by the integral (2.12d) as
well as the seventh term G7(k1,k2,k3) prove to be zero. Moreover, in the squeezed limit of
our interest, i.e. as k3 → 0, the amplitude of the mode fk3 freezes and hence its time derivative
goes to zero. Therefore, terms that are either multiplied by the wavenumber corresponding
to the long wavelength mode or explicitly involve the time derivative of the long wavelength
mode do not contribute, as both vanish in the squeezed limit. Due to these reasons, one
finds that it is only the first and the second terms, determined by the integrals (2.12a) and
(2.12b), that contribute in power law inflation. After an integration by parts, we find that,
in the squeezed limit, these two integrals can be combined to be expressed as

lim
k3→0

[G1(k,−k,k3) + G2(k,−k,k3)] = lim
k3→0

2 i ǫ21 f
∗
k3

[

(

a2 f ′∗
k f∗

k

)0

−∞
+ 2 k2

∫ 0

−∞

dη a2 f∗2
k

]

,

(3.5)
where we have set ηi = −∞ and ηe = 0. One can show that the derivative f ′

k can be written
as

f ′
k(η) =

−k√
2 ǫ1 MPl

a(η)

√

−π η

4
e−i π γ/2 H

(1)
−(γ+3/2)(−k η). (3.6)

Therefore, upon using this expression for the derivative f ′
k, the behavior (3.3), the following

asymptotic form of the Hankel function

lim
x→∞

H(1)
ν (x) =

√

2

π x
ei (x−π ν/2−π/4), (3.7)
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and the integral [40]

∫

dxx
[

H(1)
ν (x)

]2
=

x2

2

{

[

H(1)
ν (x)

]2
−H

(1)
ν−1(x)H

(1)
ν+1(x)

}

, (3.8)

we find that the bi-spectrum in the squeezed limit can be written as

lim
k3→0

k3 k33 G(k,−k,k3) = −8π4 (γ + 2)P
S
(k)P

S
(k3). (3.9)

This expression and the definition (2.10) for the scalar non-Gaussianity parameter then leads
to f

NL
= 5 (γ + 2)/6, which is the result suggested by the consistency relation. We should

add here that such a result has been arrived at earlier using a slightly different approach (see
the third reference in Refs. [20]).

3.2 A non-trivial example involving the Starobinsky model

The second example that we shall consider is the Starobinsky model. In the Starobinsky
model, the inflaton rolls down a linear potential which changes its slope suddenly at a par-
ticular value of the scalar field [41]. The governing potential is given by

V (φ) =

{

V0 +A+ (φ− φ0) for φ > φ0,
V0 +A− (φ− φ0) for φ < φ0,

(3.10)

where V0, A+, A− and φ0 are constants. An important aspect of the Starobinsky model is the
assumption that it is the constant V0 which dominates the value of the potential around φ0.
Due to this reason, the scale factor always remains rather close to that of de Sitter. This
in turn implies that the first slow roll parameter ǫ1 remains small throughout the domain of
interest. However, the discontinuity in the slope of the potential at φ0 causes a transition to a
brief period of fast roll before slow roll is restored at late times. One finds that the transition
leads to large values for the second slow roll parameter ǫ2 and, importantly, the quantity ǫ̇2
grows to be even larger, in fact, behaving as a Dirac delta function at the transition. As we
shall discuss, it is this behavior that leads to the most important contribution to the scalar
bi-spectrum in the model [36, 42, 43].

Clearly, it would be convenient to divide the evolution of the background quantities
and the perturbation variables into two phases, before and after the transition at φ0. In
what follows, we shall represent the various quantities corresponding to the epochs before
and after the transition by a plus sign and a minus sign (in the super-script or sub-script,
as is convenient), while the values of the quantities at the transition will be denoted by a
zero. Let us quickly list out the behavior of the different quantities which we shall require to
establish the consistency relation.

The first slow roll parameter before and after the transition is found to be [36, 41–43]

ǫ1+(η) ≃ A2
+

18M2
Pl
H4

0

, (3.11a)

ǫ1−(η) ≃ A2
−

18M2
Pl
H4

0

[

1− ∆A

A−

(

η

η0

)3
]2

, (3.11b)

where ∆A = A− − A+, H0 is the Hubble parameter determined by the relation H2
0 ≃

V0/(3M
2
Pl
), and η0 denotes the conformal time when the transition takes place. The second
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slow roll parameter is given by

ǫ2+(η) = 4 ǫ1+, (3.12a)

ǫ2−(η) =
6∆A

A−

(η/η0)
3

1 − (∆A/A−) (η/η0)
3 + 4 ǫ1−. (3.12b)

In fact, to determine the modes associated with the scalar perturbations and to evaluate the
dominant contribution to the scalar bi-spectrum, we shall also require the behavior of the
quantity ǫ̇2. One can show that ǫ̇2 can be expressed as

ǫ̇2 = −2Vφφ

H
+ 12H ǫ1 − 3H ǫ2 − 4H ǫ21 + 5H ǫ1ǫ2 −

H

2
ǫ22, (3.13)

where Vφφ = d2V/dφ2, and it should be stressed that this is an exact relation. It should
be clear that the first term in the above expression involving Vφφ will lead to a Dirac delta
function due to the discontinuity in the first derivative of the potential in the case of the
Starobinsky model. Hence, the dominant contribution to ǫ̇2 at the transition can be written
as [42, 43]

ǫ̇ 02 ≃ 2∆A

H0
δ(1)(φ − φ0) =

6∆A

A+ a0
δ(1)(η − η0), (3.14)

where a0 denotes the value of the scale factor when η = η0 . Post transition, the dominant
contribution to ǫ̇2 is found to be [36]

ǫ̇2− ≃ −3H ǫ2− − H

2
ǫ22− ≃ −18H0∆A

A−

(η/η0)
3

[

1− (∆A/A−) (η/η0)
3
]2 . (3.15)

Due to the fact that the potential is linear and also since the first slow roll parameter
remains small, the modes fk governing the curvature perturbation can be described by the
conventional de Sitter modes to a good approximation before the transition. For the same
reasons, one finds that the scalar modes can be described by the de Sitter modes soon after
the transition as well. However, due to the transition, the modes after the transition are
related by the Bogoliubov transformations to the modes before the transition. Therefore,
the scalar mode and its time derivative before the transition can be written as [36, 41–44]:

f+
k (η) =

iH0

2M
Pl

√

k3 ǫ1+
(1 + i k η) e−i k η, (3.16a)

f+
k

′(η) =
iH0

2M
Pl

√

k3 ǫ1+

[

3 ǫ1+
η

(1 + i k η) + k2 η

]

e−i k η. (3.16b)

Whereas, the mode and its derivative after the transition can be expressed as follows:

f−
k (η) =

iH0 αk

2M
Pl

√

k3 ǫ1−
(1 + i k η) e−i k η − iH0 βk

2M
Pl

√

k3 ǫ1−
(1− i k η) ei k η, (3.17a)

f−
k

′(η) =
iH0 αk

2M
Pl

√

k3ǫ1−

[

(

ǫ1− +
ǫ2−
2

) 1

η
(1 + i k η) + k2 η

]

e−i k η

− iH0 βk

2M
Pl

√

k3ǫ1−

[

(

ǫ1− +
ǫ2−
2

) 1

η
(1− i k η) + k2 η

]

ei k η, (3.17b)
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with αk and βk denoting the Bogoliubov coefficients. Upon matching the above modes and
their time derivatives at the transition, the Bogoliubov coefficients can be determined to be

αk = 1 +
3 i∆A

2A+

k0
k

(

1 +
k20
k2

)

, (3.18a)

βk = −3 i∆A

2A+

k0
k

(

1 +
i k0
k

)2

e2 i k/k0 , (3.18b)

where k0 = −1/η0 = a0 H0 denotes the mode that leaves the Hubble radius at the transition.
At late times, the scalar mode behaves as

f−
k (ηe) =

iH0

2M
Pl

√

k3 ǫ1−(ηe)
(αk − βk) , (3.19)

where ǫ1−(ηe) = A2
−/(18M

2
Pl
H4

0 ). Therefore, the scalar power spectrum, evaluated as η → 0,
can be expressed as

P
S
(k) =

(

H0

2π

)2 (

3H2
0

A−

)2

|αk − βk|2

=

(

H0

2π

)2 (

3H2
0

A−

)2 [

I(k) + Ic(k) cos
(

2 k

k0

)

+ Is(k) sin
(

2 k

k0

)]

, (3.20)

where the quantities I(k), Ic(k) and Is(k) are given by

I(k) = 1 +
9

2

(

∆A

A+

)2 (

k0
k

)2

+ 9

(

∆A

A+

)2 (

k0
k

)4

+
9

2

(

∆A

A+

)2 (

k0
k

)6

, (3.21a)

Ic(k) =
3∆A

2A+

(

k0
k

)2
[

(

3A−

A+
− 7

)

− 3∆A

A+

(

k0
k

)4
]

, (3.21b)

Is(k) = −3∆A

A+

k0
k

[

1 +

(

3A−

A+
− 4

) (

k0
k

)2

+
3∆A

A+

(

k0
k

)4
]

. (3.21c)

Note that, because of the features in the power spectrum, the corresponding scalar spectral
index n

S
depends on the wavenumber k, and is found to be

n
S
(k) =

1

2

[

I(k) + Ic(k) cos
(

2 k

k0

)

+ Is(k) sin
(

2 k

k0

)]−1

×
[

J (k) + Jc(k) cos

(

2 k

k0

)

+ Js(k) sin

(

2 k

k0

)]

, (3.22)

where J (k), Jc(k) and Js(k) are given by

J (k) = 2− 9

(

∆A

A+

)2 (

k0
k

)2

− 54

(

∆A

A+

)2 (

k0
k

)4

− 45

(

∆A

A+

)2 (

k0
k

)6

, (3.23a)

Jc(k) = −3∆A

A+

[

4 +

(

15A−

A+
− 23

) (

k0
k

)2

+
12∆A

A+

(

k0
k

)4

− 15∆A

A+

(

k0
k

)6
]

, (3.23b)

Js(k) = −6∆A

A+

k0
k

[

(

3A−

A+
− 7

)

− 2

(

3A−

A+
− 4

) (

k0
k

)2

− 15∆A

A+

(

k0
k

)4
]

. (3.23c)
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If the consistency condition is indeed satisfied, then the non-Gaussianity parameter, as pre-
dicted by the relation, would prove to be

f
NL
(k) =

5

12
[n

S
(k)− 1]

=
5

24

[

I(k) + Ic(k) cos
(

2 k

k0

)

+ Is(k) sin
(

2 k

k0

)]−1

×
{

[J (k)− 2I(k)] + [Jc(k)− 2Ic(k)] cos
(

2 k

k0

)

+ [Js(k)− 2Is(k)] sin
(

2 k

k0

)}

.

(3.24)

Let us now examine whether we do arrive at the same result upon using the Maldacena
formalism to compute the scalar bi-spectrum. It is known that, when there exist deviations
from slow roll, it is the fourth vertex that leads to the most dominant contribution to the
bi-spectrum. In other words, we need to focus on the contribution G4(k1,k2,k3) that is
governed by the integral (2.12d). Notice that the integral involves the quantity ǫ′2. In the
Starobinsky model, at the level of approximation we are working in, ǫ2+ = 4 ǫ1+, with ǫ1
being a constant [cf. Eqs. (3.12a) and (3.11a)]. Hence, ǫ′2 as well as the integral G4(k1,k2,k3)
vanish during the initial slow roll phase, prior to the transition. However, as we discussed
above, due to the discontinuity at φ0, ǫ̇2 is described by a delta function at the transition
[cf. Eq. (3.14)], whereas, post transition, it is given by Eq. (3.15). Since the mode fk and its
derivative are continuous, the contribution due to the delta function at the transition can be
easily evaluated using the modes f+

k and the corresponding derivative f+
k

′ [cf. Eqs. (3.16)].
Since we are interested in the squeezed limit, the contribution at the transition can be written
as

lim
k3→0

G0
4(k,−k,k3) = lim

k3→0

12 i a20 ǫ1+∆A

A+

[

f+∗
k (η0) f

+′∗
k (η0) f

∗
k3(η0)

]

. (3.25)

The corresponding contribution to the bi-spectrum can be easily evaluated using the late
time behavior (3.19) of the mode fk. The contribution after the transition is governed by
the integral

lim
k3→0

G−
4 (k,−k,k3) = lim

k3→0
2 i

∫ ηe

η0

dη a2 ǫ1− ǫ′2− f−∗
k f−′∗

k f−∗
k3

. (3.26)

We find that the resulting integral, arrived at upon making use of the behavior (3.11b)
and (3.15) of the slow roll parameters and the modes (3.17), can be easily evaluated. On
adding the above two contributions at the transition and post-transition, one can show that
the bi-spectrum in the squeezed limit can be written as

lim
k3→0

G(k,−k,k3) = − 81H12
0

8A2
+ A2

−

{

[J (k)− 2I(k)] + [Jc(k)− 2Ic(k)] cos
(

2 k

k0

)

+ [Js(k)− 2Is(k)] sin
(

2 k

k0

)}

. (3.27)

There are a few points concerning this result that require emphasis. The above bi-
spectrum goes to a constant value at large scales, while it is found to oscillate with a constant
amplitude in the small scale limit. In the equilateral limit, the contribution at the transi-
tion is known to lead to a term that grows linearly with k at large wavenumbers [42, 43].
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This essentially arises due to the infinitely sharp transition in the Starobinsky model. In
the squeezed limit, one does not encounter such a growing term, but the sharpness of the
transition is reflected in the oscillations of a fixed amplitude that persist indefinitely at small
scales. Clearly, one can expect these oscillations to die down at suitably large wavenum-
bers if one smoothens the transition [43]. As far as our primary concern here, viz. the
validity of the consistency condition, we find that, upon making use of the expression (3.27)
for the bi-spectrum and the power spectrum (3.20), we indeed recover the f

NL
as given by

Eq. (3.24), implying that the consistency relation does hold even in the case of the infinitely
sharp Starobinsky model. Moreover, it is important to appreciate the point that, while it
is the contribution at the transition that dominates the amplitude of the non-Gaussianity
parameter at large wavenumbers, the contribution after the transition proves to be essential
for establishing the consistency relation at small wavenumbers. This suggests that the con-
tributions after the transition are essential in order to arrive at the complete bi-spectrum in
the Starobinsky model [36, 43].

4 Numerical verification of the relation during deviations from slow roll

In this section, we shall numerically examine the validity of the consistency relation in three
models that lead to features in the scalar power spectrum due to deviations from slow roll.
We shall consider models that result in features of the following types: (i) a sharp drop in
power at large scales, roughly associated with the Hubble scale today (see Refs. [45]; for
recent discussions, see Refs. [46]), (ii) a burst of oscillations around scales corresponding to
the multipoles of ℓ ≃ 20–40 [47–50], and (iii) small and repeated modulations extending
over a wide range of scales [51–56]. Such features are known to result in a better fit to the
cosmological data than the more simple and conventional, nearly scale invariant, spectra.
It should be highlighted that it is essentially these three types of spectra that have been
considered by the Planck team while examining the possibility of features in the primordial
spectrum [10]. We should also clarify that, though the fit to the data improves in the
presence of features, the Bayesian evidence does not necessarily alter significantly, as the
improvement in the fit is typically achieved at the cost of a few extra parameters [10, 13,
14, 43, 57]. Nevertheless, we believe that the possibility of features require to be explored
further since repeated exercises towards model independent reconstruction of the primordial
power spectrum seem to point to their presence [58].

The different types of power spectra mentioned above can be generated by three in-
flationary models which we shall now briefly describe. Power spectra with a sharp drop in
power on large scales can be generated in scenarios dubbed punctuated inflation [45], which
is a situation wherein a short period of departure from inflation is sandwiched between two
epochs of slow roll inflation. Such a punctuated inflationary scenario can be produced, for
example, by the following potential which contains a point of inflection:

V (φ) =
m2

2
φ2 −

√

2λ (n − 1)m

n
φn +

λ

4
φ2 (n−1), (4.1)

where n ≥ 3. The point of inflection proves to be crucial to recover the second stage of
slow roll inflation, after inflation has been interrupted briefly. (We should clarify that we
shall restrict ourselves to the n = 3 case in this work.) The second class of features wherein
there arises a burst of oscillations over an intermediate range of scales can be generated by
introducing a step in a potential that otherwise leads to slow roll inflation. The step results
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in a brief period of fast roll, which leads to the oscillations in the scalar power spectrum.
For instance, if a step is introduced in the conventional quadratic potential, the complete
potential can be written as

V (φ) =
m2

2
φ2

[

1 + α tanh

(

φ− φ0

∆φ

)]

, (4.2)

where, evidently, φ0, α and ∆φ represent the location, the height and the width of the step,
respectively [47, 49, 50]. Spectra with repeated modulations extending over a wide range of
scales can be generated by potentials which contain oscillatory terms such as in the axion
monodromy model [53–55]. The potential in such a case is given by

V (φ) = λ

[

φ+ α cos

(

φ

β
+ δ

)]

. (4.3)

where 1/β represents the frequency of oscillations in the potential, while δ is a phase. (For
the best fit values of the potential parameters, arrived at upon comparison with the CMB
data, as well as for an illustration of the scalar power spectra that arise in the above three
models, we would refer the reader to Ref. [38].) Let us now turn to the numerical evaluation
of the scalar bi-spectrum in these models and the verification of the consistency relation.

4.1 f
NL

for an arbitrary triangular configuration of the wavenumbers

We shall make use of the code BI-spectra and Non-Gaussianity Operator, or simply, BINGO,
which we had developed earlier, to calculate the scalar bi-spectrum [37]. BINGO is a For-
tran 90 code that evaluates the scalar bi-spectrum in single field inflationary models involving
the canonical scalar field. It is based on the Maldacena formalism, and it efficiently computes
all the various contributions to the bi-spectrum. It should be clear from the Maldacena for-
malism that, in order to arrive at the scalar bi-spectrum, one first requires the behavior of
the background quantities (such as, say, the scale factor and the slow roll parameters) and
the scalar modes fk. Then, it is a matter of computing the various integrals that govern the
scalar bi-spectrum. The evolution of the background quantities is arrived at by solving the
equation describing the scalar field. Once we have the solution to the background, the scalar
modes are obtained by solving the corresponding differential equation, viz. Eq. (2.2), with
the standard Bunch-Davies initial conditions. With these at hand, the integrals involved
[cf. Eqs. (2.12)] can be carried out from a sufficiently early time to a suitably late time. In
the context of power spectrum, it is well known that it is sufficient to evolve the modes from
a time when they are sufficiently inside the Hubble radius, say, from k/(aH) = 102, till they
are well outside, say, when k/(aH) = 10−5 [59]. One finds that, in order to arrive at the
bi-spectrum, it suffices to carry out the integrals involved over roughly the same domain in
time [25, 38, 60, 61]. However, two points need to be emphasized in this regard. Firstly, in the
case of the bi-spectrum, while evaluating for an arbitrary triangular configuration, one needs
to make sure that the integrals are carried out from a time when the largest of the three modes
(in terms of wavelength) is well inside the Hubble radius to a time when the smallest of the
three is sufficiently outside. To achieve the accuracy we desire (say, of the order of 2–3% or
better), we perform the integrals from the time when the largest mode satisfies the condition
k/(aH) = 102 until a time when the smallest mode satisfies the condition k/(aH) = 10−5.
(This is so barring the case of the axion monodromy model wherein we have to integrate from
deeper inside the Hubble radius—actually, from k/(aH) = 250 for the values of the param-
eters that we work with—to take into account the resonances that occur in the model [53].)
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Secondly, due to continued oscillations in the sub-Hubble domain, it is well known that the
integrals require a cut-off in order for them to converge. We have introduced a cut-off of the
form exp [−κk/(aH)] and have worked with κ = 0.1, which is known to lead to consistent
results [25, 38]. We should mention here that we have made the latest version of BINGO pub-
licly available at the URL: http://www.physics.iitm.ac.in/~sriram/bingo/bingo.html.
The earlier public version of the code was limited to the evaluation of the bi-spectrum in the
equilateral limit. The current version can compute the bi-spectrum for an arbitrary triangular
configuration of the wavenumbers, including the squeezed limit of our interest here2.

Before we go on to consider the consistency relation in the squeezed limit, let us make use
of BINGO to understand the shape and structure of the bi-spectrum or, equivalently, the non-
Gaussianity parameter f

NL
, for an arbitrary triangular configuration of the wavenumbers3.

Usually, the scalar bi-spectrum and the parameter f
NL

are illustrated as density plots, plotted
as a function of the ratios k3/k1 and k2/k1, for a fixed value of k1 (in this context, see, for
instance, Ref. [38]). While the actual value of k1 will not play a significant role in simple slow
roll scenarios, the structure of the bi-spectrum revealed in such density plots will depend on
choice of k1 in models which lead to features. In Fig. 1, we have plotted the scalar non-
Gaussianity parameter arising in the three inflationary models of our interest, for suitable
values of the quantity k1. We find that, in the cases of punctuated inflation and the quadratic
potential with a step, since the features are localized over a small range of scales, the structure
of the plot changes to a certain extent with the choice of k1. However, in the case of axion
monodromy model, because of the reason that the oscillations extend over a wide range of
scales, the choice of k1 does not alter the structure of the plots significantly.

In Fig. 2, we have attempted to capture the complete structure and shape of the bi-
spectrum using a three-dimensional contour plot. We have made use of Mayavi and Python
to create the three-dimensional plot [62]. We have plotted the parameter f

NL
for a wide

range of the wavenumbers k1, k2 and k3, over the allowed domain wherein the corresponding
wavevectors satisfy the triangularity condition. It is known that the triangularity condition
restricts the wavenumbers to a ‘tetrapyd’, as is evident from the figure. In the figure, we have
presented two projections of the three-dimensional plot. One of the views clearly shows the
fact that the bi-spectrum is symmetric along the three axes, as is expected in an isotropic
background. The second illustrates the fact the non-Gaussianity parameter peaks in the
equilateral limit, i.e. when k1 = k2 = k3.

4.2 f
NL

in the squeezed limit

Let us now turn to examine the consistency relation in the three models of our interest.
Towards this end, we have made use of BINGO to evaluate the non-Gaussianity parameter
f
NL

in the squeezed limit, using the Maldacena formalism. As we had pointed out, BINGO
can be made use of to evaluate the power spectrum as well. Using the expression (2.6) and
the scalar power spectrum, we arrive at the scalar spectral index n

S
, which we then utilize

to verify the consistency condition f
NL
(k) = 5 [n

S
(k) − 1] /12. Before we go on to illustrate

the results for the three models that we are focusing on, a couple of points concerning the

2We should add that we have independently reproduced the results being presented here using a different
code as well. The latter code was originally used to calculate scalar-tensor three-point functions and the tensor
bi-spectrum [25], and it has been modified suitably to calculate the scalar bi-spectrum and the corresponding
non-Gaussianity parameter f

NL
.

3We should mention here that, apart from the scalar bi-spectrum, we shall also require the scalar power
spectrum to arrive at the non-Gaussianity parameter f

NL
. BINGO, as it computes the scalar modes, can

easily be made use of to obtain the power spectrum too.
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Figure 1. Density plots of the scalar non-Gaussianity parameter f
NL
, plotted as function of k3/k1

and k2/k1, with fixed values of k1, in the three models of our interest, viz. punctuated inflation (on
top), quadratic potential with a step (in the middle) and axion monodromy model (at the bottom).
We have chosen the wavenumber k1 to be 10−3 Mpc−1 in the case of punctuated inflation, while
we have set it to be 2 × 10−3 Mpc−1 for the other two models. We find that, when the features are
localized, as in the cases of punctuated inflation and the quadratic potential with a step, the structure
of f

NL
varies considerably with the choice of k1. However, in the case of the axion monodromy model,

wherein there arises continued oscillations, the shape of f
NL

is more or less independent of the choice
of k1.

squeezed limit needs to be made. We should stress that we take the wavenumber of the
squeezed mode to be smallest wavenumber that is numerically tenable in the sense that the
mode is sufficiently inside the Hubble radius at a time close to when the integration of the
background begins. Moreover, it should be noted that, since the squeezed mode has a finite
and non-zero wavenumber, in the squeezed limit of our interest, the numerically evaluated
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Figure 2. Three-dimensional contour plots of the parameter f
NL
, plotted against the three wavenum-

bers k1, k2 and k3 in the three models of interest, organized in the same order as in the last figure.
We have shown two different projections of the plots in the figure. The projections in the left column
clearly indicate the symmetry along the three different axes, as is expected in an isotropic back-
ground. The figures on the right column illustrate the fact that the allowed domain of wavenumbers
are confined to a ‘tetrapyd’ and that the bi-spectrum peaks in the equilateral limit, i.e. along the line
k1 = k2 = k3.

bi-spectrum is expected to be more accurate at larger wavenumbers than the smaller ones.
In Fig. 3, we have plotted the quantity f

NL
obtained from the Maldacena formalism as well
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as the quantity arrived at from the consistency relation. It is clear that the two quantities
match very well (they match at the level of a few percent) thus confirming the validity of
consistency relation even in scenarios displaying highly non-trivial dynamics.

5 Discussion

At the level of the three-point function, the consistency condition relates the scalar bi-
spectrum to the power spectrum in the squeezed limit wherein the wavelength of one of
the three modes is much longer than the other two. As we had discussed, the consistency
condition applies to any situation wherein the amplitude of the long wavelength mode freezes.
Since the amplitude of the curvature perturbation settles down to a constant value on super-
Hubble scales in most single field models of inflation, the consistency relation is expected
to be valid in such models. It is easy to analytically establish the consistency relation in
slow roll scenarios. In contrast, one needs to often resort to numerical methods to analyze
situations involving departures from slow roll. In this work, we had examined the validity of
the consistency condition, analytically as well as numerically, in a class of models permitting
deviations from slow roll. We find that the condition is indeed satisfied even in situations
consisting of strong departures from slow roll, such as the punctuated inflationary scenario.

With the emergence of increasingly precise cosmological data, it has been recognized
that correlation functions beyond the power spectrum can act as powerful probes of the early
universe. However, as we had discussed in the introductory section, despite the relatively
strong bounds that have been arrived at on the scalar non-Gaussianity parameter f

NL
, there

exist a wide range of models that remain consistent with the data. The consistency relations
can obviously play an important role to alleviate the situation. For instance, if the consistency
relations can be observationally confirmed, it can rule out many multi-field models of inflation
and even, possibly, alternate scenarios such as the bouncing models (in this context, see, for
instance, Refs. [63, 64] and references therein). It seems worthwhile to closely investigate
the conditions under which the consistency relation holds in, say, two-field models (see, for
example, Ref. [65]) and, in particular, examine in some detail the role the iso-curvature
perturbations may play in this regard. We are currently studying such issues.
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Figure 3. The behavior of the non-Gaussianity parameter f
NL

in the squeezed limit has been plotted
as a function of k for the three models, organized as in the previous two figures. The blue curve
represents the f

NL
calculated using Maldacena formalism, while the red dashed line corresponds to

the same quantity arrived at from the consistency relation. The excellent match between the two
curves indicate that the consistency relation is valid even in non-trivial scenarios involving brief
departures from inflation.
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