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On reverse Faber-Krahn inequalities
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Abstract Payne-Weinberger showed that ‘among the class of membranes with given area A, free along the interior

boundaries and fixed along the outer boundary of given length L0, the annulus Ω# has the highest fundamental

frequency,’ where Ω# is a concentric annulus with the same area as Ω and the same outer boundary length as L0.

We extend this result for the higher dimensional domains and p-Laplacian with p ∈ (1,∞), under the additional

assumption that the outer boundary is a sphere. As an application, we prove that the nodal set of the second

eigenfunctions of p-Laplacian (with mixed boundary conditions) on a ball and a concentric annulus cannot be a

concentric sphere.
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1. Introduction

Let us first recall the famous conjecture by Lord Rayleigh from his book ‘The theory of sound’ [23] published in

1877. He conjectured that ‘among all planar domains Ω of fixed area, the disk is the domain that minimises the first

Dirichlet eigenvalue λ1(Ω) of the Laplacian.’ This conjecture was open for a very long time. The first proof of this

conjecture was published in 1923 by Faber [8]. In 1925, Krahn [14] gave an independent proof for this conjecture,

and later he extended the same to the higher dimension. Now this result is collectively known as the Faber-Krahn

inequality, and it states that:

λ1(Ω
∗) ≤ λ1(Ω) (1)

with the equality if and only if Ω is a ball (up to a measure zero set), where Ω∗ is a ball of the same measure as Ω.

For more on Faber-Krahn inequality and related results, we refer to [18] and [21].
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Among the class of domains having a fixed volume, λ1(Ω) is not bounded above. For example, consider a class of

arbitrary long rectangular domains with the same volume (see Remark 3.13 of [1]). However, if we fix both the surface

area and the volume one can give upper bounds for λ1(Ω), see [16] and [20]. In [19] Payne-Weinberger considered this

problem for bounded planar membrane with fixed outer boundary having the interior boundaries along which it is

free. They showed that ‘among the class of membranes with given area A and given length L0 of the outer boundary,

the annulus Ω# has the highest fundamental frequency,’ where Ω# is a concentric annulus with the same area as Ω

and the same outer boundary length as L0. In other words, this result can be stated in the form of an inequality as

below:

ν1(Ω) ≤ ν1(Ω
#), (2)

where ν1(Ω), ν1(Ω
#) are first eigenvalues of the following mixed eigenvalue problems:

−∆u = νu in Ω,

u = 0 on Γ0,

∂u

∂η
= 0 on ∂Ω \ Γ0;























−∆u = νu in Ω#,

u = 0 on Γ#
0 ,

∂u

∂η
= 0 on ∂Ω# \ Γ#

0 ,























where Γ0 and Γ#
0 are the outer boundaries of Ω and Ω# respectively.

We call the inequality in (2), as the reverse Faber-Krahn (R-F-K) inequality. A similar inequality for the second

Neumann eigenvalue (the first non-zero eigenvalue), namely µ2(Ω) ≤ µ2(Ω
∗) is obtained in [26] by Szegö for planar

domains, and in [27] for higher dimensions by Weinberger. The proof of Szegö mainly rely on the conformal mapping,

and the proof of Weinberger based on construction of a test function using a radial function together with a suitable

translation of the origin. In [19], for proving the inequality (2), authors used the interior parallels and an isoperimetric

inequality, deduced from an inequality for the interior parallels due to B. Sz. Nagy [25]. Next, we briefly describe the

interior parallels and Nagy’s inequality.

The parallel sets: Let Ω be a bounded domain in R
2 and Γ0 be its outer boundary. Let L(δ) be the measure of

the inner parallel to Γ0-the set of all points that are inside Γ0 and at a distance δ from Γ0. Nagy showed that the

function L(δ) is defined for almost every δ and it satisfies

L(δ) ≤ |Γ0| − 2πδ. (3)

Similarly, if L(δ) is the measure of the outer parallel curve to Γ1, an interior boundary; he showed that L(δ) satisfies

L(δ) ≤ |Γ1|+ 2πδ. (4)

Recall the Steiner formula L(δ) = |Γ1|+ 2πδ for the convex planar domains, (see Chapter 4 of [24]). Indeed, Nagy’s

second inequality is an extension of Steiner formula for the non-convex planar domains.

The interior parallels are the part of the parallels that lies in Ω. If l(δ) is the measure of the interior parallel at a

distance δ, then l(δ) ≤ L(δ). The interior parallels and Nagy’s inequalities were used in [15], [16] and [20] for finding

the upper bounds for λ1(Ω) among the class of domains having a fixed volume and surface area. In [19], using Nagy’s

inequality (3), authors derived the following isoperimetric inequality:

l(δ)2 ≤ |Γ0|
2 − 4πv(δ), (5)

where v(δ) =
∫ δ

0 l(s)d ds. Further, using v(δ) and the first eigenfunction of the concentric domain Ω#, they have

constructed a test function on Ω whose level sets coincide with interior parallels and the Rayleigh quotient is smaller
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than ν1(Ω
#). In [12], Hersch gave another proof for (2) using a class of test functions known as ‘web functions’ (the

test function that depends only on the distance from Γ0), for more on web functions see [3] and [5] and the references

therein.

Hersch also considered the mixed eigenvalue problem with the Dirichlet condition on an interior boundary and

with the Neumann condition on the rest of the boundaries. By an ingenious parametrization t(δ) =
∫ δ

0
ds
l(s) , he related

this problem with the fundamental frequency of a vibrating string of infinite length (with varying mass distribution)

fixed at one end. Then he used Nagy’s inequality (4) to show that ‘among the class of membranes with given area A

and given length L1 of an inner boundary Γ1, the annulus Ω# has the maximal fundamental frequency,’ where Ω#

is a concentric annulus with the same area as Ω and the same inner boundary length as L1. As before, this can be

restated as a R-F-K inequality:

τ1(Ω) ≤ τ1(Ω#), (6)

where τ1(Ω), τ1(Ω#) are first eigenvalues of the following problems:

−∆u = τu in Ω,

u = 0 on Γ1,

∂u

∂η
= 0 on ∂Ω \ Γ1;























−∆u = τu in Ω#,

u = 0 on Γ#
1 ,

∂u

∂η
= 0 on ∂Ω# \ Γ#

1 .























The mixed eigenvalue problem with the Dirichlet condition on both Γ1, Γ0, and with Neumann condition on the

rest of the boundaries also studied in [12]. In this case, by an effective use of the “effectless cut” due to Weinberger

[28] together with (2) and (6), he showed that ‘among the class of membranes with given area A, given length L0

of the inner boundary Γ0 and given length L1 of the outer boundary Γ1 satisfying L2
1 − L2

0 = 4πA, the annulus has

the highest fundamental frequency λ1.’ In particular, an annulus Ω = B1 \ B0 ⊂ R
2 satisfies this relation. Thus by

Hersch’s result:

λ1(B1 \B0) ≤ λ1(B
∗
1 \B∗

0 ). (7)

In [22], Ramm and Shivakumar conjectured the inequality (7) for N ≥ 3, with a numerical justification. In

fact, they have conjectured a stronger result - ‘λ1(B1 \B0) strictly decreases when the inner ball moves towards the

outer boundary.’ An analytic proof for this conjecture using an argument of M. Ashbaugh was published later in

an arxiv paper (arxiv:math-ph/9911040) by the same authors. At the same time, Harrell et al. [10] and Kesavan

[13] independently proved the strict monotonicity of λ1(B1 \B0). All the proofs are based mainly on the Hadamard

perturbation formula. In [4], the authors studied the monotonicity of the first Dirichlet eigenvalue of p-Laplacian,

defined by ∆pu = div(|∇u|p−2∇u) for p ∈ (1,∞). They showed that ‘λ1(B1 \ B0) decreases when the inner ball

B0 moves towards the boundary of the outer ball B1.’ Indeed, this result imply (7) for the p-Laplacian. The strict

monotonicity is obtained in [1] and this result asserts that the equality happens in (7) only if the balls B1 and B0

are concentric.

In this article, we study the R-F-K inequalities (2) and (6) for the p-Laplacian with p ∈ (1,∞) and N ≥ 2. We

consider C1-smooth multiply connected bounded domains in R
N . For such a domain Ω, we denote the outer boundary

by Γ0 and the boundaries of the interior holes by Γ1, γ1, . . . γn. We use the symbol | · | for both N dimensional volume

measure and the (N − 1)-dimensional surface measure. The Lebesgue measure of the unit ball in R
N is denoted by

ωN . Further, we set

Ω∗ = the ball centred at the origin with |Ω∗| = |Ω|,



4 T. V. Anoop, K. Ashok Kumar

Ω# = the concentric annulus centred at the origin with the same volume as Ω and the outer surface measure

as Γ0,

Ω# = the concentric annulus centred at the origin with the same volume as Ω and the inner surface measure

asΓ1.

In general, for a fixed domain Ω the sets Ω# and Ω# are different. However, they coincide if Ω satisfies the

relation |Γ0|N
′

− |Γ1|N
′

= C(N)|Ω|, where N ′ is the Hölder conjugate of N and C(N) = NN ′

ωN ′−1
N . We mainly

consider two types of mixed eigenvalue problems:

(i) the Dirichlet condition on the outer boundary Γ0,

(ii) the Dirichlet condition on an inner boundary Γ1,

and the Neumann condition on the rest of the boundaries. More precisely, for p ∈ (1,∞) we consider the following

eigenvalue problems:

−∆pu = ν|u|p−2u in Ω,

u = 0 on Γ0,

∂u

∂η
= 0 on Γ1 ∪ (∪n

i=1γi) ;























(N-D)

−∆pu = τ |u|p−2u in Ω,

u = 0 on Γ1,

∂u

∂η
= 0 on Γ0 ∪ (∪n

i=1γi) .























(D-N)

For i = 0, 1, let WΓi
:=
{

u ∈W 1,p(Ω) : u|Γi
= 0
}

. We say a real number ν is an eigenvalue of (N-D), if there exists

u ∈WΓ0
\ {0} such that

∫

Ω

|∇u|p−2∇u · ∇v dx = ν

∫

Ω

|u|p−2uv dx, ∀v ∈WΓ0
.

Similarly a real number τ is an eigenvalue of (D-N), if there exists u ∈WΓ1
\ {0} such that

∫

Ω

|∇u|p−2∇u · ∇v dx = τ

∫

Ω

|u|p−2uv dx, ∀v ∈ WΓ0
.

The corresponding nonzero solutions are called the eigenfunctions associated to these eigenvalues. Now consider

J(u) :=

∫

Ω

|∇u|p dx, and S :=

{

v ∈ W 1,p(Ω) :

∫

Ω

|u|p dx = 1

}

.

For i = 0, 1, one can easily see that the critical values of J on S ∩ WΓi
are precisely the eigenvalues of (N-D)

and (D-N) respectively. Thus the classical Ljusternik-Schnirrelman theory, ensures the existence of infinitely many

eigenvalues for both (N-D) and (D-N), see Proposition B.1. In particular, the first eigenvalues have the following

variational characterisation:

ν1(Ω) = inf
u∈S∩WΓ0

J(u), τ1(Ω) = inf
u∈S∩WΓ1

J(u).

Both ν1(Ω) and τ1(Ω) are simple and the first eigenfunctions are of constant sign. Moreover, the eigenfunctions

corresponding to ν1(Ω
#) and τ1(Ω#) are radial (see Appendix A.).

The R-F-K inequalities, except (7) for the annular regions, unfortunately did not get any attention for the domains

in the higher dimensions and also for the operators different from the Laplacian. Unlike in the case of Faber-Krahn

inequality, the uniqueness of the domains for which the equality holds in (2) (similarly in (6)) are not well understood,

even for the planar domains. For N = 2, we extend the results of Payne-Weinberger and Hersch for the p-Laplacian.

For N ≥ 3, under an additional assumption on the boundary of Ω, we prove the R-F-K inequalities. To state this

additional assumption, we make the following definition:

Definition: Let A,B be measurable sets in R
N . We say that A is a µ-translate of B, if there exists x ∈ R

N such

that |(A+ x)△B| = 0, where △ is the symmetric difference of sets.

Now we state the R-F-K inequality for ν1:
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Theorem 1.1 Let p ∈ (1,∞) and Ω ⊂ R
N with N ≥ 3 be a C1-smooth multiply connected bounded domain. If the

outer boundary Γ0 of Ω be a sphere, then

(i) ν1(Ω) ≤ ν1(Ω
#),

(ii) if equality happens then Ω is a µ-translate of Ω#.

This theorem generalises the result of Payne-Weinberger [19], and proves that ‘among the class of domains with

given measure, free along the interior boundaries and fixed along a sphere of given radius as the outer boundary, the

concentric annulus Ω# has the highest fundamental frequency’. For example, see below Figure 1.:

�1 �2 �
�

Fig. 1 The domains Ω1, Ω2 and Ω# have the same measure and the same outer boundary (up to a translation). Then ν1(Ω#) is strictly

greater than ν1(Ωi).

In general, the domain can have any finite number of interior boundaries. Comparing the values of ν1(Ωi) with the

number of interior boundaries is also an interesting problem. In a subsequent article, using the shape derivative

technique, we also prove that the ν1(B1 \B0) strictly decreases when the inner ball B0 moves towards the boundary

of the outer ball B1.

We give two proofs for the above theorem. The first one mainly use some ideas from [19] and an isoperimetric

inequality of the following form:

s(δ)N
′

≤ |Γ0|
N ′

− C(N)v(δ). (8)

Even though Nagy’s inequality is not available for higher dimensions, our assumption on Γ1 allows us to derive the

above isoperimetric inequality. In the second proof, we borrow some ideas from [12] and give a proof without using

the isoperimetric inequality. We feel that the proofs of Payne-Weinberger and Hersch need more appreciation and

may be applicable for other related problems; this is the reason for presenting two proofs for Theorem 1.1.

Next we state the R-F-K inequality for τ1:

Theorem 1.2 Let p ∈ (1,∞) and Ω be as in Theorem 1.1. If the inner boundary Γ1 of Ω be a sphere, then

(i) τ1(Ω) ≤ τ1(Ω#),

(ii) if equality happens then Ω is a µ-translate of Ω#.

For proving the above result, we introduce a parametrization t, analogous to the one in [12] as

t(δ) =

∫ δ

0

dr

s(r)p′−1
.

This parametrization and the eigenfunction corresponding to τ1(Ω#) helps us to construct a test function on Ω,

whose Rayleigh quotient is smaller than τ1(Ω#).
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For N = 2, as we have Nagy’s inequality for a general multiply connected bounded domain, we extend the results

of Payne-Weinberger and Hersch for the p-Laplacian with p ∈ (1,∞).

Theorem 1.3 Let p ∈ (1,∞) and Ω ⊂ R
2 be a C1-smooth multiply connected bounded domain. Then

(i) ν1(Ω) ≤ ν1(Ω
#) and (ii) τ1(Ω) ≤ τ1(Ω#).

The second eigenvalues: In [2], Anoop et al. proved that the eigenfunctions corresponding to the second Dirichlet

eigenvalue of p-Laplacian are non-radial. As an application of above theorems, we prove the similar results for the

second eigenvalues of p-Laplacian on a ball or an annulus with various boundary conditions. Let µ2(Ω) be the second

(first non-zero) Neumann eigenvalue of p-Laplacian; let ν2(Ω) and τ2(Ω) be the second eigenvalues of (N-D) and

(D-N) respectively. Now, we have the following results.

Theorem 1.4 For N ≥ 2 and 1 < p <∞, let Ω ⊂ R
N be a ball or a concentric annulus in R

N . Then the nodal set

of any eigenfunction associated with µ2(Ω) cannot be a concentric sphere.

Theorem 1.5 For N ≥ 2 and 1 < p < ∞, let Ω ⊂ R
N be a concentric annulus. Then the nodal set of any

eigenfunction associated with ν2(Ω) and τ2(Ω) cannot be a concentric sphere.

This article is organised as follows. In the first section, we briefly illustrate the interior parallels and derive Payne-

Weinberger’s type isoperimetric inequality. The proofs for Theorem 1.1, Theorem 1.2 and Theorem 1.3 are also given

in this section. In the next section, we give the proofs of Theorem 1.4 and Theorem 1.5. In Section 4., we remark on

a similar result for the elasticity problem and state a few open problems related to the mixed eigenvalue problems.

In the appendix, we discuss some properties of the first eigenfunctions and give the variational characterisation of

the second eigenvalues.

2. Proofs of main results

In this section we give proofs for all of our theorems. First, we briefly describe the interior parallels, and then obtain

the inequalities analogous to Nagy’s inequalities.

The parallel sets: For N ≥ 2, let Ω be a C1-smooth multiply connected bounded domain in R
N with interior holes,

and let Γ0 be its outer boundary and Γ1 be an inner boundary. For δ ≥ 0, consider the following sets:

A0(δ) = the set of all points in Ω that are at a distance less than δ from Γ0,

A1(δ) = the set of all points in Ω that are at a distance less than δ from Γ1,

L0(δ) = ∂A0(δ) \ Γ0; L1(δ) = ∂A1(δ) \ Γ1.

The set L0(δ) is known as an inner parallel surface to Γ0 and L1(δ) is an outer parallel surface to Γ1. The sets

L0(δ) ∩Ω and L1(δ) ∩Ω are collectively called as the interior parallels in Ω. Since we will be dealing with only one

type of parallel surfaces at a time, we use the same notations for the measures of interior parallels:

S(δ) = |Li(δ)|; s(δ) = |Li(δ) ∩Ω|, for i = 0, 1.

Thus, for Ω ⊂ R
2 Nagy’s inequality gives:

Interior parallels to Γ0: s(δ) ≤ |Γ0| − 2πδ a.e. on

[

0,
|Γ0|

2π

]

;

Interior parallels to Γ1: s(δ) ≤ |Γ1|+ 2πδ a.e. on [0,∞).
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The mixed eigenvalue problem with Dirichlet condition on Γ0:

For this case, we consider the interior parallels to Γ0. We make the assumption that Γ0 is a sphere. Let |Γ0| =

NωNR
N−1
1 and Ω# = BR1

(0) \BR0
(0) for some R1, R0 > 0. Now the following Nagy’s type inequality is immediate:

S(δ) = NωN(R1 − δ)N−1, δ ∈ [0, R1]. (9)

Next we derive an isoperimetric inequality in higher dimension, analogous to that of Payne-Weinberger. First, define

δΩ = sup{δ :L0(δ) ∩Ω 6= ∅},

v(δ) :=

∫ δ

0

s(t) dt; V (δ) :=

∫ δ

0

S(t) dt.

Observe that v(δ) = |A0(δ) ∩Ω|, V (δ) = |A0(δ)|, v(δΩ) = |Ω| and δΩ# = R1 −R0. Also the map v is differentiable

a.e., and v′(δ) = s(δ) a.e. on [0, δΩ]. Recall that, for N ≥ 2, N ′ = N
N−1 and C(N) = NN ′

ωN ′−1
N .

Lemma 2.1 If Γ0 is a sphere then

s(δ)N
′

≤ |Γ0|
N ′

− C(N)v(δ), δ ∈ [0, δΩ]. (10)

Proof As s(δ) ≤ S(δ), from (9) we have

s(δ) ≤ NωN (R1 − δ)N−1, δ ∈ [0, δΩ].

By integrating the above inequality from 0 to δ yields

v(δ) ≤ ωNR
N
1 − ωN (R1 − δ)N .

Now multiply the above inequality by C(N), then simple computations leads to the required inequality as below:

C(N)v(δ)≤NN ′

ωN ′

N RN
1 −NN ′

ωN ′

N (R1 − δ)N = |Γ0|
N ′

− L(δ)N
′

≤ |Γ0|
N ′

− s(δ)N
′

. (11)

⊓⊔

Remark 2.2 If Ω is a µ-translate of Ω#, then s(δ) = S(δ) for δ ∈ [R1, R0] and hence the equality holds in the

isoperimetric inequality. i.e.,

s(δ)N
′

= |Γ0|
N ′

− C(N)v(δ), δ ∈ [0, δΩ].

The next lemma will show that, if Γ0 is a sphere and the equality holds in (10), then Ω is necessarily a µ-translate

of Ω#.

Lemma 2.3 If Ω# is not a µ-translate of Ω, then

(i) R1 −R0 < δΩ,

(ii) there exists δ0 ∈ [0, δΩ] such that s(δ)N
′

< |Γ0|N
′

− C(N)v(δ) for δ ≥ δ0.

Proof. (i) Since the outer boundary of Ω is a sphere without loss of generality, we may assume that the outer

boundaries of Ω and Ω# are the same. If R1 −R0 ≥ δΩ then Ω must be a subset of BR1
(0) \BR1−δΩ (0) ⊆ Ω#, since

L0(δ) ∩Ω = ∅ for δ > δΩ. If the strict inequality holds then the inclusion is strict, and if the equality holds, then Ω

must be a µ-translate of Ω#. In both cases, we get a contradiction and hence R1 −R0 < δΩ.

(ii) If v = V on [0, δΩ], then |Ω| = V (R1 − R0) < V (δΩ) = v(δΩ) = |Ω|. A contradiction and hence there exists



8 T. V. Anoop, K. Ashok Kumar

δ0 ∈ [0, δΩ] such that v(δ0) < V (δ0). Since s(δ) ≤ S(δ), we get v(δ) < V (δ), for δ > δ0. Now the same calculations

as in (11), gives the required strict inequality.

⊓⊔

From Remark 2.2, we have s(δ)N
′

≤ |Γ0|N
′

−C(N)v(δ), δ ∈ [0, δΩ]. Motivated by this inequality, we define a function

r as below:

C(N)ωNr(δ)
N = |Γ0|

N ′

− C(N)v(δ), δ ∈ [0, δΩ]. (12)

Observe that, r(0) = R1, r(δΩ) = R0 and r is strictly decreasing on [0, δΩ]. Thus r maps [0, δΩ] onto [R0, R1].

Lemma 2.4 Let r be defined as above. Then the map r is differentiable and |r′(δ)| ≤ 1.

Proof By differentiating (12) we get NC(N)ωNr(δ)
N−1r′(δ) = −C(N)s(δ). Therefore,

|r′(δ)|N
′

=
s(δ)N

′

NN ′

ωN ′

N r(δ)N
=

s(δ)N
′

|Γ0|N
′ − C(N)v(δ)

.

Now the conclusion follows easily from (10).

⊓⊔

Next we give our first proof for Theorem 1.1, along the same lines in the proof of Payne-Weinberger (Section-II of

[19]).

The first proof of Theorem 1.1.

(i) Let u0 ∈ W 1,p(Ω#) be an eigenfunction corresponding to ν1(Ω
#). Since u0 is radial, there exits φ ∈ C1(R)

such that φ(R1) = 0 and u0(x) = φ(|x|). Now consider the function u(x) = φ(r(δ(x))), for x ∈ Ω. Observe that

u ∈W 1,p(Ω) and u|Γ0
= 0. Further,

|∇u(x)| = |φ′(r(δ(x)))| |r′(δ)||∇δ| ≤ |φ′(r(δ(x)))|, (since |r′(δ)| ≤ 1, |∇δ| = 1).

Therefore,

∫

Ω

|∇u(x)|p dx ≤

∫

Ω

|φ′(r(δ(x)))|
p
dx

=

∫ δΩ

0

(

∫

L(δ)

|φ′(r(δ(x)))|
p
dσ
)

dδ =

∫ δΩ

0

|φ′(r(δ))|
p
s(δ) dδ.

From (12) we have NωNr
N−1 dr = −s(δ) dδ. Now by setting r(δ) = r we get

∫

Ω

|∇u(x)|p dx ≤ NωN

∫ R1

R0

|φ′(r)|
p
rN−1 dr.

Similarly,
∫

Ω#

|∇u0(x)|
pdx = NωN

∫ R1

R0

|φ′(r)|
p
rN−1 dr.

Further,
∫

Ω

|u(x)|p dx = NωN

∫ R1

R0

|φ(r)|prN−1 dr =

∫

Ω#

|u0(x)|
p dx.

Combining the above inequalities, we conclude that

ν1(Ω) ≤ ν1(Ω
#).
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(ii) If Ω is not a µ-translate of Ω#, then by Lemma 2.3 there exists δ ∈ (0, δΩ) such that s(δ)N
′

< |Γ0|N
′

−

C(N)v(δ), δ ∈ (δ0, δΩ). Now from Lemma 2.4, we have |r′(δ)| < 1 for δ ∈ (δ0, δΩ). Therefore,
∫

Ω

|∇u(x)|p dx < NωN

∫ R1

R0

|φ′(r)|
p
rN−1 dr =

∫

Ω#

|∇u0(x)| dx.

Thus ν1(Ω) < ν1(Ω
#).

⊓⊔

Next we give another proof of Theorem 1.1, without (explicitly) using the isoperimetric inequality (10). For this,

first we prove the following lemma.

Lemma 2.5 Let h(α) = s(v−1(α)) and H(α) = S(V −1(α)) for α ∈ [0, |Ω|]. Then

(i) h(α) ≤ H(α), α ∈ [0, |Ω|],

(ii) if Ω is not a µ-translate of Ω#, then there exists α0 ∈ [0, |Ω|] such that h(α) < H(α), α ≥ α0.

Proof (i) Since v(δ) ≤ V (δ) and S is monotonically decreasing, we have v−1(α) ≥ V −1(α) and hence S(v−1(α)) ≤

S(V −1(α)). As s(δ) ≤ S(δ) we get the required conclusion.

(ii) If Ω is not a µ-translate of Ω#, then as in the proof of (ii) of Lemma 2.3, there exists a δ0 ∈ [0, δΩ] such that

v(δ) < V (δ) for all δ ≥ δ0. By setting α0 = V (δ0), we obtain the strict inequality as S is strictly decreasing.

⊓⊔

The second proof of Theorem 1.1.

(i) Let u0 ∈ W 1,p(Ω#) be the eigenfunction corresponding to ν1(Ω
#) with u0 > 0. Since u0 is radial, there exists a

ψ ∈ C1(R) such that ψ(0) = 0 and

u0(x) = ψ(R1 − |x|) = (ψ ◦ V −1) (V (δ(x))) , x ∈ Ω#.

By setting φ = ψ ◦ V −1, we have u0(x) = φ (V (δ(x))) . Clearly, φ ∈ C1(R) with φ(0) = 0. Now, define a function u

on Ω as u(x) = φ(v(δ(x))), x ∈ Ω. Observe that, u ∈ W 1,p(Ω), u|Γ0
= 0, and

|∇u(x)| = |φ′ (v(δ(x)))| s(δ(x)), a.e. on Ω.

Therefore,
∫

Ω

|∇u(x)|p dx =

∫ δΩ

0

(
∫

Lδ

|∇u(x)|p dσ

)

dδ =

∫ δΩ

0

|φ′ (v(δ)) |ps(δ)p+1 dδ.

Using the change of variable α = v(δ), we deduce
∫

Ω

|∇u(x)|p dx =

∫ |Ω|

0

|φ′(α)|ph(α)p dα.

A similar calculation yields,
∫

Ω#

|∇u0(x)|
p dx =

∫ |Ω|

0

|φ′(α)|pH(α)p dα.

Further,

∫

Ω#

|u0(x)|
p dx =

∫ |Ω|

0

φ(α)p dα =

∫

Ω

|u(x)|p dx. By Lemma 2.5, h(α) ≤ H(α), so we get

∫ |Ω|

0

|φ′(α)|ph(α)p dα ≤

∫ |Ω|

0

|φ′(α)|pH(α)p dα.

Now, by the variational characterisation of ν1(Ω), we conclude ν1(Ω) ≤ ν1(Ω
#).

(ii) If Ω is not a µ-translate of Ω#, then (ii) of Lemma 2.5 and the above calculations gives ν1(Ω) < ν1(Ω
#). ⊓⊔

Remark 2.6 Notice that, in our case (Γ0 is a sphere), the equality in the isoperimetric inequality implies Ω is a

µ-translate of Ω# and hence ν1(Ω) = ν1(Ω
#).



10 T. V. Anoop, K. Ashok Kumar

2..1 The mixed eigenvalue problem with Dirichlet condition on Γ1:

In this case, we consider the interior parallel surfaces from the inner boundary Γ1. Let δΩ := sup{δ : L1(δ)∩Ω 6= ∅}.

We assume that Γ1 is a sphere. Let |Γ1| = NωNR
N−1
0 and Ω# = BR1

(0) \ BR0
(0) for some R1, R0 > 0. Now, we

clearly have the following Nagy’s type inequality:

S(δ) = NωN (R0 + δ)N−1
, δ ∈ [0, δΩ]. (13)

For p ∈ (1,∞), we define a parametrization t as

t(δ) =

∫ δ

0

dr

s(r)p′−1
; T (δ) =

∫ δ

0

dr

S(r)p′−1
, δ ∈ [0, δΩ],

where p′ = p
p−1 is the Hölder conjugate of p. Let T# := T (R1 −R0); tΩ := t(δΩ). Notice that t, T and S are strictly

increasing and s(δ) ≤ S(δ). Now consider the maps g(α) = s(t−1(α)) and G(α) = S(T−1(α)) on [0, |Ω|].

Lemma 2.7 Let p ∈ (1,∞) and Ω be as in Theorem 1.2. If Γ1 is a sphere, then

(i) δΩ ≥ R1 −R0 and T# ≤ tΩ,

(ii) g(α) ≤ G(α), α ∈ (0, T#),

(iii)

∫ tΩ

0

g(α)p
′

dα =

∫ T#

0

G(α)p
′

dα = |Ω|.

Proof (i) If δΩ < R1−R0, then Ω must be a µ-translate of a subset of the annulus BR0+δΩ (0)\BR0
(0). A contradiction

and hence δΩ ≥ R1 − R0. Now as T (δ) ≤ t(δ), we get T# ≤ tΩ.

(ii) For α ∈ [0, T#], clearly t
−1(α) ≤ T−1(α) and hence

g(α) = s(t−1(α)) ≤ S(t−1(α)) ≤ S(T−1(α)) = G(α).

(iii) By changing the variable α = t(δ), we get

∫ tΩ

0

g(α) dα =

∫ tΩ

0

s(t−1(α))p
′

dα =

∫ δΩ

0

s(δ)p
′ 1

s(δ)p′−1
dδ =

∫ δΩ

0

s(δ) dδ = |Ω|.

Similarly

∫ T#

0

G(α)p
′

dα = |Ω#| = |Ω|. ⊓⊔

Lemma 2.8 Let Ω be as in Theorem 1.2. If Ω is not a µ translate of Ω#, then

(i) δΩ > R1 −R0,

(ii) T# < tΩ ,

(iii) there exists α0 ⊂ [0, T#] such that g(α) < G(α), α ∈ (α0, T#].

Proof (i) By the previous lemma, δΩ ≥ R1 −R0. If δΩ = R1 −R0, then Ω must be a µ-translate of the annulus Ω#.

Hence δΩ > R1 −R0.

(ii) Follows from (i) as T and t are strictly increasing.

(iii) If t = T on [0, T#], then s = S a.e. on [0, T#] and this implies that |Ω| =

∫ R1−R0

0

S(r) dr ≤

∫ R1−R0

0

s(r) dr <

∫ δΩ

0

s(r) dr = |Ω|. A contradiction and hence there exists a δ0 ∈ [0, δΩ] such that t(δ0) > T (δ0). Since s(δ) ≤ S(δ),

we get t(δ) > T (δ), for δ > δ0. By setting α0 = v(δ0), we obtain the required result.

⊓⊔
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Proof of Theorem 1.2.

(i) Let u1 be a non-negative eigenfunction corresponding to τ1(Ω#). Since u1 is radial in Ω#, there exists ψ ∈ C1(R)

such that ψ(0) = 0 and

u1(x) = ψ(|x| −R0) = ψ ◦ T−1
(

T (δ(x)
)

= φ(T (δ(x))), x ∈ Ω#,

where φ = ψ ◦ T−1. Notice that u1 has its maximum on the outer boundary Γ0, and hence

φ(T#) ≥ φ(α), α ∈ [0, T#]. (14)

Now, define a function u on Ω as

u(x) =







φ
(

t(δ(x))
)

, t(δ(x)) ∈ [0, T#],

φ(T#), t(δ(x)) ∈ (T#, tΩ].

Clearly, u ∈ W 1,p(Ω) and u|Γ1
= 0. Further,

∇u(x) =











φ′(t(δ(x)))

s(δ(x))p′−1
∇δ(x), t(δ(x)) ∈ [0, T#],

0, t(δ(x)) ∈ (T#, tΩ].

Therefore,
∫

Ω

|∇u(x)|p dx =

∫ t−1(T#)

0

(

∫

L(δ)

|∇u(t(δ(x))|p dσ

)

dδ

=

∫ t−1(T#)

0

|φ′
(

t(δ)
)

|p
dδ

s(δ)p′−1
.

By the change of variable α = t(δ), we get

∫

Ω

|∇u(x)|p dx =

∫ T#

0

|φ′(α)|p dα.

Further, we obtain
∫

Ω#

|∇u1(x)|
p dx =

∫ T#

0

|φ′(α)|p dα ,

∫

Ω#

|u1(x)|
p dx =

∫ T#

0

|φ(α)|pG(α)p
′

dα,

∫

Ω

|u(x)|p dx =

∫ T#

0

|φ(α)|pg(α)p
′

dα+ |φ(T#)|
p

∫ tΩ

T#

g(α)p
′

dα.

Using the facts g(α) ≤ G(α) and φ(t) ≤ φ(T#) (by Lemma 2.7 and (14)), we estimate the following:
∫

Ω#

|u1(x)|
p dx−

∫

Ω

|u(x)|p dx

=

∫ T#

0

|φ(α)|p
(

G(α)p
′

− g(α)p
′

)

dα−

∫ tΩ

T#

|φ(T#)|
pg(α)p

′

≤ |φ(T#)|
p

(

∫ T#

0

(

G(α)p
′

− g(α)p
′

)

dα−

∫ tΩ

T#

g(α)p
′

)

= 0.

Therefore, we obtain

∫

Ω#

|u1(x)|
p dx ≤

∫

Ω

|u(x)|p dx. Now the above inequalities and the variational characterisation

of τ1 gives

τ1(Ω) ≤ τ1(Ω#).

(ii) If Ω is not a µ-translate of Ω#, then from Lemma 2.8, there exists α0 ∈ [0, T#] such that g(α) < G(α), α ∈

(α0, T#]. Therefore,

∫

Ω#

|u1(x)|
p dx <

∫

Ω

|u(x)|p dx and hence τ1(Ω) < τ1(Ω#).

⊓⊔

Remark 2.9 Consider the annular domains of the form B \B0 ⊂ R
N with N ≥ 2. For p ∈ (1,∞), the first eigenvalues

ν1(B \B0) and τ1(B \B0) are maximum only if the balls are concentric.
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2..2 The mixed eigenvalue problems in dimension 2:

For both the annular regions Ω# and Ω#, we denote the lengths of the interior parallels by S(δ).

Proof of Theorem 1.3.

(i) In this case, we consider the interior parallels from Γ0. Thus we have S(δ) = |Γ0| − 2πδ. Further, we define

V (δ) =

∫ δ

0

S(t) dt, δ ∈ [0, R1 −R0]; H(α) = S
(

V
−1

(α)
)

, α ∈ [0, |Ω|],

As before, we obtain S(δ)2 = |Γ0|2 − 4πV (δ), δ ∈ [0, R1 −R0] and this yields

H(α)2 = |Γ0|
2 − 4πα, α ∈ [0, |Ω|].

From Nagy’s inequality, we have s(δ) ≤ S(δ) and this gives the following isoperimetric inequality

s(δ)2 ≤ |Γ0|
2 − 4πv(δ), δ ∈ [0, δΩ].

Therefore, h(α)2 ≤ H(α)2, α ∈ [0, |Ω|]. Now the proof follows using a similar set of arguments as in the second proof

of part (i) of Theorem 1.1.

(ii) For this case, we consider the interior parallels from Γ1. Thus we have S(δ) = |Γ1|+2πδ, δ ∈ (0, δΩ) and Nagy’s

inequality gives s(δ) ≤ S(δ). Now define a parametrization as

T (δ) :=

∫ δ

0

dt

S(t)p′−1
, δ ∈ [0, δΩ].

Let G(α) = S
(

T
−1

(α)
)

, α ∈ [0, T#]. Now from (ii) of Lemma 2.7, we get g(α) ≤ G(α), α ∈ [0, T#]. Now the rest of

the proof is same as the proof of part (i) of Theorem 1.2.

⊓⊔

3. Applications

In this section we prove Theorem 1.4 and Theorem 1.5. First, we give a variational characterisation of the second

eigenvalue. For this, let

M := S ∩

{

u ∈W 1,p(Ω) :

∫

Ω

|u|p−2u = 0

}

,

F2 :=
{

h(S1) : h is an odd continuous map from S1 into S ∩WΓ0

}

,

G2 :=
{

h(S1) : h is an odd continuous map from S1 into S ∩WΓ1

}

.

Then

µ2(Ω) = inf
u∈M

J(u), ν2(Ω) = inf
A∈F2

sup
u∈A

J(u), τ2(Ω) = inf
A∈G2

sup
u∈A

J(u).

Proof of Theorem 1.4. By the translation invariance of p-Laplacian, we can take Ω = BR1
(0) \ BR0

(0) for some

0 ≤ R0 < R1 <∞. Let u be the eigenfunction associated with µ2(Ω), then u must change its sign in Ω. Suppose the

nodal set {x ∈ Ω : u(x) = 0} of u is a sphere of radius r ∈ (R0, R1) centred at origin. Then we have

τ1(Br(0) \BR0
(0)) = µ2(Ω); ν1(BR1

(0) \Br(0)) = µ2(Ω).

Now for s ∈ (0, r −R0), by Theorem 1.1 and Theorem 1.2 we have

τ1(Br(se1) \BR0
(0)) ≤ µ2(Ω) and ν1(BR1

(0) \Br(se1)) < µ2(Ω).
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Let φ1 and φ2 be positive eigenfunctions corresponding to τ1(Br(se1)\BR0
(0)) and ν1(BR1

(0)\Br(se1)) respectively,

with the normalisation
∫

|φ1|p−1 = 1 =
∫

|φ2|p−1. Let φ̃ denotes the extension of φ to Ω by zero. Then φ = φ̃1− φ̃2 ∈

W 1,p(Ω) with
∫

Ω
|φ|p−2φ = 0, and

J(φ) =

∫

Ω

|∇φ|p =

∫

|∇φ1|
p +

∫

|∇φ2|
p

= τ1(Br(se1) \BR0
(0))

∫

|φ1|
p + ν1(BR1

(0) \Br(se1))

∫

|φ2|
p

< µ2(Ω)

(
∫

|φ1|
p +

∫

|φ2|
p

)

= µ2(Ω)

∫

Ω

|φ|p.

This contradicts the variational characterisation of µ2(Ω).

Proof of Theorem 1.5. We give the result only for ν2(Ω), a similar proof holds for τ2(Ω). By the translation

invariance of p-Laplacian, we can take Ω = BR1
(0) \BR0

(0) for some 0 < R0 < R1 < ∞. Let u be an eigenfunction

associated with ν2(Ω). Suppose the nodal set {x ∈ Ω : u(x) = 0} of u is a sphere of radius r ∈ (R0, R1) centred at

the origin. Then we have

λ1(Br(0) \BR0
(0)) = ν2(Ω); τ1(BR1

(0) \Br(0)) = ν2(Ω).

Thus, for s ∈ (0, r −R0), by Theorem 1.1 of [1] and Theorem 1.2 we have

λ1(Br(se1) \BR0
(0)) < ν2(Ω) and τ1(BR1

(0) \Br(se1)) < ν2(Ω).

Let φ1 and φ2 be the positive eigenfunctions corresponding to the eigenvalues λ1(Br(se1) \BR0
(0)) and τ1(BR1

(0) \

Br(se1)) respectively, with the normalisation
∫

|φ1|p = 1 =
∫

|φ2|p. Now consider the setA := {aφ̃1+bφ̃2 : |a|p+|b|p =

1}. Then A ∈ F2 and for φ ∈ A we have

J(φ) =

∫

Ω

|∇φ|p =

∫

|∇φ1|
p +

∫

|∇φ2|
p

= λ1(Br(se1) \BR0
(0))|a|p + τ1(BR1

(0) \Br(se1))|b|
p

< ν2(Ω) (|a|p + |b|p) = ν2(Ω).

A contradiction to the variational characterisation of ν2(Ω). ⊓⊔

4. Some remarks and open problems

Remark 4.1 Let Ω be a doubly connected planar domain whose inner hole is a convex set and the outer boundary is

a parallel curve to the inner boundary. Now one can use Steiner’s formula for the convex domain and get the equality

in Nagy’s inequality. i.e., S(δ) = |Γ1|+2πδ. For such a domain Ω, without being a µ-translate of Ω#, indeed we have

T# = tΩ and G(α) = g(α). However, it is not clear whether τ1(Ω) = τ1(Ω#) or not.

Remark 4.2 (The elasticity problem) For p ∈ (1,∞) and for a multiply connected domain Ω in R
N with N ≥ 2, one

can consider the following elasticity problem:

−∆pu = Λ|u|p−2u in Ω,

|∇u|p−2 ∂u

∂η
+ k|u|p−2u = 0 on Γ0,

∂u

∂η
= 0 on Γ1 ∪ (∪n

i=1γi) ,


























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where k > 0 is the elasticity constant. The first eigenvalue Λ1(Ω) has the following variational characterisation:

Λ1(Ω) = inf

{
∫

Ω
|∇u|p + k

∫

Γ1
|u|p

∫

Ω
|u|p

: u ∈ W 1,p(Ω) \ {0}

}

.

Then using the similar set of arguments as in the proof of Theorem 1.1 one can show that if Γ0 is a sphere, then

Λ1(Ω) ≤ Λ1(Ω
#) and the equality holds if and only if Ω is a µ-translate of Ω#.

Next, we state a few open problems that are related to the mixed eigenvalue problems that we considered in this

article. For more open problems related to the extremum of eigenvalues of various operators, we refer to the book

[11].

Open problems:

(i) The uniqueness for N = 2: Our results ensures the uniqueness of the domain (up to µ-translates) that gives

the equality in the reverse F-K inequality. However, for the general domains (N = 2), Payne-Weinberger’s or

Hersch’s results are not making any claim on the uniqueness of the domain. In the best of our knowledge this

question is open for N = 2 and for every p. See also our Remark 4.1.

(ii) The mixed eigenvalue problems for the general multiply connected domains: We proved our results under the

assumptions that the boundary on which the Dirichlet condition is specified are spheres. We feels that the

isoperimetric inequalities may obtained for other domains. For an excellent review on isoperimetric inequalities

and related results, we refer to [17,21].

(iii) The lower bounds for the first mixed eigenvalues ν1(Ω): Is it possible to find a constant C (depending on the

domain) such that Cν1(Ω
#) ≤ ν1(Ω) and hence an upper bound for the isoperimetric deficit ν1(Ω

#)−ν1(Ω)
ν1(Ω#)

. The

similar problems for Dirichlet eigenvalue are studied in [3] and [6] for various operators.

(iv) The Dirichlet eigenvalue problem for the general multiply connected domains: Except for the annular region,

the R-F-K is open for the general doubly connected domains in the higher dimension, even for the case one of

the boundaries is a sphere.

(v) One can also study the mixed eigenvalue problems with the Dirichlet condition specified on more than one

interior boundaries. An upper bound for the case when N = 2, p = 2 is given by Hersch, see Section 3 of [12].

Appendices

A. The existence of the first eigenvalue and some of its properties

For N ≥ 2, let Ω ⊆ R
N be a multiply connected smooth domain such that ∂Ω = Γ0 ⊔ Γ1 with |Γ0| > 0, the

(N − 1)-dimensional measure. For 1 < p <∞, consider the following mixed eigenvalue problem:

−∆pu = α|u|p−2u in Ω,

u = 0 on Γ0,

∂u

∂n
= 0 on Γ1.























(15)

We say a real number α is an eigenvalue of (15) if there exists a u ∈WΓ0
\ {0} such that

∫

Ω

|∇u|p−2 ∇u · ∇v = α

∫

Ω

|u|p−2
uv, for all v ∈ WΓ0

,
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where WΓ0
=
{

u ∈W 1,p(Ω) : u|Γ0
= 0
}

. Recall that

J(u) =

∫

Ω

|∇u|p dx, S =

{

u ∈W 1,p(Ω) :

∫

Ω

|u|p dx = 1

}

.

It is easy to verify that the eigenvalues of (15) are precisely the critical values of J on S ∩WΓ0
.

Proposition A.1 Let p ∈ (1,∞) and Ω as above. Let α1 = inf
u∈S∩WΓ0

J(u). Then

(i) α1 is an eigenvalue of (15),

(ii) α1 is simple and principal.

Proof. (i) Let (un)n∈N
be a minimising sequence, i.e., J(un) =

∫

Ω
|∇un|

p → α1. Then (un) is a bounded sequence

in WΓ0
and hence by the reflexivity, un ⇀ u in WΓ0

for some u ∈ WΓ0
. From the compact embedding WΓ0

→֒

Lp(Ω), un → u in Lp(Ω), so
∫

Ω
|u|p = 1 hence u ∈ S. Now, by the weakly lower semi continuity of J we have

α1 ≤ J(u) ≤ lim inf
n→∞

J(un) = α1.

Hence α1 is attained for some u ∈WΓ0
. Now it is easy to verify that α1 is a critical value of J and hence an eigenvalue

of (15). If α1 = 0 then ∇u = 0, this will imply that u ≡ 0, as u ≡ 0 on the boundary, a contradiction. Hence α1 is

the first non-zero eigenvalue.

(ii) To prove the simplicity of α1 we use the Picone’s identity. Let us recall the Picone’s identity: Let u ≥ 0, v > 0

a.e., such that |∇u| , |∇v| exists. Define

L(u, v) := |∇u|p + (p− 1)
up

vp
|∇v|p − p

up−1

vp−1
|∇v|p−2 ∇v,

and

R(u, v) := |∇u|p − |∇v|p−2 ∇

(

up

vp−1

)

· ∇v.

Then we have the following:

L(u, v) = R(u, v) a.e.

Furthermore, L(u, v) ≥ 0 and L(u, v) = 0 if and only if u, v are constant multiples on each connected component of

Ω.

Let u, v > 0 be two eigenfunctions corresponding to α1. By Picone’s identity we get

0 ≤

∫

Ω

L(u, v) dx =

∫

Ω

R(u, v) dx =

∫

Ω

(|∇u|p − α1 |u|
p
) dx = 0.

Therefore u = kv for some k > 0, hence α1 is simple.

For principality of α1, let u ∈ S ∩WΓ0
be any eigenfunction corresponding to α1. We can verify that |u| ∈ S ∩WΓ0

and |u| is a minimiser of J over S ∩WΓ0
. Thus |u| are also an eigenfunction corresponding to α1. From the strong

maximum principle either |u| ≡ 0 or |u| > 0 in Ω. Since u 6= 0 we have |u| > 0 in Ω, hence α1 is a principal eigenvalue

of (15). ⊓⊔

Proposition A.2 Let p,Ω, α1 as in Proposition A.1. Let u be an eigenfunction associated with α1. If Ω and Γ0 are

symmetric with respect to a hyperplane H, then u is also symmetric with respect to the hyperplane H.

Proof. Let σH be the reflection with respect to the hyperplane H . Given Ω and Γ0 are symmetric with respect to a

hyperplane H , so we have x ∈ Ω (or Γ0) if and only if σH(x) ∈ Ω (or Γ0). Consider an eigenfunction u corresponding

to α1 and define v(x) := u(σH(x)) for x ∈ Ω. Then v ∈ WΓ0
with u = v onH and J(v) = J(u) = α1. By the simplicity

of α1, we have v = ku a.e. in Ω for some k > 0. Since ‖u‖p = ‖v‖p, we have k = 1. Therefore v = u a.e. in Ω, i.e.,

u(x) = u(x∗) a.e. x ∈ Ω. Hence u is symmetric with respect to H . ⊓⊔
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Remark A.3 In particular if Ω and Γ0 are radially symmetric, then the eigenfunction u associated with α1 is radial

in Ω. Thus the eigenfunctions associated with ν1(Ω
#) and τ1(Ω#) are radial in Ω# and Ω# respectively. Notice

that, the standard arguments using the schwartz symmetrization and Pólya-Szegö inequality does not work, if the

domain Ω is not a ball.

B. The existence of infinitely many eigenvalues:

Using standard variational methods, as in [9] for Dirichlet eigenvalues using Krasnoselskii genus, we can obtain a set

of critical values of J on S ∩WΓ0
. For a symmetric closed subset A ⊂ S, Krasnoselskii genus of A is defined as

γ(A) := inf{n ∈ N : ∃ an odd continuous map from A into R
n \ {0}}

with the convention that inf{∅} = ∞. For n ∈ N, let

En := {A ⊂ S : A = A, A = −A and γ(A) ≥ n},

λn := inf
A∈En

sup
u∈A

J(u).

For each n ∈ N, let

Fn :=
{

h(Sn−1) : h is an odd continuous map from Sn−1 to S ∩WΓ0

}

.

An another set of critical values of J can be obtain as follows:

λ∗n := inf
A∈Fn

sup
u∈A

J(u).

Since γ(Sn−1) = n, and γ is invariant under odd homeomorphisms, we have Fn ⊆ En and hence λn ≤ λ∗n, ∀n ∈ N.

Then, with similar arguments as in Proposition 5.3 of [9] and Theorem 5 of [7], we can prove the following:

Proposition B.1 Let p ∈ (1,∞) and Ω as above. Then for n ∈ N, λn, λ
∗
n are eigenvalues of (15) such that λn, λ

∗
n ր

∞, as n→ ∞.

C. The variational characterisation of second eigenvalue:

We have that αi = λi = λ∗i , i = 1, 2. This follows for i = 1, since the set {u,−u} belongs to both E1 and F1 for

u ∈ S∩WΓ0
. For i = 2, this follows from the facts that the set {au+2 +bu−2 : |a|p‖u+2 ‖

p+|b|p‖u2‖p = 1} belongs to both

E2 and F2, where u2 is the second eigenfunction, and α1 is isolated (see Section 2 of [2] for a similar characterisation

of second Dirichlet eigenvalue). Now we have the following proposition.

Proposition C.1 Let p ∈ (1,∞) and Ω be as in Theorem 1.1. Let ν2, τ2 be the second eigenvalues of (N-D) and

(D-N) respectively. Then ν2 and τ2 have the following variational characterisation:

ν2 = inf
A∈F2

sup
u∈A

J(u), τ2 = inf
A∈G2

sup
u∈A

J(u),

where G2 :=
{

h(S1) : h is an odd continuous map from S1 to S ∩WΓ1

}

.
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