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Abstract—Wireless networks with multiple nodes that relay
information from a source to a destination are expected to be
deployed in many applications. Therefore, understanding their
design and performance under practical constraints is important.
In this work, we propose and study three multihopping decode
and forward (MDF) protocols for multistage half-duplex rel ay
networks with no direct link between the source and destination
nodes. In all three protocols, we assume no cooperation across
relay nodes for encoding and decoding. Numerical evaluation in
illustrative example networks and comparison with cheap relay
cut-set bounds for half-duplex networks show that the proposed
MDF protocols approach capacity in some ranges of channel
gains. The main idea in the design of the protocols is the use
of coding in interference networks that are created in different
states or modes of a half-duplex network. Our results suggest
that multistage half-duplex relaying with practical constraints on
cooperation is comparable to point-to-point links and full-duplex
relay networks, if there are multiple non-overlapping paths from
source to destination and if suitable coding is employed in
interference network states.

I. I NTRODUCTION

One of the key technologies in next generation systems for
achieving high throughput and providing better coverage is
relaying. Relaying has attracted a high level of recent research
interest with several papers focusing on various aspects of
communicating using relays with different constraints and
assumptions. In this work, we are concerned with the capacity
of multistage relaying from one source to one destination
through an arbitrary network of half duplex relays.

An example network that we consider in detail for ease of
explanation and clarity is the two stage relay network shown
in Fig. 1. In this 6-node network, the source nodeS = 1
intends to communicate with the sink nodeD = 6 through 4
relay nodes{R1 = 2, R2 = 3, R3 = 4, R4 = 5} connected
as shown. The channel gains (α, β, γ) are shown next to the
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Fig. 1. Two stage relay network and interference states

corresponding edges. For simplicity, some of the gains are
assumed to be identical. For a multistage half-duplex relay
network such as the one in Fig. 1, we study coding methods

and protocols needed to achieve the best possible rate from
source to destination for different ranges of the channel gains.

There are two different aspects to multistage relaying when
the relays are connected in an arbitrary fashion: (1) scheduling
transmissions by nodes, and (2) coding methods employed
by nodes during transmissions. One strategy for schedulingis
to avoid interference altogether. However, the maximum data
rate under Interference Avoidance (IA) is limited, becausethe
source is transmitting only for a fraction of the total time.
To improve upon IA, more states of the network with the
source node in transmit mode need to be considered. The
scheduling task is to determine those states that are crucial
for obtaining higher rates. When multiple nodes transmit,
interference network states are created in the network based
on the connectivity. Two important interference network states
are shown in Fig. 1 for the network of Fig. 1. In one state,
S, R1, andR3 are transmitters and, in the other state,S, R2,
andR4 are transmitters. In both the states shown in Fig. 1,
the source node is a transmitter and the destination node is a
receiver. This property improves the flow of information, and
is useful for improving the transmission rate from the source.

In each interference network state, three different coding
strategies of increasing complexity are considered for trans-
mitters - Common broadcast (CB), Superposition coding (SC)
and Dirty paper coding (DPC) for the source node alone. The
receiving nodes in the interference network employ multiple
access (MAC) receivers that work by successive interference
cancellation. For different combinations of coding strategies,
suitable rate regions are determined for each state (or interfer-
ence network). The overall rate achievable from the source
to the destination is computed using an optimization over
the time-sharing of the rate regions for each state, subjectto
additional flow constraints that ensure compatibility of the rate
vectors used for individual states.

To place our work better, we review a sample of the
relevant prior literature. The relay channel is a classic setting,
introduced in [1], and studied extensively [2]–[4]. One result
of particular interest is the cut-set bound for half-duplexrelay
networks operating by time-sharing over a finite number of
states [5]. This “cheap relay” bound has been used by several
authors as an outer bound for achievable rates.

Recently, the half-duplex diamond network with two relays
has been studied in [6]–[9]. Themulti-hopping decode and
forward (MDF) protocol, proposed in [6] and extended in [7],
achieves rates close to the cheap relay cut-set bound. Wanget
al [8] consider a modified diamond network with an additional
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link between the relays and propose a coding strategy using
Dirty Paper Coding (DPC), which is shown to approach the
cut-set bound. More protocols for general half-duplex wireless
relay networks have been studied in [10], [11].

In relation to the above, in our work, we propose and study
multi-hopping decode and forward (MDF) protocols for a
general relay network with half-duplex nodes in the following
setting: (1) No cooperationis assumed for encoding and
decoding (except in one protocol for the source node alone),
(2) Achievable rates are compared against the cheap relay cut-
set bound atfinite SNRs, (3) The protocols and methods apply
for a general topologyof relays. The results are illustrated by
evaluation on two different networks, where we show that the
cut-set bound is approached for some values of channel gains.

II. M ODEL

We represent a wireless network withm nodes as an
undirected graphG = (V,E), where the vertex setV =
{1, 2, . . . ,m} represents the wireless nodes. An edge(i, j) ∈
E indicates that Nodei and Nodej are connected by an
additive white Gaussian noise (AWGN) channel with constant
gain denoted ashij .

Each node is subject to an average power constraintP and
has a noise varianceσ2. In addition, a half-duplex constraint is
imposed on the nodes so that they can either transmit, receive,
or be idle at any given time. Therefore, in this work, anm-
node half-duplex wireless network can be inM ≤ M = 3m

states. These states are denotedS1, S2, · · · , SM . In such a
network, we are interested in maximizing the communication
rateR from an arbitrary sourceS ∈ V to an arbitrary sink
D ∈ V . The nodes inV \ {S,D} act as relays in this
communication. Information flow from source to destination
happens by a time-sharing of the statesSk, 1 ≤ k ≤ M ,
and may reach the destination in multiple hops depending
on the connectivity of the graph. Hence, the specific problem
considered in this work can be termedmultihop, half-duplex
relaying in an arbitrary wireless network.

The total transmission time is normalized to one time
unit, and stateSk is active for aλk fraction of the time
(λk could be zero) with

∑M

k=1 λk = 1. As in [6], [7],
we assume that the state sequence and the time-sharing
parameters are known to all nodes before transmission. Let
Ik = {i ∈ V : Node i is a transmitter in StateSk} be the
set of active transmitters in StateSk, and let Jk = {i ∈
V : Node i is a receiver in StateSk} be the set of active
receivers in StateSk. When stateSk is active, simultaneous
transmissions from nodes inIk can interfere at one or more of
the receivers inJk depending on the connectivity of the nodes
in Ik andJk. Thus, each stateSk = (Ik, Jk) is aninterference
network[12] or hyperedgewith Ik andJk as the two disjoint
vertex sets. We use the terms interference network, hyperedge
and state interchangeably. The choice of a specific coding and
decoding strategy for each stateSk = (Ik, Jk) determines
possible operating rate vectors in an achievable rate region
for that state. Since the capacity region and optimal coding
scheme are not known for general interference networks, we

consider three suboptimal strategies for each state based on
different broadcast and interference processing techniques. In
all these strategies, we impose the constraint that the receivers
Jk cannot cooperate in decoding. Similarly, the nodes inIk
are assumed to encode their messages independently; however,
in one scheme, the source is assumed to know the messages
transmitted by the relays.

III. C UT-SET BOUND

A cut-set upper bound for half-duplex relay networks oper-
ating by time-sharing over a finite number of states has been
derived in [5]. This bound is presented here, briefly.

Let X(i) andY (i) be the transmitted and received variables
at nodei when it is in transmit and receive states, respectively.
The maximum achievable information rateR between source
S and destinationD in a half-duplex network is bounded as

R ≤ sup
λk

min
Ω

M∑

k=1

λkI(X
Ω
(k);Y

Ωc

(k) |X
Ωc

(k)), (1)

for some joint distributions{p(x(1), x(2), · · · , x(m)|k)}, 1 ≤
k ≤ M , where the supremum is over allλk ≥ 0 such that
∑M

k=1 λk = 1, the minimization is over allΩ such thatS ∈ Ω,
D ∈ Ωc, XΩ

(k) = {X(i) : i ∈ Ω ∩ Ik}, Y Ωc

(k) = {Y (i) : i ∈

Ωc ∩ Jk}, andXΩc

(k) = {X(i) : i ∈ Ωc ∩ Ik}. The above upper
bound can be computed by solving a linear program [7]. The
mutual informationI(XΩ

(k);Y
Ωc

(k) |X
Ωc

(k)) is computed exactly
using known sum rate capacity results [13] when the choice
of Ω andk results in multiple access or broadcast channels.
When the sum rate capacity is not known exactly (e.g. for
interference channels), the MIMO sum capacity is used as an
upper bound.

IV. M ULTIHOP HALF-DUPLEX RELAYING STRATEGIES

In this section, we present the three MDF strategies that we
propose and study in the context of a general relay network
with half-duplex nodes. In all these strategies, the network
operates by time-sharing between the states, where each state
is an interference network in general. The strategies differ
in the encoding scheme in each state. The decoder at each
receiver employs successive interference cancellation (SIC).

A. Common Broadcast (CB) Scheme

In stateSk = (Ik, Jk), each transmitteri ∈ Ik sends a
common message at rateRk

i to the set of all its receiversΓi
−.

Each receiverj ∈ Jk must decode the messages from the
set Γj

+ of all the transmitters connected toj. The decoding
constraints at each receiver for achievability are the constraints
for the multiple access channel corresponding to the SIC
receiver. Therefore, the achievable rate region for each state
Sk is defined by the following set of constraints:

∑

i∈A

Rk
i ≤

1

2
log

(

1 +

∑

i∈A h2
ijP

σ2

)

, (2)

for all A ⊆ Γj
+ and for all j ∈ Jk. When each transmitter is

connected to all receivers, i.e.,Γi
− = Jk for eachi ∈ Ik, then

the above region is the same as the compound multiple access
rate region in [14].



B. Superposition Coding (SC) Scheme

In this scheme, in stateSk, each transmitteri ∈ Ik sends
independent messages to each of its receivers inΓi

− using
superposition coding. Let the codeword transmitted to receiver
j from transmitteri be xij . Let the power used for this
codeword bePj = αijP andRk

ij be the rate. Therefore, the
transmitteri transmits a superposition of codewords given by
xi =

∑

j∈Γi
−

xij . The received word at receiverj is

yj =
∑

i∈Γj
+

hij

∑

l∈Γi
−

xil +wj .

For simplicity of notation, we assume that thedi− receivers
in Γi

− are arranged in descending order of channel magnitude
from transmitteri, andΓi

−[p : q] denotes the set of elements
of Γi

− starting from thepth element to theqth element. Each
receiverj decodes the codewords intended for itself and all
otherweakerreceivers from each transmitter. Let receiverj be
the lthi receiver inΓi

−. The codewords of the weaker receivers
Γi
−[li + 1 : di−] are canceled in the SIC receiver. Therefore,

only the codewords to the stronger receiversΓi
−[1 : li − 1]

will interfere. The received word can be written as

yj =
∑

i∈Γj
+

∑

l∈Γi
−

[1:li−1]

hijxil

︸ ︷︷ ︸

interference codewords

+
∑

i∈Γj
+

hijxij +
∑

i∈Γj
+

∑

l∈Γi
−

[li+1:di
−

]

hijxil

︸ ︷︷ ︸

decoded codewords

+wj .

Therefore, the achievable rate region for each stateSk is
defined by the following set of constraints:

Rk
ij ≤

1

2
log







1 +

h2
ijαijP

σ2 +
∑

l∈Γi
−

[1:li−1]

h2
ijαilP








, (3)

∑

j∈Γi
−

αij ≤ 1, ∀i ∈ Ik, (4)

∑

(p,q)∈A

Rk
pq ≤

1

2
log









1 +

∑

(p,q)∈A

h2
pjαpqP

σ2 +
∑

i∈Γj
+

∑

l∈Γi
−

[1:li−1]

h2
ilαilP









,(5)

∀A ⊆ Qj = {(p, q) : p ∈ Γj
+, q ∈ Γp

−[li : d
i
−]} and∀j ∈ Jk.

Using superposition coding allows each transmitter to send
messages to a subset of its receivers. Thisreceiver selection
ability allows better spatial reuse.

C. Dirty Paper Coding (DPC) - CB Scheme

In the DPC-CB scheme, the source is assumed to know
the messages transmitted by all the relays since all messages
originate from the source. Therefore, whenS ∈ Ik, Dirty

Paper Coding (DPC) is used by the source to cancel inter-
ference to its receiver caused by simultaneous transmissions
from relay nodes. Other transmitters inIk transmit common
messages similar to the CB scheme. The receiverr to which
the source is sending its DPC-coded message at rateRk

s is
not affected by interference from other relays and will decode
only this message. The other receivers must decode all the
messages from all the transmitters (except the source) thatare
connected to it. For example, in the stateS1 shown in Fig.
1, S transmits a DPC-coded message toR2 using its prior
knowledge of the messages transmitted byR1 andR3 (and
the corresponding channel gains). ReceiverR4 decodes the
common messages transmitted byR1 and R3, and receiver
D decodes the common message transmitted byR3. For the
above DPC-CB scheme, the achievable rate region for state
Sk is given by the following constraints:

Rk
s ≤

1

2
log

(

1 +
h2
srP

σ2

)

, (6)

∑

i∈A

Rk
i ≤

1

2
log

(

1 +

∑

i∈A h2
ijP

σ2

)

,

(
∀A ⊆ Γj

+

∀j ∈ Jk \ r

)

.(7)

D. Optimization Model

Now, we present the optimization problem to be solved
to compute the achievable rate from sourceS to destination
D in the multistage relay network. The optimization model
from [15] is adapted to incorporate the appropriate rate region
constraints for the MDF schemes proposed earlier.

Let xk
ij denote the information flow rate from nodei to

nodej in stateSk towards the sink. Letxk
i denote the total

information flow out of nodei in stateSk. The optimization
problem can be stated as:

max
{xk

ij},{λk}
R, subject to: (8)

• Flow constraints: For alli ∈ V , we have

∑

{k:i∈Ik}

∑

j∈Γi
−

xk
ij−

∑

{k:i∈Jk}

∑

j∈Γi
+

xk
ji =







R if i = S
−R if i = D
0 else

.

• Scheduling constraints:
∑

k λk ≤ 1 andλk ≥ 0 ∀k.
• Rate region constraints: The achievable rate region con-

straints for each state depend on the encoding and de-
coding scheme used. The rate constraints for each of the
three proposed schemes for each stateSk are as follows:

1) CB scheme:
∑

j∈Γi
−

xk
ij ≤ xk

i , ∀i ∈ Ik, (9)

∑

i∈A

xk
i ≤ λk(RHS of (2)),

(
∀A ⊆ Γj

+

∀j ∈ Jk

)

,(10)

where RHS of (2) is the right hand side of (2).
2) SC scheme: Equation (4), and:

xk
ij ≤ λk(RHS of (3)), ∀i ∈ Ik, (11)

∑

(p,q)∈A

xk
pq ≤ λk(RHS of (5)), (12)



for all A ⊆ Qj and for all j ∈ Jk.
3) DPC-CB scheme:

∑

j∈Γi
−

xk
ij ≤ xk

i , ∀i ∈ Ik, (13)

xk
s ≤ λk(RHS of (6)), (14)

∑

i∈A

xk
i ≤ λk(RHS of (7)), (15)

for all A ⊆ Γj
+ and for allj ∈ Jk \ r.

For the CB and DPC-CB schemes, the above optimization
problem is a linear program. However, for the SC scheme, it
is not a linear program since the power sharing variablesαij ’s
are also optimized. Therefore, the numerical solutions forthe
SC scheme are computed using the constrained optimization
function fminconin MATLAB.

V. NUMERICAL RESULTS

We evaluate and compare the rate achieved by the MDF
schemes: (1) CB, (2) SC, and (3) DPC-CB for two different
network topologies and channel realizations. The cheap relay
cut-set upper bound for half-duplex relay networks and the
rate achieved by the IA scheme are also evaluated. The rate
achieved by each scheme is obtained by solving the optimiza-
tion problem in (8) with appropriate rate region constraints.

Since the diamond network has been studied in detail in [7],
[8], we skip details and simply mention that the proposed MDF
protocols recover similar results for the diamond network.

A. Two stage relay network
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Fig. 2. α = 1, γ = 1, vary β.

We first consider the two-stage relay network shown in Fig.
1. For evaluating the cut-set bound, all the22 ·34 = 324 states
were considered. The states that avoid interference (called IA
states) are the states with a single transmitting node. For the
proposed MDF protocols, interference network states with two
transmitters (

(
5
2

)
= 10 states) and some states with three

transmitters (5 out of
(
5
3

)
= 10 states) are used along with

the IA states. Two of the states with three transmitters are
shown in Fig. 1 for illustration. In Fig. 2, the cut-set bound,
determined by the source cut, is at 1 for allβ. For large

β, the states used areS3 = ({S,R2, R3}, {R1, R4, D}) and
S4 = ({S,R1, R4}, {R2, R3, D}). The receivers in both these
states see strong interference, which can be canceled at the
receiver. For instance, in stateS3, the receiverR1 can decode
the source’s message in the presence of strong interference
from R2 and R3. Because of this, all three MDF schemes
achieve capacity of 1 by equal time-sharing of statesS3 and
S4. For smallβ, common broadcast at the relays is limited
by a weak receiver with close-to-zero capacity. Superposition
coding, which enables different rates to receivers, provesto be
better at low values ofβ. For SC, statesS1 andS2 (shown in
fig. 1) are chosen, and the rate is limited by the interferenceat
relaysR1 andR2. DPC is marginally weaker, since the relays
continue to do common broadcast when the source does DPC.
However, whenβ = 1 (0 dB), DPC is better as SC becomes
identical to CB for identical channel gains.
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Fig. 3. α = 1, β = 1, vary γ.

In Fig. 3, the cut-set bound, determined by the source cut,
is at 1 for all γ. For γ > 1, the DPC-CB scheme achieves
the cut-set bound for lowerγ than SC and CB schemes. DPC
achieves capacity by time-sharing the statesS1 andS2. The
interference at relaysR1 and R2 are canceled using DPC,
while the interference atR3 andR4 is overcome because the
gains of theR2 → R3 andR1 → R4 links increase withγ.
The same states are used for the SC scheme as well. However,
interference atR1 andR2 are overcome only for largerγ. For
very largeγ, CB scheme also approaches the cut-set bound
by time-sharing between the states({S,R4}, {R1, D}) and
({R1}, {R4}). For smallγ, we see that DPC-CB achieves a
rate of 0.7, while the SC and CB achieve rates of0.67 and
0.55 respectively. For both DPC-CB and CB schemes, states
S3 andS4 are chosen. While the interference atR3 andR4

limits the DPC-CB scheme, the CB scheme is limited by the
interference at relaysR1 andR2.

B. Rectangular grid network

Consider the4×3 rectangular grid network shown in Fig. 4.
Since the number of possible states is prohibitively large,we
first select three non-overlapping paths from the source node



S = 2 to the destination nodeD = 11. We know from the
two-stage relay network example that multiple flow paths used
appropriately with interference processing can be effective.
The paths chosen areS → 4 → 7 → D, S → 5 → 8 → D
andS → 6 → 9 → D. Using the nodes on these paths, the
three states chosen for scheduling are({S, 6, 8}, {4, 9, D}),
({S, 4, 9}, {5, 7, D}), and({S, 5, 7}, {6, 8, D}). Note that the
source node is a transmitter and the destination node is a
receiver in all three chosen states. Also, the other two trans-
mitters are chosen to be at different distances from the source.
With this choice of states, we have a two-stage relay network
with six relay nodes{4, 5, 6, 7, 8, 9} aiding communications
from the source to the destination.
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Fig. 4. 4× 3 Grid Network.

In Fig. 5, the gainsβ and γ are set to 1, and the gainα
is varied. We notice that the DPC-CB scheme approaches the
capacity for a large range of values ofα > 1. The CB and
SC schemes are limited by the interference at relays 4 and 5
even for largeα. For smallα, the DPC-CB and CB schemes
are limited by the common broadcast constraint at the relays.
While SC scheme can perform better, it is still limited by
interference at relays 4 and 5 compared to the cut-set bound.
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In summary, in larger networks, the choice of schedule is
important. We have used a path-based heuristic and relied on
interference-processing for approaching the cut-set bound.

VI. CONCLUSIONS

Based on this work, two interesting comparisons are pos-
sible for multistage half-duplex relay networks based on the

cut-set bound. For the network in Fig. 1, the cut-set bound
evaluates toCpp = log(1+α2P/σ2), which can be interpreted
as the capacity of a point-to-point link with power constraint
P and channel gainα. Using the protocols in this work, we
have shown that rates up toCpp are achievable by multistage
half-duplex relaying in the network of Fig. 1 for certain ranges
of the channel gainsα, β and γ. A necessary condition for
achieving the point-to-point capacity under the half-duplex
constraint is that the source needs to be in transmit mode at all
times. From our work, it appears that continuous transmission
by the source and information transfer through the half-duplex
relays is possible as long as there are two or more non-
overlapping paths from the source to the destination (whichis
true in Figs. 1 and 4). Further, coding in interference networks
created by multiple transmitters and receivers of the relay
network is crucial for enabling the information flow.

The second comparison is with full-duplex relays. The
achievable rate even with full duplex relays is bounded by the
sum rate across the source-broadcast cut, which is equal to
Cpp, for the network in Fig. 1. Once again, we observe from
our work that two non-overlapping paths through the relays
and interference-network coding enable a half-duplex relay
network to achieve the full-duplex cut-set bound for certain
ranges of channel gains.
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