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Abstract—In a multi-user millimeter (mm) wave communica-
tion system, we consider the problem of estimating the channel
response between the central node (base station) and each of
the user equipments (UE). We propose three different strategies:
1) Each UE estimates its channel separately, 2) Base station
estimates all the UEs’ channels jointly, and 3) Two stage process
with estimation done at both UE and base station. Exploiting
the low rank nature of the mm wave channels, we propose
a generalized block orthogonal matching pursuit (G-BOMP)
framework for channel estimation in all the three strategies. Our
simulation results show that, the average beamforming gain of
the G-BOMP algorithm is higher than that of the conventional
OMP algorithm and other existing works on the multi-user mm
wave system.

Index Terms—millimeter wave beamforming, multi-user com-
munication, block orthogonal matching pursuit, beamforming
gain.

I. INTRODUCTION

The availability of large spectral bandwidth in the under-

utilized millimeter (mm) wave frequency bands makes the

mm wave communication system a potential candidate for the

5G cellular technology [1]–[4]. Equipped with sophisticated

analog-digital hybrid architectures, mm wave systems combat

path losses by highly directional beamforming. Proper design

of the beamforming precoders and combiners require the

knowledge of the channel state information.

The mm wave channel with uniform linear array (ULA) at

both transmitter and receiver is modeled as weighted sum of

array responses for each path [5]. Each path is composed of

two spatial frequencies which depend on the angle of departure

(AoD) at the transmitter and angle of arrival (AoA) at the

receiver. Since the number of paths is small compared to the

dimension of the ULA, several compressive sensing based

channel estimation schemes were developed for single-user

mm wave systems in [6]–[8].

For multi-user mm wave systems, [9] proposed a channel

estimation strategy at the base station (BS) using fast iterative

shrinkage thresholding algorithm (FISTA). In [10], a training

scheme was introduced where user equipments (UE) estimate

the channels using orthogonal matching pursuit (OMP). An

asymmetric channel estimation method was proposed in [11],

where the UE and base station estimate the channels individu-

ally (but details of estimation algorithms are lacking). All these

methods assume that the spatial frequencies corresponding to

the AoA and AoD of each path fall exactly in the grid points of

DFT matrices (integer multiples) of ULA sizes. In practice, the

spatial frequencies may not fall exactly in the DFT bins and

hence spectral leakage occurs. Since the leakage is concen-

trated around the spatial frequency, we propose a generalized

block OMP (G-BOMP) framework for channel estimation in

multi-user mm wave systems. Our main contributions in this

paper include:

• We consider three different training and estimation strate-

gies: 1) Separate estimation at each UE. 2) Joint esti-

mation at the base station. 3) Two stage process with

estimation at both mobiles and base station.

• We propose a G-BOMP framework which can be em-

ployed for all the above three strategies.

• We show that the proposed G-BOMP framework per-

forms better than the conventional OMP algorithm and

other existing training/estimation strategies [9], [10].

Notations: (.)∗, (.)T and (.)H indicate conjugation, trans-

pose and hermitian operations respectively. ⊗ denotes Kro-

necker product and vec(A) gives a vector obtained by vertical

concatenation of columns of the matrix A. IK and FK denote

an identity matrix and unitary FFT matrix respectively, of size

K ×K .

II. SYSTEM MODEL

A. Channel Model

Consider a mm wave communication system comprising of

a base station and L user equipments. Let the BS be equipped

with a ULA consisting of Nb antenna elements and let each

UE contain a ULA with Nu antenna elements. We adopt the

channel model used in [5]–[8] and define the channel from the

BS to the ith UE as,

Hi =

√

NuNb

Ki

Ki
∑

k=1

αi(k)abi(k)aui(k)
H , (1)

where Ki is the total number of multi-paths, αi(k) is the gain

of kth multi-path linking the ith UE and the BS, and abi(k)
and aui(k) are the ULA responses at the BS and the ith UE

respectively for the kth multi-path. We model αi(k), ∀i =
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1, 2, ..., L and ∀k = 1, ...,Ki as i.i.d. circular Gaussian with

variance σ2
α. The ULA response vectors are given by,

ali(k) =
1√
Nl

[1 ejΩli(k) ... ej(Nl−1)Ωli(k)]T , (2)

where l ∈ {b, u}, Ωui(k) = 2π d
λ
sin(φui(k)), Ωbi(k) =

2π d
λ
sin(φbi(k)), d is the spacing between the antenna el-

ements in the ULA, λ is the operating carrier wavelength,

φui(k) and φbi(k) are the angles of departure (AoD) and ar-

rvial (AoA) respectively, for the kth multi-path corresponding

to the channel between BS and ith UE, and are uniform in a

subset of [−π, π].

B. Block Sparse Structure

Each path in (1) has the array responses (2), which are

complex exponentials with spatial frequencies Ωbi(k) and

Ωui(k). Hence, the channel matrix Hi in (1) is sparse in

Fourier domain. To understand the structure, let us define the

2−D DFT of Hi as,

Hω
i = FH

b HiFu, (3)

where Fb and Fu are DFT matrices of size Nb and Nu

respectively. Since AoA φbi(k) and AoD φui(k) in (2) are

typically uniformly distributed in a subset of [−π, π], the

spatial frequencies will not fall exactly in the DFT bins (i.e.,

will not be an integer multiple of 2π
Nb

or 2π
Nu

). Hence, in

the DFT domain, we encounter spectral leakage, which is

concentrated around the exact spatial frequencies.

In Figure (1), we illustrate the sparse structure of Hω
i , by

shading each square based on the sum of magnitude of the

DFT grid points which enclose that square. Since the spectral

leakage is negligible for the grid points which are far from

the actual spatial frequencies, Hω
i can be approximated as a

2−D block sparse matrix, with each path contributing to a

non-zero square block, say of size (b × b). Depending on the

actual values of the spatial frequencies, the non-zero square

blocks in Hω
i may or may not be overlapping.

C. Reception Model

We assume a hybrid beamforming system architecture [5]

for the BS and for all UEs, with single stream communication.

In the downlink, if the BS transmits data symbol s, using a

beamforming vector u (of size Nb × 1), then the final output

at the ith UE will be,

zi = vH
i HH

i us+ ni, i ∈ {1, 2, ..., L}, (4)

where vi (of size Nu × 1) is the beamforming vector used by

the ith UE. Note that, HH
i is the channel seen from the ith

UE to the BS and ni is the circular additive gaussian noise

(CWGN) with variance σ2
u.

Similarly, in the uplink, if wui is the beamforming vector

assigned to the ULA at the ith UE, where i = 1, 2, ..., L, then

the signal observed at the BS, which applies a beamforming

weight wb, is given by,

y = wH
b

L
∑

i=1

Hiwuixi + n, (5)

where Hi is the millimeter wave channel from the BS to the

ith UE, xi is the data symbol sent by the ith UE and n is

CWGN with variance σ2
b .
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Fig. 1. Magnitude plot of Hω

i
with Nu = 32, Nb = 64, Ki = 5.

III. CHANNEL ESTIMATION STRATEGIES

A. Method 1: Channel Estimation at individual UEs

In this method, each UE estimates its corresponding channel

Hi based on the training signals sent by the base station.

Suppose we consider a training phase of duration M , where

UE makes measurements of the form (4), with the mth

measurement at the ith UE denoted by,

z
(m)
i = v

(m)H
i HH

i u(m)s(m) + n
(m)
i , i = 1, ..., L.

Here, u(m) (v
(m)
i ) denote the beamforming weight used by

the BS (and ith UE) during the mth measurement. We assume

that the training symbol s(m) = 1, ∀m ∈ {1, 2, ...,M}. With

hi = vec(Hi), above equation can be re-written as,

z
(m)H
i = (v

(m)T
i ⊗ u(m)H)hi + n

(m)H
i .

From (3), we have

hi = Ψhω
i , (6)

with Ψ = F∗
u ⊗ Fb and hω

i = vec(Hω
i ). Collecting the M

observations into a vector, zi = [z
(1)H
i ... z

(M)H
i ]T , we get,

zi = AiΨhω
i + ni, i = 1, 2, ..., L, (7)

where ni = [n
(1)H
i ... n

(M)H
i ]T and the mth row of Ai is

v
(m)T
i ⊗u(m)H , m = 1, ...,M . For the observation model (7),

we present a generalized block OMP framework in Section IV,

to reconstruct hω
i , which is the vectorized version of a 2-D

block sparse matrix Hω
i . Once the UEs estimate their channels,

they also compute the optimal precoding weights to maximize



the beamforming gain using singular value decomposition, and

feedback the beamforming weights to the BS individually.

B. Method 2: Joint Channel Estimation at BS

In this method, UEs send training signals simultaneously

and M measurements are made at the BS. We set the beam-

forming vectors of all the UEs to be the same during the

training phase, i.e., wui = wu, for all i ∈ {1, 2, ..., L}. Then,

the observation model in (5) becomes,

y = wH
b

(

L
∑

i=1

Hixi

)

wu + n. (8)

Above equation (8) can be re-formulated as,

y = (wT
u ⊗wH

b )
L
∑

i=1

vec(Hi)xi + n = (wT
u ⊗wH

b )Hx+ n,

where H = [h1 h2 ...hL] and x = [x1 ... xL]
T . Further, we

get,

y = (xT ⊗ (wT
u ⊗wH

b ))h+ n, (9)

where h = vec(H). Using (6), we have h = Φhω, where

hω = [(hω
1 )

T ... (hω
L)

T ]T and Φ = IL ⊗ Ψ. Suppose M

measurements of the form (9) are obtained, i.e., y(m) =
(x(m)T ⊗ (w

(m)T
u ⊗ w

(m)H
b ))Φhω + n(m), m = 1, 2, ...,M ,

and y = [y(1) ... y(M)]T , then,

y = BΦhω + n, (10)

where the mth row of B will be (x(m)T ⊗(w
(m)T
u ⊗w

(m)H
b ))

and n = [n(1) ... n(M)]T . Since hω in the observation model

(10) is concatenation of vectors from 2−D block sparse

matrices, we use G-BOMP framework from Section IV to

recover channels of all the UEs jointly. Once the channels

are estimated and the optimal weights are computed, the BS

informs all the UEs about their corresponding beamforming

vectors via feedback.

C. Method 3: Two Stage Channel Estimation Strategy

In this method, the estimation process is done in two stages.

In the first phase, UEs will estimate the channel using M1

pilots sent by the BS (Method 1). In the second phase, the

UEs will assign the estimated optimal beamforming vector

to the ULA and transmit M2 pilots to the BS. BS will use

these pilots and determine its optimal beamforming weights

corresponding to each UE. For this method, the total training

duration is M = M1+M2 and we do not require any feedback

mechanism to convey the optimal weights.

First phase proceeds as per Method 1 from Section III-A

with M1 measurements. Now, let u
[i]
opt be the estimated optimal

beamforming vector for the ith UE. In the second phase, BS

obtains M2 measurements with all the UEs choosing their

optimal weights for precoding. The mth (m = 1, ...,M2)

measurement at the BS will then be,

y(m) = w
(m)H
b

(

L
∑

i=1

Hiu
[i]
opt x

(m)
i

)

+ n(m). (11)

In order to discuss the estimation process at the BS, we make

an approximation that u
[i]
opt will be oriented along the path

corresponding to the largest gain αi(k) in (1). Assuming that

|αi(1)| is the largest, we approximate that u
[i]
opt ≈ aui(1) (Note

that we have u
[i]
opt = aui(1) for a single rank channel matrix).

With this approximation, we get,

Hiu
[i]
opt ≈

√

NuNb

Ki

[

αi(1)abi(1)

+

Ki
∑

k=2

αi(k)abi(k)aui(k)
Hu

[i]
opt

]

,

and equation (11) can be re-formulated as,

y(m) ≈ w
(m)H
b

L
∑

i=1

√

NuNb

Ki

αi(1)x
(m)
i abi(1) + ñ(m),

where ñ(m) = w
(m)H
b

[ L
∑

i=1

Ki
∑

m=2
αi(m)abi(m)aui(m)Hu

[i]
opt

x
(m)
i

]

+ n(m). In the above equation, each abi(1) is a

complex exponential with spatial frequency Ω
(1)
bi . Denoting

√

NuNb

Ki
αi(1)abi(1) as ci, we get,

y(m) = w
(m)H
b [c1 c2 ... cL]x

(m) + ñ(m),

where x(m) = [x
(m)
1 x

(m)
2 ... x

(m)
L ]T . Suppose ci = Fbc

ω
i ,

where cωi is a 1−D block sparse vector with spectral

leakage concentrated around the frequency Ω
(1)
bi and y =

[y(1) ... y(M2)]T , then,

y = DΓcω + ñ, (12)

where the mth row of D is (x(m)T ⊗ w
(m)H
b ), m =

1, ...,M2, ñ = [ñ(1) ... ñ(M2)]T , Γ = IL ⊗ Fb and cω =
[(cω1 )

T ... (cωL)
T ]T . Observation model (12) can again be

solved using generalized block OMP framework discussed

in Section IV by specializing it to the 1−D case. Here,

we directly obtain the optimal beamforming weights abi(1)
without estimating the entire channel at the BS. Note that

effective noise term in (12) includes contributions from all

multi-path components except the strongest one. This multi-

path interference will become the limiting factor when noise

power σ2
u is small in the estimation model in (12).

D. Training Beamforming vectors and Signals

All the three estimation strategies involve certain beamform-

ing weights (at each measurement m) to be used at the BS

such as {w(m)
b ,u(m)} and at the UE such as {w(m)

u ,v
(m)
i }

and training symbols used at the UE {x(m)
i }. We generate all

the entries in the beamforming vectors and training symbols

using i.i.d. Bernoulli distribution with entries being {±1}
equally likely. We then normalize the beamforming vectors

to have unit norm. The training beamforming vectors and

training symbols are revealed to both BS and UE so that

they can perform the channel estimation. Since our training

beamforming vectors are binary, they can be (very) easily



implemented in RF chains when compared with other training

methods which use complex phases (of the form ejθ) as in

[10] or [9].

IV. GENERALIZED BLOCK OMP FRAMEWORK

We consider the block sparse signal recovery framework for

the estimation of channel matrices Hw
i from our measurement

models. However, the block OMP algorithm from [12] is

developed for the case when the block sparse vector is apriori

partitioned into disjoint sub-blocks, out of which few are non-

zero. In our model, such disjoint apriori partitioning is not

possible since the non-zero blocks (squares) in Hw
i depend

on the actual spatial frequencies of each path. Hence, we

propose a generalized version of block OMP algorithm (G-

BOMP), which will be applied to solve the mm wave channel

estimation problem, for all the three strategies in Section III.

Consider a g1 × g2 matrix, G = S1ES2, where E (of size

P ×Q) is a K ′−block sparse matrix, i.e., there exists at most

K ′ non-zero blocks of order b×b at arbitrary locations, with all

remaining entries being zero. Consider the noisy observation

model y = ASe+ n, where S = (ST
2 ⊗ S1) and e = vec(E)

and A is the measurement matrix of size m′ × PQ.

First we define sub-blocks of the matrix E. The illustration

is given below for b = 2. Define sets P = {1, ..., P} and

Q = {1, ..., Q}. Let Bp,q with p ∈ P , q ∈ Q, define a

sub-block of size b × b with top left entry being ep,q. For

example, in the below picture B1,2 is a square containing

the entries {e1,2, e1,3, e2,2, e2,3} and BP,4 contains the entries

{eP,4, eP,5, e1,4, e1,5}. Let the index set Jp,q denote the loca-

tions of the entries of Bp,q in the vector e. From the illustration

below, J1,1 = {1, 2, P +1, P +2}. For a given p and q, Jp,q

is obtained as follows: Let rk1,k2
= p+ k1 + (k2 + q − 1)P ,

where k1, k2 ∈ {0, 1, ..., b − 1}. Suppose rk1,k2
exceeds

(q + k2)P , then modify rk1,k2
as rk1,k2

− P . Refine rk1,k2
=

rk1,k2
modPQ. Then, Jp,q =

b−1
⋃

k1=0

b−1
⋃

k2=0

{rk1,k2
}.

e1,1 e1,2 e1,3 e1,4 e1,5 ... e1,Q

e2,1 e2,2 e2,3 e2,4 e2,5 ... e2,Q
... ... ... ... ... ... ...
eP,1 eP,2 eP,3 eP,4 eP,5 ... eP,Q





















Let B = {Bp,q}p∈P,q∈Q be the collection of valid sub-

blocks of E, that is, the set of all the possible non-zero blocks

in E. Let J = {Jp,q}p∈P,q∈Q denote the corresponding

collection of index sets.

The inputs to the G-BOMP algorithm are y, Ā = AS, a

collection of valid sub-blocks B and the corresponding index

sets J and a stopping criterion.

1) Initialize variables: r = y, M = 0P×Q (all zero matrix)

and I = ∅. Iteration t = 1;

2) Compute: b = ĀHr.

3) Assign [M]p,q as ||bJp,q
||2, for every Jp,q ∈ J . Here,

bJp,q
is a sub-vector containing entries from b located

at positions dictated by the index set Jp,q .

4) Evaluate (λr(t), λc(t)) = arg max
(p,q)∈P×Q

[M]p,q.

5) Store the identified index points: I = I ∪ Jλr(t),λc(t).

6) Compute xt = argmin
x

||y−ĀIx||2, where ĀI is a sub-

matrix of Ā, containing those columns of Ā indexed by

I.

7) Update the residue as, r = y − ĀIxt.

8) Increment t by 1. If the stopping criterion described

below is satisfied, then stop. Else, go to step 2.

When the algorithm stops, the estimate of e is obtained as,

ê = (ĀH
I ĀI)

−1ĀH
I y. The stopping criterion is: t ≤ K ′ or

||ĀHr||2∞ ≤ τ , where the threshold τ is appropriately chosen

based on the operating SNR and the number of measurements

used.

In a typical mm wave communication system, since the

number of multi-paths is very small [13], [14], we assume

that Ki ≤ Kmax, for all i = 1, ..., L and for some positive

integer Kmax.

The channel estimation models in Section III can be for-

mulated in the G-BOMP framework directly. For instance,

when the individual UEs estimate their corresponding channels

(in Method 1 Section III-A and first phase in Method 3 in

Section III-C), we have E = Hω
i and K ′ = Kmax. In the case

of BS jointly estimating all the channels (Method 2 in Sec-

tion III-B), we have E = [Hω
1 , · · · ,Hω

L] and K ′ = LKmax.

The 1 − D version of G-BOMP can be easily obtained by

setting Q = 1, which is needed for the second phase of Method

3. In all these cases, the set of all the possible non-zero blocks

can be specified by considering the range of spatial frequencies

in the channel model (and by neglecting the leakage outside

b× b squares centered around the spatial frequencies).
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V. SIMULATION RESULTS

We studied the performance of our G-BOMP algorithm via

simulations. The parameters considered are: Nb = 32 = 2Nu,
d
λ
= 1

2 , b = 2, block size for 1−D G-BOMP algorithm is 4,

φbi(k), φui(k) are i.i.d. random variables uniform in [−π
2 ,

π
2 ],

∀k = 1, 2, ...,Ki and i = 1, ..., L, σ2
α = 1. We assume

Ki = K, ∀i = 1, 2, ..., L, Kmax = 3 and σ2
u = σ2

b = σ2.

Further, in our simulations, we assume the mm wave channels,

Hi, ∀i = 1, ..., L, to be, Hi = FbbH
ω
i F

H
uu, where Fbb (Fuu)

is an Nb × 2Nb (Nu × 2Nu) Fourier matrix. We studied the

performance of our G-BOMP algorithm in terms of the average

beamforming gain (γ) achieved, which is defined as,

γ =
1

L

L
∑

i=1

|ŵ(i)H
opt Hi f̂

(i)
opt |2, (13)

where ŵ
(i)
opt and f̂

(i)
opt are the left and the right singular vectors

of Ĥi (the estimate of Hi). We compare the performance of

our G-BOMP algorithm with the OMP algorithm, the FISTA

method [9] and a training scheme proposed in [10] (Random

Phase (RP) method).
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Figure (2) plots γ in (dB) as a function of SNR, which is

defined as 1
σ2 . Parameters used are: L = 4, K = 2, M = 225,

M1 = 125 and M2 = 100. We observe the following:

1) γ increases with SNR for all schemes and G-BOMP is

better than other techniques in each method. However,

the rate at which γ increases, decays with SNR.

2) γ of Method 1 is higher than that achieved in Methods

2 and 3, reason being that each UE estimates its channel

without any interference from the other UEs. Also, since

Method 2 jointly re-constructs the channels, i.e., the

entity to be estimated is of larger dimension, it requires

larger M to achieve the same level of performance as

that of Method 1.

3) In the low SNR regime, Method 3 is better than Method

2. But Method 2 becomes superior to Method 3 at higher

values of SNR, e.g., SNR ≥ −3dB. This is because

when SNR is high, the direction with the largest gain

sees increased interference from the paths corresponding

to other spatial frequencies in Method 3, as per our

remarks following equation (12).

Figure (3) analyzes the variaion of γ w.r.t M . We assume

M1 = 2
3M , K = 2, L = 4 and SNR = −10dB. As expected,

the average beamforming gain of all methods increases with

the value of M . In particular, γ of G-BOMP in a method is

found to exceed γ of other schemes for that method.

VI. CONCLUSION

In this article we presented three different strategies of es-

timating mm wave channels in a multi-user scenario, namely:

1) UEs estimating their channels separately, 2) BS jointly

estimating all the channels, and 3) Two stage process where

both UEs and the BS estimate the channels. We exploited

the sparse nature of mm wave channels and proposed a

generalized BOMP algorithm to estimate them in all the three

strategies. Our simulation results show that our G-BOMP

algorithm performs better compared to the OMP algorithm

and other prior works in terms of the average beamforming

gain achieved.
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