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ABSTRACT has temporal correlations (intra-channel correlation)he T

Various compression algorithms for multi-channel eleetro ~ Single-channel EEG compression algorithms, when extended
cephalograms (EEG) are proposed and compared. The mulgirectly to muIt|-ghanneI EEG, will bg inefficient as theent
channel EEG is represented as a three-way tensor (or 3@1ann_el correlatllons are not eprmtgd. For muIt|-chan.neI
volume) to exploit both spatial and temporal correlatioifis e EEG, intra- and inter-channel correlations must be exptbit
ciently. A general two-stage coding framework is developedogether for efficient compression.

for multi-channel EEG compression. In the first stage, we Multi-channel EEG compression is less intensively stud-
consider (i) wavelet-based volumetric coding; (i) energy i€d, and one could find only few instances in the literature;
based lossless compression of wavelet subbands; (iiptensWe categorize the algorithms into lossless [3, 4] and lossy
decomposition based coding. In the second stage, the e¢sidd] methods. All multi-channel compression schemes con-
is quantized and coded. Through such two-stage approachider inter- and intra-channel correlation separately, e
one can control the maximum error (worst-case distortion)loit them by different techniques. However, intra- aneint
Numerical results for a standard EEG data set show th&hannel correlations are often not independent and exoit
tensor-based coding achieves lower worst-case error arlgeéminasinge step may improve efficiency. We explore ways

comparable average error than the wavelet- and energytbas® arrange the multi-channel EEG in suitable form, particu-
schemes. larly, to exploit both types of correlations in a single step

In our previous work [2], we introduced a pre-processing
technique where single-channel EEG is arranged as a matrix
before compression; this representation improved the-Rate

1. INTRODUCTION Distortion (R-D) performance over conventional compressi
schemes. Extending our previous work, in [9] we explored
Electroencephalogram (EEG) is a recording of the eledtricaseveral ways to arrange multi-channel EEG as matrices and
activity of the human brain, usually acquired by a numbeitensors, and evaluated several matrix/tensor decompuositi
electrodes placed on the scalp. In the past decade, there Hashniques based on their R-D performance. Here we present
been tremendous growth in EEG based research activitiea, more systematic study of multi-way (or volumetric) rep-
e.g.,automated EEG analysis for diagnosis of neurologicatesentations of multi-channel EEG for the purpose of com-
diseases, and brain computer interfacing (BCI) [1]. In mospression; we consider several compression schemes that use
applications, EEG recordings are done for an extended psuch representations, more specifically, based on 3D wavele
riod, and long-term recordings often generate massive EEGansforms or tensor decompositions. Moreover, we develop
data sets. Therefore, EEG compression plays an importaattwo-stage framework for compression: in the first stage we
role for efficient storage and transmission. The main chalcompress the EEG by means of volumetric coding, tensor
lenges for EEG compression are as follows: decomposition and energy-based coding of significant sub-

« the number of EEG channels can be large (e.g., 256), bands; in the second stage, we apply arithmetic coding to the
. . . time residual for the first two algorithms and wavelet-damai

o the sampling rate can be high (several kHz) in orderto_ . : : . L

. . . residual for third algorithm, after uniform quantizatidduch

capture evoked potentials and high frequency oscilla: : .

tions two-stage compression scheme allows us to bound the maxi-
' mum (worst-case)distortion. We discuss the compressien pe

Many techniques have been developed for compresgermance of the three compression algorithms by means of an

ing EEG (see, e.g., [2] and references therein). Howevegverage and worst-case distortion measure.

those methods often compress individual channel sepgratel  This paper is structured as follows. In Section 2 we ex-
EEG signals from adjacent channels are often strongly €orrelain the multi-way (or volumetric data) representation of

lated (inter-channel correlation), and each individuaraiel — multi-channel EEG. We outline our compression algorithms

Index Terms— arithmetic coding, three-way tensor, ten-
sor decomposition, wavelet transform
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Fig. 1. Formation of 3D volume from multi-channel EEG. (a) The mesi Z(Nl’l)(k) Z(Nl’Q)(k) o Z(NlaN2)(k) (N1xN3)

(I1,I2,...,Ipr) formed from single-channel EEG are stacked as volume ) ) o

(“tdt/s volume”). (b) At any time instance, we form matrof the multi- ~ Wherei andj refer to the position in the-y plane, whereas
channel EEGA & B denote samples from adjacent electrodes in EEG monthe slice numbek refers to the time index. The dimension of
tage). N such matrices formed at subsequent time instances aretteked thex — y plane is limited by the number of channels, and the

along thez-direction to form a volume (“s/s/t volume”). . .
slices in thex — y plane may be square or rectangular.

in Section 3, and present our results in Section 4, followed b 3. COMPRESSION ALGORITHMS
concluding remarks in Section 5. We first perform lossy coding (Stage 1), followed by arith-

> TENSOR/NOLUMETRIC DATA EORMATION met|c coding of the quantlzgd reS|du_aIs (Stage 2). We_ con-
FROM EEG sider three lossy compression algorithms (Stage 1): (i) 3D

) . ) Wavelet volumetric coding, (ii) 3D Wavelet subband specific
Spatially adjacent channels of multi-channel EEG are §§on ;i metic coding, and (iii) tensor decomposition (PARABA
correlated, and each individual channel is strongly cateesl

_ . _ . based coding. In the following we explain our three compres-
across time. To exploit both spatial and temporal correftesti

) : sion algorithms.
simultaneously, we arrange multi-channel EEG as a 3D vol-

ume or three-way tensor. We consider two specific ways t@ 1. \Wavelet-based Compression
extract a volumetric data from multi-channel EEG, where th
three axes capture spatial and temporal variations inrdifte
form. Fig. 2 shows a diagram of the proposed two-stage coder for
In Fig. 1(a) we illustrate the EEG volume formed accord-multi-channel EEG signals. We denote the EEG volumé by
ing to our first method. Thé-th slice I;. of the volumeZ,  (both types of volumes, cf. Fig 1). In the first stage, we

%.1.1. Volumetric Coding Approach

extracted from channél, can be written as: compresg with a scalable wavelet encoder based on succes-
It(;cc)lt/s ={Ik=1,...,M} (1)  sive bit-plane encoding, resulting in the compressed fata
) ) ) we use a bi-orthogonal wavelet transform (5/3 filters) as in
ik (1) i (2) o k(N our previous work [2]. The compressed d4tg is then de-

coded, yielding the reconstructed d&ta Next we quan-
tize the residue = 7 — 7, resulting ine,, which is com-
pressed by arithmetic coding, leading:ta .,,. Both are used
by the decoder to approximate the original data. The com-
From our previous studies [2, 6], we found that such arpressed datd.,, is first decoded, yielding the lossy recon-
rangement leads to improved compression performance ovetructed datd;. The date,_.,, is passed through an arith-
conventional vector-based compression schemes. Next, tiheetic decoder and then dequantized, resultingy ifihe latter
matrices associated with the single-channel EEG signals ais an approximation of the residual Eventually, the datd
stacked to form 3D volume, as shown in Fig. 1(a). Adjacentis reconstructed &8,; = Z; + ¢. The volumeZ,, is at last
slices in the tensor correspond to adjacent EEG channels. Wearranged to yield the reconstructed EEG signal(s). We can
refer to this volume as “t/dt/s”, where the y, andz direc-  readily confirm the following relations:
tions reflect temporal (t), delayed (dt) temporal, and spati T = I,+e¢ ()
(s) variations respectively. Ty = T, +& (4)

We also consider an alternative method to form a tensor
from multi-channel EEG. A matrix is formed from the multi- Therefore, it follows thafje —¢||s = ||Z—Zni||o, and hence
channel EEG at each time instance. We arrange the matrjf — é|| < d is equivalenttd|Z — Z,,;||oo < 4. The residual
such that its elements follow similar adjacency as the EEG is uniformly quantized to generate quantization indiegs
montage; for the sake of brevity, we omit the details. Wewith maximum error no larger than

’L'k(QN) ’L'k(QN—l) ik(N+1)

in(N?) (NxN)
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Fig. 2. Wavelet-based volumetric coding of multi-channel EEG

A.2. ific Arithmeti i A
Table 1. Wavelet-based subband specific coding procedure3 Subband Specific Arithmetic Coding (SAC)

In this approach, we first order the wavelet subbands based on
their relative energy density (RED). We use the same wavelet
as in volumetric coding approach (cf. Section 3.1.1). Irt firs
stage, we compress the most significant wavelet subbands

Step 1: Initialization
(a) Form the volume from the multi-channel EEG,
T <+ t/dt/s or s/s/t volume
(b) Compute the Wavelet transform of the volume.

T., = 3D-DWT(Z,D) losslessly, followed by lossy compression of the subbands
/I D-level decomposition yieldgD + 1 subband cubes with smaller energy concentration. Specifically, in thetfirs
(c) Determine theelative energy densityRED;) of the sub- stage, we apply arithmetic coding to the subbands with high-
bands { = 1"2"';_1-7 '(DJ)JQ B est RED, until a certain threshold (% of total energy) is
RED(i) = NS, Tw()? reached. The remaining subbands are less significant irsterm
whereN; is the number of elements #"* subband of their RED; we first quantize them (cf. (5)), and then ap-
(d) Coding ordeO = descendRED) ply arithmetic coding. This two-stage procedure results in
(e) Setthe threshold (% of total energy) lossy compression of the EEG signals. The pseudo-code of

Step 2: First-pass coding- Codihg of significant subbands until Set the algorithm is presented in Table 1. We code each subband
relative-energyRE = 0, = 1. separately using simple arithmetic coding where all thd-coe
while (RE < 7) o) ficients within the same subband are represented by a single

@ t%'gt[)eyamﬁg(ggodi%g Code the subband according probability model. It is noteworthy that in the second cadin

(b) RE= RE+ REDo(;) - Nogi) step, we quantizg tr_\e wavelet. subbands; this may lead to a
// update relative energy of the coded subbaNdO (i) substantial error in time domain. In other words, we cannot
is number of elements in the subbaddi) control the maximum distortion in time domain through this

(©) i¢i+1 approach.

end

Step 3: Second-pass coding lossy coding of the remaining subbands

(O(i + 1) 0 O(D + 1)) 3.2. Tensor-based Compression

for (j—i+1:7D+1) We gpply parallel factor decomposition (PARAFAC) decpm-
(@) 7°0) — Q(z°V), 5 position [8] to the three-way tensdr, formed from multi-
/I Quantize the wavelet coefficients with quantizer step- Channel EEG. In our previous study [9], we have shown
sized _ that PARAFAC yielded the best compression performance
(b) Bitstreame— AC(23") among various other matrix and tensor decompositions. The
end PARAFAC based decomposition of a three-way tensor is
given by: ”
Eq:{ LQ}FEJ, £>0 | 5) I:Zaiobioci—l—g, 7)
L3531l e<0 =t

where€ represents the residual tensor, and, andc repre-
where |- | denotes the integer part of the argument. At thesent the factors along the three modes, whesestands for
decoder end, the residual bitstrean .., is decoded to yield the outer-product along the particular mode. These thiee fa
g4, followed by a dequantizer defined to guararjtee-£|| <  tors efficiently capture the major variations along the ¢hre
d: modes. In the first-stage we encode the PARAFAC factors
€= (20 + 1)e,. (6) using a simple bit-plane coding scheme, and in the second
stage, we apply arithmetic coding to the residuals after uni
By adding the lossy reconstructidh and the dequantized form quantization (5).
residualé, we obtain the final near-lossless reconstruction
Z,; with guaranted|Z — Z,;|| < ¢. In words, the maxi- 4. RESULTS
mum distortion is therefore boundedoThe pre-processing We test the performance of our compression algorithms on
step,i.e.,formation of tensor from multi-channel EEG, is the the EEG-Motor Mental Imagery datasets of physiobank
principle difference from the coders used in image compresdatabase [10]. This EEG dataset consists of 64-channel
sion [7]. recordings, recorded from healthy subjects at 80Hz samgplin
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5. CONCLUSION

3D Volumetric

S10 coding T ARABAG 5: PARAFAC coding We have presented novel compression schemes for multi-
a coding =) channel EEG. The main idea is to exploit the intra- and
B s g.zfgiz Subband inter-channel correlations simultaneously by arranging t
Subband AC | AC multi-channel EEG as a volume, and to represent that volume
0l 2 3 45 6 7 8 910 101 2 3 4 5 6 7 8 910

in different ways. Particularly, we considered volumetric
coding, energy-based coding of wavelet subbands, and ten-
sor based coding. Next we compressed the residual, which
allows us to bound the worst-case distortion (in volumetric
and PARAFAC coding). The tensor-based coding scheme
yields smaller worst-case error than both subband specific
rate and with 12 bit resolution. We analyze the peI’fOI’manC@oding and volumetric coding, yet the average error is only
of the algorithms based on compression ratio: slightly larger than in subband specific coding and much

smaller than in volumetric coding. Therefore, tensor-dase
Leomp’ @) coding i i- -

g is an attractive approach for multi-channel EEG com

pression. If larger worst-case distortion is tolerableyslet
subband coding may also be a suitable option. In our future
study, we planned to improve the worst-case error of the pro-
posed wavelet subband specific coding by suitable threshold
selection.

Compression Ratio
(a) PRD(%) (b) PSNRz, %)
Fig. 3. Compression performance of the wavelet-based volumetding,

subband specific arithmetic coding and PARAFAC based cofting/dt/s
volume/three-way tensor.

Compression Ratio

whereLqig and Lcomp are the bit length of original and recon-
structed multi-channel EEG signals respectively. Theigual
of the reconstructed signat)is assessed using percent root-
mean-square distortion (PRD (%)):

S (i) — #(i))2
Y, (i)

We also use an alternative quantitative distortion measure
based on the maximum absolute difference betweandz:

PRD (%)= x 100.  (9)

(1]

[2]
PSNRz, &) = 101 201 10
REE,CC) - 0g10 (max(|z§3|)) . ( ) [3]
We consider segments ©024 samples from each chan-
nel, arranged in a suitable volume size, specificallyg 32 x
64 for t/dt/s volume,8 x 8 x 1024 for s/s/t volume. In all (4]
the three algorithms, we vary the quantization step-siae fr
0 (lossless) till19 (lossy), and measured the CR and PRD(%)
for each step-size. The energy thresholfifor the subband  [5]

specific arithmetic coding is fixed t80%; we obtained the
best results for that value of the threshold. The results are
summarized in Fig. 3. Since the results for t/dt/s and sfe/t a
similar, we only show results for the t/dt/s volume construc
tion.

It is clear from Fig. 3 that SAC outperforms both vol-
umetric and PARAFAC coding with respect to PRD(%);
with respect to PSNR, volumetric and PARAFAC coding (g
perform similarly, but they clearly outperform SAC. The
residual quantization is performed in time-domain for volu
metric and PARAFAC coding, whereas in SAC, quantization [9]
is performed in wavelet domain. The idea behind SAC is to
guantize the residual wavelet subbands with least energly. A
we are quantizing wavelet coefficients in SAC, the maximum
error in time domain cannot be controlled, and consequently
it is larger than the other two approaches considered here.
Interestingly, it is promising that the average error (PRD)
smaller for SAC compared to other two approaches. How-
ever, the distortion may be large in very few samples, which
may be tolerable in some specific applications.

(6]

[7]
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