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Maximal Packing with Interference Constraints

Rakshith Jagannath, Radha Krishna Ganti and Neelesh S Upadh

Abstract

In this work, we study the problem of scheduling a maximal a(fetransmitters subjected to an
interference constraint across all the nodes. Given a sabdés, the problem reduces to finding the
maximum cardinality of a subset of nodes that can concuyrémnsmit without violating interference
constraints. The resulting packing problem is a binaryrojation problem and is NP hard. We propose

a semi-definite relaxation (SDR) for this problem and previunds on the relaxation.

Index Terms

semi-definite relaxation, interference, maximal packiBgclidean random matrix, randomization

algorithms

I. INTRODUCTION

Interference is a major impediment in the current wirelessvorks, particularly in ad-hoc
and wireless sensor networks. In these networks, interteres primarily managed through
scheduling wherein the transmitting nodes are carefullgseh to avoid interference at the
active links, while simultaneously maximizing the spatelise. The maximum number of nodes
that can be spatially scheduled with a network interferamestraint is an important metric that
guantifies the performance of the scheduler. However, tdodst of our knowledge, even this
simple metric is difficult to be computed for general netwtwkologies.

In this paper, we focus on the problem of computing the caldinof the largest subset of
nodes that can be scheduled from a given set of nodes with straont on the interference
across the network. We assume an arbitrary network topaogymodel the spatial interference

pattern through a path-loss function. The cardinality af thaximal set can be obtained by
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solving a binary problem, which is NP-hard. Hence, we obtaounds on the maximal node
packing with interference constraints through a semi-defirelaxation (SDR) of the original
binary problem by using Shor’s technique [1], [2].

In [3], the maximal packing problem has been studied withgiteeéocol model for interference
with results from random geometric graphs. It has been shihah the maximal density of
scheduled nodes scales @1/v/N), where N is the total number of nodes. In [4], [5], a
related problem of sensor selectio®,, selectingK’ out of N sensors that minimize the error in
estimating network parameters is studied and solutiongparyposed using several frameworks
such as convex optimization, hypothesis testing, experindesign, compressed sensing and
sparse signal recovestc. Another related problem is the signal-to-interferennd-aoise ratio
(SINR) maximization problem wherein the SINR at each nodeneximized [6]-[8] using
techniques from semi-definite programming and graph theldowever, the above methods
assume that the maximum number of nodes is fixed and theemtade amongst the selected
nodes is optimised. In the current work, a more fundamentaktion of finding the maximum
number of nodes for a given interference constraint actossetwork is explored.

Notation: In this paper, we use bold lower case letters to represenbrgeand bold upper case
letters to represent matrices. For a given matrix (vector)A” denotes the regular transpose.
For a vectorx, x|, ||x]|1, ||x]|2 denote the€, pseudo norm which is equal to the number of
non-zero elements ir, /; andl, norms respectivelyf denotes the expectation operation while
[P denotes probability. For a matrix and a vectom, D(A) denotes a vector of diagonal entries
of A, T(A) denotes the trace oA, S(u) denotes the sign of elements of S(u) = +1, if
u > 0, elseS(u) = —1. arcsin A denotes sine-inverse of each elemenfofsee [1]) andA > 0

implies x” Ax > 0 for all x # 0.

[1. SIGNAL MODEL

We considerV nodes located dtvy, vo, ..., vy} C R% The Euclidean distance between node
i and nodej is denoted byr;;. In this paper, we neglect thermal noise and assume free spac
channel between nodesThe path loss function is denoted by the functign) : R* — [0, o0).

A commonly used path loss function #év) = ||v||;”, wheres > 2 is the path loss exponent.

IFading is neglected so as to simplify the notation and camtreduced without any modifications to the results.



Let z; € {0,1} denote an indicator variable which equals one if ngdis active and zero
otherwise. Assuming unit power transmission, the interiee power at a nodedue to other

transmitting nodes is
wz:zg(rw)xm Z:1,2,,N (1)

Let
T

d;, = [ﬁ(ﬁl),...,O,K(mHl),...,f(riN) ,
T
andx = [xl,:):Q, . ,xN] . Then the interference (or received signal power) at noide

7

T T
Let w = [wl,wQ,,,,,wN] . Thenw = Dx, whereD = dl,dz,---,dzv] is the distance
matrix whose elements are non-negative.
Using the above notation, the maximum number of nodes in #teork while limiting the

interference powers across all the nodes to be lessdhiangiven by

0= max Ixlo s.t. |w]3 <e. 3)

x€40,1
In the above optimization problem, we consider the two nofrthe interference across all the
nodes for analytical tractability. However, singe|» > ||w| ., the constrainfw||3 < ¢ implies
a bound on the interference at individual nodes.
Since,x € {0,1}", we have|x|, = ||x||; = ||x||?. Also, w = Dx, and hence the above

optimization problem can be rewritten as

o= max |x|? st x'Fx<e, 4)
xe{0,1}N

whereF = DTD is a symmetric positive semi-definite matrix. The properié D andF are
discussed in detail in [9]. The optimization problem (4) NP hard [10], discrete optimization
problem and there are no closed form analytical solutiorthéoabove problem.

Observe that is a network wide interference constraint and hence for otminetwork, it is
easy to observe thatshould scale withV if a significant subset of nodes have to be activated.
Also note thato < N is a trivial bound, since the number of active nodes is awaysnded

above by the total number of nodes.



In this paper, we first obtain a SDR of (4). Since SDR is a relaraof (4), the optimum value
of the SDR p) is related tor asp < . This relaxation is then used to propose a randomization
algorithm (rounding) to obtain = for (4) also called as rounding in literature [11]. This rding

technique is then used to obtain bounds of the typefdos for some constamt > 1.

[1l. SEMI-DEFINITE RELAXATION

The binary problem in (4) is first converted intd a1, +1} problem using the transformation
v = 2x — 1. Hence the equivalent problem is

1
0 = max o (VTV +1Tv +vT1 + 1T1), (5)

st. VIFV + 17Fv + vIF1 + 17F1 < 4,

The above optimization problem can be rewritten as
1
0 = max — [VT 1} Q , (6)
v 4 1

v
s.t. [VT 1] R <4,
1
vi(ee])v=1, i=12,...,N, (7)
wheree; is the columni of the identity matrix andl and R are given by

I 1 1| F F1
Q = 9 R=- . (8)
17 171 € |17F 17F1
v v . v
Observe thal{vT 1} Q =T|Q [VT 1] . Denoting [VT 1} by H and drop-
1 1 1

ping the rank one constraint, we obtain the following [1] selefinite relaxation of the opti-

mization problem in (6)
p = max T(QH)/4, s.t. T(RH) < 4, 9

H=H">0 H;=1,i=1,2,...,N. (10)



Algorithm 1 Rounding algorithm
1: Input: H, K.

2. Initialize: SetN = ¢ andr = S(n), wheren is a zero mean Gaussian random vector with
covariance matrixt.
3: Decision: If r'Rr <4 andry,; =1, N =N {Jr.

4: Iterate: from step-2 fork > N steps.

5. Output: r* = argmax,., ||r||3, o = ||r*]|3.

The relaxed solution of the SDR of equation (9) can now beaoleti using numerical solvers
(e.g. [12]). Now, given the optimal solutidd for the SDR, we propose below a randomization
algorithm to obtain a solutionv{) for the unrelaxed problem (6).

Now, we obtain the bounds relatimg(optimal value of the unrelaxed problem) am@optimal

value of the SDR) using the proposed randomization algworith

Theorem 1. Let A denote the diagonal matrix with eigenvalues of RH. Let p*> = P((R—A) = 0),

then
T 1
<p<—|— .
O‘_p_2<1_p)0’ 11

Proof: The left side of the inequality holds because of the relaxatirgument. To prove
the right side, letH be the optimal solution of the SDR in (9). So we hade= H” > 0,
D(H) = 1 andT(RH) < 4. We observe thaH satisfies the properties of the covariance matrix
of a Gaussian random vector. Letbe a Gaussian random vector with méaand covariance
matrix H. Let r = S(n), so thatr? = 1,i = 1,2,..., N + 1. We can now choose a realization
of r such thatry,; = 1, so that it can be a feasible solution for the optimizatioabbem in
(5). Clearly, such a realization efalways exists. Now, to obtain the right side of the inegyalit
(11), our goal is to show that such a realizatioalso satisfiegr’ Qr > ’H‘(Qﬁ) andr’Rr < 4

for somef > 1.



Let f(n) be the density of the Gaussian vectorWe have
IP’(rTQr > %T(Q}AI), r'Rr < 4,7y = 1)

= f(n)dn

/rTQr>gT(Qﬁ),rTRr<4,rN+1:1
(@)

f(n)dn

[TQFZ%T(Qﬁ),PTRr§4,TN+1=—1

1 ~
- IP)(I'TQI' 2 5T<QH)7 rTR’r S 47 'N+1 = _1)7

wherer = S(n). Here (a) follows by the change of variablas — —n and the fact that a zero
mean multivariate Gaussian density satisfi¢a) = f(—n). Hence
P(r"Qr > %T(QITI), r’Rr < 4,7y =1)
_ %P(rTQr > %T(Q}AI), r"Rr < 4).
Hence it suffices to show that the RHS of the above equationrnszero. We have
P(r"Qr > %T(Qﬁ), r"Rr < 4),
EIP’(rTQr > %T(Q arcsin ﬁ), r'Rr < 4), (12)

where (12) follows fronﬂI‘(Qﬁ) < T(Qarcsin ﬁ) (see [13]). Now, applying the union bound
to inequality (12), we have

>P(r"Qr > %T(Q arcsin ﬁ)) —P(r"Rr > 4),
Now, T(Q arcsin ﬁ) = ZE{r"Qr} (see [11]). Using these in the above inequality, we have
ZIP’(rTQr > %E{rTQr}) — IP’(rTRr > 4),

Using the Paley-Zygmund inequality (see [14]) in the firsttpa

, [ E{x7Qr} 2
(- (2)) W<R>

> (1 - (%))2 —P(x"Rr > 4) (13)
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where we have usel[z?] > (E[z])? in (13). LetA be a diagonal matrix of eigenvalues BH.
SinceT(RH) < 4, andr”Ar = T(RH) because? = 1. Hence, (13) reduces to

> (1 = <%))2 — P(r"Rr > r’Ar), (14)
> (1-(%))2—19(3—/\&0), (15)

()

We getd > 7 (1) by imposing(1 — (%))2 —p? > 0. |
We observe that the necessary condition for the successitking of the randomization
algorithm (step3) is that the vectors constructed in step-satisfy the quadratic constraint of
the unrelaxed problem (6). In the above proof, we have assuhat the probability of existence

of such vectorsr with non-zero probability, i.eP(r’Rr < 4) = 1 — p* > 0. However, as

is a correlated Bernoulli random vector, evaluating thebphility P(r’Rr < 4) requires2’
checks which cannot be performed in practice. Hence, we useaker upper bound op?
which depends on the known matricBsand H and which was observed (through simulations)
to be satisfied by sparse networks (with node-density Tlﬁ)' In boundingp?, we have also
taken care of appropriate probability measures.

We would like to re-emphasize that the value fderived above in Theorem-1 is not
necessarily the best possible bound grbecause the upper bound gns very conservative
since there is a major loss of probability measure whileypglthe union bound and also when
we boundP(r’Rr > 4) by P(R — A = 0).

IV. SIMULATIONS

In this section, we present numerical simulations to chéekgerformance of the proposed
SDP relaxation and the randomization algorithm. In the $atan set-up, we generat€ = AM
points with a uniform distribution over a squdke= [0, v/M]?, where ) is called the density of
the network. We then evaluate the SDR given in (9) using thefM¥B CVX toolbox [12] to
obtain the SDR solutionBl and p. We compare the obtained SDR solutipnwith the optimal
packingo, by solving (4) using a brute force search for small valuesvok 20. In the brute
force searchg is obtained by iterating over all subset of nodes and pickirey set with the

largest cardinality that satisfies the constraints. Weatfhe above experiment faH00 different
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Fig. 1: p versusN for € = 10, path-loss exponent;i = 3 and different network densitieg,
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Fig. 2: p versuse for N = 15, path-loss exponent; = 3 and different network densities
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Fig. 3: p versusN for different interference levels, path-loss exponerit = 3 and for network

i _ 1
density A = ViR

spatial realizations for each with a fixede (and vice-versa) and average the value$ @ind
o obtained at each realization.

In Figure-1, we compare the averag¢estimated by SDR) with average(obtained by brute
force search) as the number of node§) (increases for different network densitie¥) @nd a
fixed interference levele(= 10).

In Figure-2, we compare the averag¢estimated by SDR) with average(obtained by brute
force search) as the interference levél ificreases for different network densitiek) (and a
fixed number of nodes\ = 15). We observe that the number of active nodes initially inses
sharply as the interference constraint is relaxed butIstabifor largee.

From Figures-1 and 2, we observe thats always very close t@, in-fact we observe that
p— o < 1in most cases. For the network densky= N~%5, most of the nodes in the network
are switched on. We also observed that the optimal vectabtained by the randomization
algorithm was always same (after the transformation) aoftienal x obtained by brute force
search for all realizations.

In Figure-3, we plot the average(estimated by SDR) as the number of nod&9 (hcreases
for a fixed network densityX = \/_1N) and for different interference levels)( We observe that

changing the interference level has a small effect on th&ipgof network.
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From the simulations, we can conclude that the optimal packf nodes depends critically
on the density of the network. The other parameters such eswdimber of nodes/N), the
interference leveld) and path-loss exponeng) play a relatively minor role in the packing.

We can also conclude that the optimal value of the packindplpm obtained by the SDR
is very close (In-factp — o < 1) to the actual optimal packing value. Hence, SDR is a tight

approximation for the packing problem.

V. CONCLUSION

In this work, we study the maximal packing problem underrigt®nce constraints where the
goal is to find the maximum number of active nodes in an areh that the total interference
in the network is less than some fixed vaku€elhis is a discrete optimization problem which is
NP hard. We propose a semi-definite relaxation (SDR) of thenBifd problem, whose solution
upper bounds the number of active nodes in the network. @imuls are performed to compare
the bounds provided by the SDR with a brute-force searchtisalwf the unrelaxed problem
for small networks and we observe that the SDP relaxationiges a good approximation to

the packing problem.
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