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Abstract:  

We report on magnetoresistance, Hall and magnetization measurements of Fe2VAl1-xSix 

Heusler compounds for x= 0.005, 0.015, 0.02. There is a systematic change in the 

temperature coefficient of resistance (TCR) from negative to positive as the Si composition is 

increased. The Hall co-efficient shows that the carriers are electron like and the carrier 

density increases with Si concentration. Resistance measurements under magnetic field 

indicate a decreasing behavior under the application of magnetic field at low temperature 

region (T< 60 K), suggesting the suppression of scattering by magnetic field. Temperature 

and field dependent magnetization measurements did not show any significant change apart 

from the fact that the presence of super paramagnetic (SPM) cluster and its ordering at low 

temperatures. Arrott plot analysis of magnetization versus field also indicates the magnetic 

ordering with applied field below 60 K.  
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1. Introduction 
Fe2VAl was thought to be a Kondo Insulator based on its non-magnetic ground state, with a high 

electronic mass from specific heat measurements [1]. Subsequent detailed studies revealed that the 

very small off-stoichiometry and anti-site disorder, gave this material a metallic ground state. Band 

structure calculations however, predicted a semi-metallic ground state, with a shallow density of states 

at Fermi level EF. The calculations suggest that tuning the EF could result in the improvement of 

thermoelectric properties, since the density of states can be tinkered by changing EF. Substituting Si 

for Al in Fe2VAl [2, 3] or substituting Al for Si in Fe2VSi [4] compound has been reported to show 

systematic change in electronic and thermal transport properties. For example, Fe2VAl alloy exhibits 

non-magnetic semiconductor like behavior while the  iso-structural alloy Fe2VSi is found to be a semi 

metallic antiferromagnet (AFM) in spite of having similar band structure [5-7].  However, the AFM 

character of Fe2VSi could not be ascertained from the bulk susceptibility measurements [8, 9]. Band 

structure calculations predicted a ferromagnetic character in Fe2VAl0.5Si0.5 alloy [10], but such a 

magnetic order was experimentally observed in 4 at% of Si-substituted Fe2VAl [2].  In this context it 

is interesting to see how the magnetic properties evolve upon Si substitution in Fe2VAl alloy across 

the insulator to metal transition. So far there is no systematic experimental study carried out in the 

literature. The puzzle includes the fundamental question whether the purported transport anomalies 

should be mainly attributed to the characteristic electronic band structure or structural/chemical 

disorder? Further it would be interesting to investigate whether the temperature co-efficient of 

resistivity gets affected on application of magnetic field?  In this study, with the help of magnetization 

measurements we attempt to pin point, the nature of magnetic order that can lead to this effect. 

Temperature and field dependent resistivity and magnetization measurements have been carried out in 

samples, of Fe2VAl1-xSix for x=0.005, 0.015 and0.02. 

 

2. Experiment 
The alloy ingots of Fe2VAl1-xSix(x=0.005, 0.015, 0.02) were prepared with high purity elemental 

constituents using an arc-melting under argon atmosphere. The as-melted ingots were sealed in 

evacuated quartz tubes and annealed at 1273 K for 48 hours and then quenched in cold water. 

Nominal composition assigned to each sample was regarded as accurate, because the weight loss was 

found to be less than 0.3 %. The electrical resistivity and magnetoresistance MR of samples were 

measured using a standard dc four terminal method in the temperature range of 3–300 K, using a 

home built cryostat with an accessible magnetic field upto 12 T. Hall effect measurements were done 

in a commercial (cryogenic, UK) cryofree, magnetoresistance system, operating in the 1.6 K to 300 K 

temperature range with accessible magnetic field upto 15 T. Magnetization measurements were 
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performed using a commercial vibrating sample magnetometer (cryogenic, UK) in the temperature 

range of 4-300 K and magnetic field upto 16 T.  

3. Results and discussion 

3.1. Temperature and field dependent resistivity 

Fig. 1 shows the temperature dependence of resistivity () of Fe2VAl1-xSix for all three compositions 

of present study. As shown in the figure, a minute amount of Si substitution for Al causes a sharp 

decrease in electrical resistivity and the sign of the temperature coefficient of resistance (TCR) 

changes from negative for x=0.005 to  a mixed TCR for x= 0.015 with minimum in the (T) curve. 

Eventually, the TCR becomes positive for x=0.02 suggesting the non-metal to metal transition with 

Si-Content. However, the changes in resistivity values either with concentration or with temperature 

do not appear to be that drastic to term the transition as Insulator-metal transition. Nevertheless, 

identification of semiconductor-metal transition, particularly in the vicinity of a transition is difficult. 

The decrease in the resistivity values along with change in TCR suggests non-metallic to metal state. 

In order to see the change in the carrier densities upon Si doping Hall Effect measurements were 

carried out at 4 K  
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Fig. 1. Temperature dependence of resistivity for x= 0.005, 0.015, and 0.02. 

 

 

and essentially a linear variation of Hall resistance with field has been observed as shown in Fig. 2. 

Carrier concentration extracted assuming a single band model is shown in the inset of Fig. 2. It can be 
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seen from the inset that the carrier concentration changes by a factor of two for a small change in Si 

concentration, and the TCR changes from negative to positive, for the same samples. The carrier 

concentration is ~1020/cm3, typically that of a degenerate semiconductor and the sign of the carrier is 

negative in agreement with earlier thermo-power data [10].  This fact can be taken as evidence that Si 

substituted Fe2VAl is electron dominated compared to pure Fe2VAl. 
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Fig. 2. Hall resistance versus magnetic field for x = 0.005, 0.015 and 0.02 at 4K. Inset: Carrier 

concentration as a function of Si fraction x.  

 

In order to get insight into the origin of change in TCR, resistivity was measured at different magnetic 

fields in all the three samples and is plotted in the Fig. 3 (a)-(c). It is evident from the figure that the 

resistivity gets suppressed significantly at low temperatures upon application of magnetic field. In all 

the samples the change in the magnitude of resistance at the lowest temperature under the application 

of 10 T magnetic field, is of ~ 10% to ~2.5%. This taken in conjunction with the carrier concentration 

variation with Si substitution, could suggest that the percentage of carriers introduced by the 

substitution could be magnetic in nature in addition to the magnetism from anti-site defect present in 

these sample.  Since magnetic impurities show Kondo scattering, we plot the resistivity versus 

logarithm of temperature. A clear linear behavior and its suppression in the presence of magnetic field 

further testifies that there is Kondo scattering in the system [11].  On close observation of the 

temperature variation of resistivity, (T), curves (Fig. 1) one can see a maximum in resistivity values 
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around 200 K for x=0.015, which shift towards higher temperature on increasing Si content. These 

features suggest that at higher temperatures the (T) may still exhibit non-metallic character.  
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Fig. 3. Resistivity as a function of  ln T (T ≤ 60 K) according to Kondo formalism for x=0.005 (a), 

0.015 (b) and 0.02 (c). Good linear dependence shown by solid lines show that Kondo type scattering 

is dominant at low temperature and get suppressed upon applying magnetic field. 

 

3.2. Temperature dependence of Magnetization 
 To elucidate the magnetic properties in the Fe2VAl1-xSix (x=0-0.02) alloys, the temperature variation 

of magnetization for this system has been carried out through zero-field-cooled (ZFC) and field-

cooled (FC) magnetization (M) curves under an external field of 0.01 and 1 T.  As shown in the insets 

of Fig. 4 the FC/ZFC curves for x=0.005, 0.015 and 0.02 show a very distinct bifurcation between 

ZFC and FC curves from the room temperature. This strong irreversibility is a generic feature of 
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disordered systems like cluster-glass, superparamagnet and inhomogeneous ferromagnet.  Generally, 

such a bifurcation between ZFC and FC curves can be thought of as due to slow relaxation and 

competing interaction among interacting clusters in a magnetic system.  However, from this point one 

cannot conclusively assert about the relevant magnetic phase of the system. ZFC and FC curves 

measured at 1 T (Fig. 4 (a-c)) do not show any bifurcation. Their features, such as, a broad maximum 

in the MZFC(T) curve, the low temperature upturn, disappearance of irreversibility when the samples 

are cooled in higher applied field are suggestive of the presence of magnetic disorder in the present 

samples.  
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Fig. 4. Temperature variation of Magnetization [FC & ZFC] curves for Fe2VA1-xSix(x=0.005, 0.015, 

0.02) alloys at H = 1 T. Insets show the ZFC and FC curves of respective samples measured at H = 

0.01 T. 
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3.3. Field dependence of Magnetization 
To  identify the nature of the magnetic state, isotherms have been recorded at specific temperatures (4 

K, 10 K, 60 K, and 200 K) below and above the temperature TM where resistivity reaches maximum 

for x=0.015 sample.  As observed in Fig. 5 (a-c) all compositions show similar trend in the M vs. H 

curve measured at different temperatures.  At the lowest temperatures of measurement viz., 4 and 10 

K the magnetization versus field curve show saturation behavior in fields as small as 2 to 3T, however 

no hysteresis was seen. This implies that no long range ferromagnetic order exists at low 

temperatures, but could arise from presence of magnetic clusters.  For temperatures 60 K and 200 K a 

linear M versus H behavior are seen at high fields. The magnetization loops at 60 K and 200 K are 

fitted with a modified Langevin function [12, 13] that corresponds to the combination of super 

paramagnetic (SPM) and paramagnetic (PM) contribution as shown in equation.1. 

M (H) = MS [Coth ()-1/] + H         (1) 
 
 =  H/KbT 

MS is the saturation magnetization and  is the average magnetic moment of the magnetic clusters and 

 is the susceptibility that account for the linear high field increase in the magnetization. Experimental 

data fit well to the model described above with fitting parameters shown in the Table. 1. The 

saturation magnetization, MS and the magnetic moment of SPM clusters, SPM is found to be high for 

x=0.015 as compared to x=0.005 and 0.02. In addition the value of SPM at 60 K is two orders of 

magnitude higher than SPM at 200 K for all compositions. This shows that upon decreasing 

temperature (i) the interaction between isolated moments increases, (ii) the individual cluster size 

might be increasing, consequently the magnetization loops measured at 4 K and 10 K show saturation 

behavior. Absence of coercivity at low temperatures along with lower saturation magnetization values 

suggests presence of interacting magnetic clusters. Therefore in order to account for the temperature 

dependent cluster size variation and the inter-clusters interaction  the experimental data is fitted with a 

modified Langevin function [13] as shown in equation below, which may be treated as two cluster 

model. It should be mentioned that the magnetization data fitted well to this model compared to the 

model with different combination of ferromagnet (FM), superparamagnet (SPM), and paramagnet 

(PM) viz., FM+PM, SPM+SPM, and SPM+PM. 
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Fig. 5.  Magnetic field dependent magnetization at different temperatures (4 K, 10 K, 60 K, 200 K) 
for x= 0.005 (a), x=0.015 (b), and x=0.02 (c). Solid lines are fit to the experimental data using 
modified Langevin function. (d)(e)(f) Arrott plot (M2 vs. (H/M)) for respective composition. 
 
 

 (M (H)-M0)/Ms = f * [Coth ()-1/] + (1-f) * [Coth ()-1/]    (2) 

 

 =  H/KbT 

 =  H/KbT 

 

Here and  corresponds to the cluster magnetic moment (cluter1, cluster2) and f its respective 
fraction.  M0 corresponds to the field independent magnetization and Ms is saturation magnetization. 
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Table. 1 Fitting parameters extracted from fitting the magnetization vs. magnetic field data at 60 K 

and 200 according to equation.1.  

 
 

composition 

x 

60 K 200 K 

Ms 

(emu/g) 

SPM 

(102 B) 



(emu/g T) 

Ms 

(emu/g) 

SPM 

(B) 



(emu/g T) 

0.005 0.436 10.87 0.069 0.0276 9.35 0.031 

0.015 0.789 11.32 0.131 0.537 15.02 0.050 

0.02 0.458 10.03 0.068 0.303 9.56 0.032 

 

The fitting parameter obtained after fitting the data are shown in Table 2. At 4 K the sample with 

x=0.015 shows the large fraction of cluster1 with large magnetic moment as compared to other 

compositions. Further increasing the composition the magnetic moment and its fraction decreases. 

Though the data at 4 K and 10 K fit well to the two-cluster model, the cluster moment shows an 

increasing behavior upon increasing temperatures. Whereas the clusters moment obtained by SPM + 

PM contribution (equation.1 for 60 K and 200 K) decreases with temperature and very large cluster 

moment is seen at 60 K. 

 

Table. 2 Fitting parameters extracted from fitting the magnetization data at 4 K and 10 according to 
two cluster model in equation.2. 
 

 

composition 

x 

4 K 10 K 

Ms 

(emu/g) 

f 

% 

1 

(B) 

2 

(B) 

Ms 

(emu/g) 

f 

% 

1 

(B) 

2 

(B) 

0.005 2.50 63.27 104.37 5.10 2.56 41.51 111.08 8.05 

0.015 4.15 77.62 143.64 4.14 4.30 57.56 144.99 7.58 

0.02 2.47 65.76 61.18 3.89 2.53 41.15 90.32 7.10 

 

 

Further the Arrot plots for all three compositions are shown in Fig. 5 (d-f).  Mean field theory predicts 

that the H/M plot should be linear in M2. Below Curie temperature TC the curves intercept the M2 axis 

and provide the information on spontaneous magnetization. At TC the line passes through origin and 

for T > TC  it intercept the H/M axis [14]. Nonlinear behavior seen in Fig. 5 suggests the absence of 

FM to PM transition in the system.  For 4 K and 10 K the curves show a strong curvature towards 

H/M axis whereas for 60 K and 200 K an opposite curvature is seen. The spontaneous magnetization 

values extracted by forced extrapolation of Arrot plots provide small values. These results suggest the 

non-interacting SPM cluster and weak magnetic behavior in the sample. The change in curvature of 
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the Arrot plot for 10 K ≤ To ≤ 60 K suggest that at To the system undergoes field induced ordering of 

the randomly oriented SPM clusters. These observations are consistent with the magnetic isotherms 

analysis discussed earlier in this work. Further low magnetic moments could be due to the 

development of antiferromagnetic interactions on Si-substitution. Such clusters can also generate 

large magnetoresistance values.  

 

Table. 3 Comparison of resistivity at 300 K and magnetization value at 5 K measured at 5 T. 
 

Sample                                   Resistivity at 300 K                       Magnetization at 5 K and 5T 

Fe2VAl1-xSix 

x=0 (as casted) [12]                     1.35 mOhm                                            2.70 emu/g         

x=0 (annealed) [12]                     1.51 mOhm                                            4.23 emu/g 

x=0.005                                      1.40  mOhm                                           2.19 emu/g 

x=0.015                                      1.10  mOhm                                           3.75 emu/g 

x=0.02                                        0.90  mOhm                                           2.09 emu/g 

 

 

The ordering of SPM clusters is further clarified by comparing the magnetization and the resistivity 

data. Temperature dependent magnetization data shows a saturation behavior below 60 K whereas 

resistivity data shows a bifurcation of resistivity ( min) at T ≤ 60 K. Therefore 60 K is believed to be 

the weak ordering temperature of the SPM species in the sample as also inferred from the Arrot plot. 

In the absence of field, as the temperature decreases the interaction among these SPM clusters 

increases and results in high resistivity due to strong scattering of carriers. In high magnetic fields (10 

T) the SPM clusters gets aligned with the fields and consequently the resistance is decreased in the 

sample. 

 

3.4. Resistance versus magnetic field 

The normalized resistivity versus magnetic field measured at 10 K is shown in Fig. 6. It is evident 

from the figure that the resistivity change in the presence of magnetic field is higher in the lower 

concentration samples viz., x=0.005 and x=0.015. The observed lower magneto-resistance in the 

x=0.02 sample is surprise since the carrier concentrations in the x=0.015 and x=0.02 samples are 

different just by a factor of two. This could imply that magnetic moment/ magnetic ordering are 

qualitatively different in the two samples; this could arise due to sample dependent anti-site disorder, 

which could have a different magnetic nature in the two samples. Notably in the x=0.02 sample the 

low temperature saturation magnetization is much lower than that seen in the x=0.015 sample. 

Previous reports Ref. [12] showed that the annealed Fe2VAl sample show an increase in 
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magnetization and resistivity due to less crystal defects after annealing. Table.3 compares the value of 

magnetization and resistivity of the pristine sample from Ref. [12]  with that of the Si doped samples. 

Resistivity shows a systematic decrease upon Si doping whereas values of magnetization show non 

monotonous behavior. This shows that the anomalous behavior is due to  sample dependent anti-site 

defect states or due to emergence of new electronic states from the interaction of Si with Fe and V as 

reported for Fe2VAl1-xGex alloy [15]. 
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 Fig. 6. Normalized magnetoresistance plots at 10 K for all compositions (x = 0.005, 0.015, 0.02) 

 

4. Conclusion 

A systematic study of the magnetization and magneto transport properties of Fe2VAl1−x Six was 

performed. Upon very minute substitution of Si (x = 0.005, 0.015, 0.02) for Al, the Fe2VAl1−x Six alloy 

shows a change in the sign of TCR. Kondo type magnetic scattering at low temperature was present 

for all compositions. The crossover from negative to positive TCR takes place at x = 0.02. 

Intermediate composition, x= 0.015 shows a mixed TCR behavior and high magnetoresistance. The 

hall data shows systematic increases in the carrier concentration upon Si substitution. Temperature 

and field dependent magnetization did not show any significant change apart from the fact that the 

presence of SPM cluster in the sample and its field induced FM ordering at low temperatures. Being a 

narrow gap semiconductor with localized density of states from anti-site defects, very minute increase 

in composition (x= 0.005, 0.015, 0.02) changes the density of the charge carrier and results in the 
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transition from negative to positive TCR. Magnetic state of the sample remain less perturbed apart 

from the increase in magnetization and magnetoresistance for intermediate composition, x= 0.015 

which might be due to sample dependent anti-site defects.  
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