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Localised zero-energy modes in the Kitaev model with vacancy-disorder
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We study the effects of vacancy disorder on the Kitaev model defined on a hexagonal lattice. We
show that the vacancy disorder induces a zero-mode that is localized at the defect site. We derive
analytical forms for these localized wave functions in both the gapped and gapless phases of the
Kitaev model. We conjecture that the vacancy disorder can be utilized as a probe of the quantum
phase transition (from the gapped to gapless phases) in this model. The behavior of the Inverse
Participation Ratio (IPR) in the gapless phase and across the transition is also studied numerically.
Comments are made about the behavior of site-site entanglement in the single particle states for
the case of a single vacancy.

I. INTRODUCTION

The effect of quenched disorder typified by impuri-
ties, lattice imperfections, and vacancies on condensed
matter systems has been a source of intense scientific
investigation in the recent past. In fact, the study of
such “frozen-in” disorder has led to the unravelling of
a host of very interesting phenomena like infinite ran-
domness fixed points [3], quantum Griffiths effects [1, 2],
and maybe even smearing of phase transition [4]. Even
though as highlighted above multi-impurity effects can be
extremely interesting, the study of a single impurity em-
bedded in a host can also act as an efficient probe of the
physical characteristics of the underlying bulk material, a
situation exemplified by the case of local impurity acting
as a probe of the order-paramater symmetry in uncon-
ventional superconductors [5]. This manuscript for the
most part belongs to the latter genre wherein we study
the role played by a single impurity in identifying the
quantum phase transition inherent in the Kitaev model.

The Kitaev model has become one of the paradigmatic
models that has been studied in various contexts ranging
from strong correlation physics to topological quantum
computation. Its theoretical appeal lies in the fact that
it represents one of the few spin systems that can be
solved exactly. The solution to the clean Kitaev model is
effected by recasting the spin Hamiltonian into that of an
equivalent Majorana hopping problem in the background
of static Z2 gauge configurations. The exact solution of
the model reveals both a gapless and gapped spin-liquid
phases with a zero-temperature quantum transition in-
terpolating between these two phases. The gapless spin
liquid phase is quite unique as it supports a spin-spin
correlation function that is short ranged [6], thus setting
it apart from other spin-liquid phases studied so far. It
also supports fractionally charged topological excitations
both Abelian and non-Abelian that can be plausibly used
to perform quantum computations. Apart from its util-
ity for topological quantum computation or for its useful-
ness in studying spin-liquid ground states, the spin-1/2
Kitaev model defined on a two dimensional hexagonal
lattice has become a powerful test-bed example to study
various fundamental concepts in the field of strong cor-
relation physics. For instance, it has been used to study

fractionally charged excitations that occur in topological
insulators thereby providing a beautiful higher dimen-
sional extension [8] of the Jackiw-Rebbi theory [12], [13],
that describes charge fractionalization in one dimensional
system. It has also been utilized to study dynamics of
quantum quenches across the critical region [7]. More-
over, there now exists higher dimensional realizations of
the Kitaev model [16], and also extension to higher values
of spin [17]

As is clear from the preceding paragraph the clean Ki-
taev model has been the subject of intense scientific in-
vestigations in the last few years. However, apart from a
few notable exceptions, (detailed in the next paragraph),
one area that has been rather neglected is the study of
the effect of impurities on the Kitaev model. This is a
particularly glaring deficiency as now there exists pro-
posals for experimental realizations of the Kitaev model
[10], [11], [9]. Thus, the study of impurity effects gain an
added significance as realistic systems are seldom clean.

Now, the simplest form of quenched disorder involves
studying the effect of a single impurity on the bulk sys-
tem. Such a study was undertaken by [15] for the case
of a single magnetic impurity that was embedded in the
host Kitaev model. It was shown that coupling of an
impurity to the host Kitaev system leads to an unusual
Kondo effect that is sensitive to the topological transition
in the Kitaev model. In a related work, Willans et. al
[14] showed that disorder in the form of a single vacancy
binds a flux which in turn gives rise to a local moment.
Furthermore they showed that this moment leads to a
vacancy susceptibility that diverges logarithmically as a
function of the applied field, (for weak applied fields).

While it is true that impact of quenched disorder has
received very scant attention, the effect of impurities on
allied models have been rather well studied. More specif-
ically: The Kitaev model maps onto a fermionic model
displaying bi-partite hopping on a hexagonal lattice in
the background of Z2 gauge fields. Now, the impact of
quenched disorder on similar bi-partite hopping models
have been studied in the context of Anderson localiza-
tion. In a seminal work, (see [18] [19]), it was shown that
the quenched impurities lead to a divergent Density of
States, (DoS) in models that display bi-partite hopping.
More specifically, by using a field theoretical formulation,
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these authors showed that a random-mass form of dis-
order, (in addition to a random vector potential) would
lead to a highly divergent DoS that conforms to the func-

tional form, ρ(E) ∼ 1
E e

−| lnE|1/x , with x = 2. This faster
than power-law divergence of the DoS should be con-
trasted with the results of Ludwig et. al [20] wherein they
studied a random vector potential model with bi-partite
hopping. These authors showed that the DoS in these
models diverge as a power-law ρ(E) ∼ E−1+2/z, where z
is a continuously varying dynamical exponent. Now, the
field theoretical treatment of Gade and Wegner suffered
from a slight draw-back: It did not provide a physical
frame-work wherein the diverging DoS at the band cen-
ter could be understood. This situation was remedied in
the work of Motrunich et. al [21] wherein an intuitive
and physically appealing argument was provided for the
origin of the diverging DoS and the low-lying states that
was causing it. They further argued that the DoS in-
deed does diverge with a functional form analogous to
that derived by Gade and Wegner, however, with the ex-
ponent x = 3/2 instead of 2 obtained in [19]. Another
extremely relevant physical context wherein such disor-
dered bi-partite hopping models holds relevance is pro-
vided by the case of graphene. In graphene, due to open
surfaces and substrates, disorder is an ever present bug-
bear. One form of disorder that has been relatively well
studied in the context of graphene is vacancy disorder.
This type of disorder arise naturally in the case of irra-
diated graphene wherein the carbon atoms are knocked
out of graphene planes. The impact of such vacancies on
the electronic properties of graphene were investigated
in a series of papers [28], [29]. The influence of various
other forms of disorder, (also inclusive of the case of va-
cancy disorder) on the electronic properties of graphene
was studied in [22], [23].

In this paper we will study the influence of vacancy
disorder in the Kitaev model. More specifically, we focus
our attention mainly on the structure of the wavefunc-
tion at the site of a vacancy disorder. We show that
vacancy disorder gives rise to a “zero-mode” that is lo-
calized at the impurity site. As we shall see later on in
this paper, this zero-mode exists in both the gapped and
gapless phases of this model and is a consequence of the
particle-hole symmetry of the bi-partite hopping prob-
lem. However, as will be shown in the bulk of this man-
suscript, the functional form of the zero-mode is quite
different in two phases thereby providing an invaluable
tool for distinguishing different phases of this model. The
interesting question of impact of many vacancies on the
Kitaev model will be addressed in a future publication
[24].

The paper is organized in the following manner: In
Sec. II we recapitulate the mapping of the Kitaev
model into a non-interacting Majorana fermion problem
by following the Jordan-Wigner fermionization scheme.
Sec. III is devoted to the analytic derivation of the zero-
mode wave function that is localized at the vacancy site.
The functional form for the wave function is established

(0,0)
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(0,−1)

(−1,−2)

(1,0) (1,1)

(0,1)

(−1,0)

FIG. 1. Hexagonal lattice with a vacancy. A unit cell contains
two points, one point marked red and another unmarked point
forming a bond. The unit cells are labelled using pair of
integers (j, l) and the convention used is made clear through
explicit labeling of some unit cells. The vacancy is denoted
by a yellow circle. The dotted line separate the part of the
lattice with j ≥ 0 from the part with j < 0.

for both the gapless phase, III A and for the gapped spin-
liquid phases III B. In III C we will delve into the issue
of the “flow” of the Inverse Participation Ratio (IPR) of
the localized wavefunction as a function of the coupling
parameters in the Kitaev model. In the same subsection
we will also touch upon related entanglement measures.
Finally, we will end with a concluding section, Sec. V
wherein our results will be briefly reviewed and placed in
context of the existing literature in this field. We will also
briefly mention some of the open problems that remain
to be tackled in this subsection.

II. KITAEV MODEL

In this section we give a short introduction to the
model and its properties for later reference. It also serves
to set the notations for the rest of this paper. The model
comprises of spins residing on the sites of a honeycomb
lattice as shown in Fig. 1. The spins interact with each
other via nearest neighbour coupling which is dependent
on the bond orientation. These orientations are labeled
as as x, y and z in the figure, Fig. 1. Also, as represented
in Fig. 1, the y-link is taken to be the basis, with a two
“atom” unit cell: The red colored lattice point denot-
ing the A-sublattice and the uncolored point indicative
of the B-sublattice respectively. They are connected to
each other via the y-link. A point in the lattice is thus
labeled by a triplet of numbers (j, l, µ) where j, l denote
the unit cell and µ = 1(2) correspond to the A(B) sublat-
tice. Thus, under this labeling scheme the Hamiltonian



3

is expressed as:

H =
∑

j,l

[

Jxσ
x
j,l,1σ

x
j,l−1,2 + Jyσ

y
j,l,1σ

y
j,l,2

+Jzσ
z
j,l,1σ

z
j−1,l−1,2

]

. (1)

Here, as usual the σs are the usual Pauli matrices that
represent the spin variables.
As briefly discussed in the introduction, Sec. I, this

spin-model can be mapped onto a Majorana Fermion
hopping problem. Different methods can be adopted to
effect this transformation. In this manuscript we shall
employ the Jordan-Wigner fermionization scheme as em-
ployed by Feng et. al., [26] in this context. Define the
Jordan-Wigner tail operator as

K(j, l, µ) =
∏

(j,l,µ)>(m,n,ν)

σz
m,n,ν , (2)

where (j, l, µ) > (m,n, ν) if j > m or j = m, l > n
or j = m, l = n, µ > ν. Now the Majorana fermion
operators can be defined as:

ψa
j,l,µ = K(j, l, µ)σx

j,l,µ, ψb
j,l,µ = K(j, l, µ)σy

j,l,µ. (3)

In terms of these operators the Hamiltonian takes the
form

H = i
∑

j,l

[

Jxψ
a
j,l,1ψ

b
j,l−1,2 + Jyψ

a
j,l,1ψ

b
j,l,2

+JzDj,lψ
a
j,l,1ψ

b
j−1,l−1,2

]

. (4)

Here, the operatorsDjl = iψb
j,l,1ψ

a
j−1,l−1,2, defined on the

z-links, is Hermitian and commutes among themselves
and with the Hamiltonian reflecting the local symmetry
of the Kitaev model. It can be shown that the operators
Djl have eigenvalues ±1. The Hamiltonian gets block
diagonalised into different sectors corresponding to dif-
ferent sets of eigenvalues of Djl. In each of these sectors,
the Hamiltonian becomes a quadratic fermionic system
obtained by replacing each Djl by its eigenvalue and can
be re-cast into the form:

H =
1

4
ψT iAψ, (5)

where ψ ≡ (.., ψa
j,l,1ψ

b
j,l,2, ..)

T and A is an antisymmetric
matrix.
Thus, as alluded to in the introduction the Kitaev

model has been mapped onto a non-interacting Majorana
fermion problem in the background of static Z2 gauge
field.
If there are N number of unit cells, we have 2N spins

and the Hilbert space is 22N dimensional. Since there
are N z-links, there are 2N sectors each of which has
dimension 2N corresponding to 2N Majorana fermions.
For further calculations, let us first see how the eigen-

vectors/values of the coefficient matrix iA are related to
the fermionic excitation modes of the system. Since A
is antisymmetric, the eigenvalues of iA comes in pairs

−ǫi, ǫi with eigenvectors vi, v
∗
i respectively, where ǫi ≥ 0.

We can choose the eigenvectors to be orthonormal since
iA is Hermitian. Define fermion operators di =

1√
2
ψT vi.

It is easily seen that these operators obey {d†i , dj} = δi,j .
We get,

H =

N
∑

i=1

ǫi

(

d†idi −
1

2

)

. (6)

It is known that the ground state of the Hamiltonian
lies in a sector wherein all the Djl operators take the
eigenvalue +1 [25, 27]. By making use of the transla-
tional symmetry in the problem, a solution of the model
can be effected by going into Fourier transformed rep-
resentation . Thus, the Hamiltonian re-expressed in
terms of the Fourier transformed variables, (ψa

k
ψb
k
) =

∑

j,l e
−ik·rj,l(ψa

j,l,1 ψ
b
j,l,2)/

√
2N , (where rj,l = jn1 + ln2)

reads,

H =
1

2

∑

k

(ψa
−k ψ

b
−k)

(

0 iφ(k)
−iφ∗(k) 0

)(

ψa
k

ψb
k

)

.(7)

Here, φ(k) = 2(Jxe
−ik2 + Jy + Jze

−i(k1+k2)) and ki =
k · ni. The eigenvalues are ±|φ(k)| and the fermionic
excitations are given by

H =
∑

k

|φ(k)|
(

d†(k)d(k) − 1

2

)

, (8)

where d(k) = 1√
2
[ψa

k
+ i φ(k)

|φ(k)|ψ
b
k
]. The excitation spec-

trum is gapless if there exist points where |φ(k)| = 0
which is possible only if following condition is satisfied:

(Jx − Jy)
2 < J2

z < (Jx + Jy)
2. (9)

The gapless phase is characterised by Fermi points where
the φ(k) vanishes. There is a quantum phase transition
from the gapless- to the gapped-phase as the parameters
cross the conditions in Eq. 9. This quantum phase transi-
tion is the one that we wish to probe via a single vacancy
disorder.

III. SINGLE VACANCY

In this section, we study the nature of the wave-
function at the site of a single vacancy. The analytic
functional form is derived for both the gapped and gap-
less phases.
For the sake of concreteness consider the Kitaev model

with a vacancy at the B-site in the unit-cell (−1,−1), (see
Fig. 1). Note that the Jordan-Wigner construction goes
through with the tail operator K(j, l, µ) missing σz

−1,−1,2

for all (j, l, µ) > (−1,−1, 2). As the system is no longer
translationally invariant one cannot use Fourier trans-
form to solve the problem. However, the general struc-
ture of the Hamiltonian, Eq. 5, remains with A now being
a (2N−1)×(2N−1)matrix obtained by removing the row
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and column corresponding to the site (−1,−1, 2) from the
matrixA in Eq. 5. Thus, we haveN−1 eigenvectors form-
ing pairs as described in Sec. II and one unpaired eigen-
vector denoted by ṽ. This eigenvector should be real with
zero eigenvalue because of the ǫ ↔ −ǫ symmetry briefly
alluded to in Sec. II. The N−1 pairs can be combined to
form N − 1 complex fermion operators di leaving behind
a single unpaired mode. This unpaired eigenvector forms
a Majorana mode, d̃ = ψT ṽ as d̃† = d̃ and d̃2 = 1. Note
that by removing a spin at (−1,−1, 2), we have left out
one other Majorana fermion operator from the Hamilto-
nian; ψb

0,0,1 which would have formed the operator D0,0

with ψa
−1,−1,2 had the spin been present. Thus a com-

plex fermion mode can be constructed from these two
Majoran modes as dN = 1

2 (d̃ + iψb
0,0,1) which will be a

zero-energy excitation of the Hamiltonian which, again,
has the same form as Eq. 6. However, since D00 is not
present in the Hamiltonian, the number of Djl operators
is now N − 1. Thus, now there are 2N−1 sectors each
with N complex fermions. Hence as expected the total
dimension of the system is 22N−1.

Now that the above discussion has clearly established
that a single vacancy induces a zero-energy fermionic ex-
citation mode in the Kitaev model, let us turn our at-
tention to the analytic structure of these modes. To do
so, we employ a method developed by Pereira et. al [28],
[29] in the context of zero modes arising out of a vacancy
defect in graphene. This adaptability of the technique de-
veloped for the case of graphene to the Kitaev model is
not so surprising as they both give rise to similar fermion
hopping problems. Unlike the case of graphene studies
by Pereira et. al. [28], [29], where one is restricted to the
isotropic case Jx = Jy = Jz, here we consider the general
anisotropic hopping problem and obtain expressions for
the zero mode for the parameter regimes corresponding
to both gapped- and gapless-phases of the clean model.
More specifically, we obtain an asymptotic form for the
defect wave-function in the gapless phase, whereas one
can evaluate an exact form of the wave function in the
gapped phase.

Before obtaining explicit expression for the zero modes
of iA with B-site vacancy, let us first see how they are re-
lated to the corresponding zero mode when the vacancy
site is in the A-sublattice. Let us introduce the nota-
tion r ≡ (jr , lr) and Aµ,ν(r, r

′) ≡ A(jr ,lr,µ),(jr′ ,lr′ ,ν)
. The

clean model has the symmetry given by τxA(r + ρ, r +
ρ′)τx = −A(r − ρ, r − ρ′) for any r, where τx is the
Pauli matrix. But the vacancy breaks the translational
invariance. Let Vµ,r0 be the matrix to be added to A
to create the vacancy, by removing corresponding matrix
elements from A, at position r0 in the sublattice µ. Now,
τxV1,r0(r0 + ρ, r0 + ρ′)τx = −V2,r0(r0 − ρ, r0 − ρ′). If
φ2,r0(r) ≡ φ(r− r0) is an eigenvector of i(A+V2,r0) with
eigenvalue λ, then it follows that φ1,r0(r) ≡ τxφ(r0−r) is
an eigenvector of i(A+ V1,r0) with eigenvalue −λ. Thus
we need to find the localised zero mode with one type of
vacancy only, the other obtained from the relation given
above. In the discussion hereafter, φµ,r always denote

the zero mode created by µ-sublattice vacancy at site r.
Consider a B-site vacancy in the unit cell (−1,−1) as

shown in the Fig. 1. The eigenvalue equation of iA for
the zero eigenvalue decouples the A- and B-sublattice
amplitudes. Denoting the A-sublattice amplitude by ajl,
we get the corresponding eigenvalue equation as

Jyajl + Jxaj,l+1 + Jzaj+1,l+1 = 0. (10)

This equation hold true everywhere except for j = −1 =
l, where it no longer applies due to the vacancy. A similar
equation can also be written down for the B-sublattice
amplitudes. In that case, the corresponding equation is
satisfied by choice of them being equal to zero identically.
Thus, we have φ2,(−1,−1)(r) = (ajrlr 0)T .
To solve Eq. 10, following the procedure of Pereira et.

al. [29], the lattice is divided into two parts: j ≥ 0, and
j < 0, the parts that lies below and above the dotted
line respectively in Fig. 1. Eq. 10 is solved separately
in these two regions and a boundary matching condition
is imposed at the dotted line in Fig. 1. Applying peri-
odic boundary condition along the horizontal direction,
a Fourier transformation , aj(q) =

∑

l e
−iqlajl, reduces

Eq. 10 to

aj(q) = −f(q)aj−1(q), f(q) =
(Jye

−iq + Jx)

Jz
. (11)

The solutions are given by

aj(q) =

{

[−f(q)]j a0(q) ∀ j > 0,

[−f(q)]j+1
a−1(q) ∀ j < −1.

(12)

Seeking solutions that decay as a function of the distance
from the vacancy site, we get the following conditions:
a0(q) is non-zero only if |f(q)| < 1, and a−1(q) is nonzero
only if |f(q)| > 1. Note that these conditions require that
the j < 0 and j ≥ 0 regions have complementary sets
of wave-vectors contributing to the eigenvectors. The
boundary condition at the interface is now implemented
as

∑

q

eiq(l+1)

[

a0(q) +
Jx + Jye

−iq

Jz
a−1(q)

]

= 0, (13)

except for l = −1. This set of equations is satisfied by

the choice a0(q) = Θ(1−|f(q)|) and (Jx+Jye
−iq)

Jz
a−1(q) =

Θ(|f(q)| − 1). It is easily checked that the condition
|f(q)| ≤ 1 can be satisfied for parameter values that obey
Eq. 9. For other parameter values, corresponding to the
gapped-phase of the clean model, |f(q)| will either be less
than 1 or will be greater than 1 for all values of q, thereby
giving us trivial solution in one of the two regions. We
now consider these two parameter regions separately.

A. Gapless phase

First, consider the gapless phase, where we have a
set of q values in the range (q∗, 2π − q∗) that satisfy
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|f(q)| < 1, where cos(q∗) =
J2

z−J2

x−J2

y

2JxJy
with q∗ ∈ (0, π).

Its complement in [0, 2π) gives the set of q values con-
tributing to eigenvector in the j < 0 region. The eigen-
vector for the j > 0 region is now constructed by taking
the inverse Fourier transform of aj(q). Thus, we have

ajl ∼ ℜ
{

∫ π

q∗
dq eiq(l−j/2)

[

−ǫ(q)eiθ(q)
]j
}

. (14)

Here, ǫ(q) = [J2
x + J2

y + 2JxJy cos(q)]
1/2/Jz and

tan(θ(q)) = (Jx − Jy) tan(q/2)/(Jx + Jy). Notice that
ǫ(q) decreases monotonically from its maximum value 1
at q∗ to |Jx − Jy|/Jz at q = π. For asymptotically large
values of j, the dominant contribution comes from the
region around q∗ . Therefore, expanding around q∗, the
above equation, Eq. 14 can be written in terms of its
asymptotic form as

a(x, y) ∼ ℜ
{

eiq
∗x/

√
3+i2(π+θ∗)y/3

αy/
√
3− i2βy/

√
3− ix

}

. (15)

The parameters α, θ∗, and β are given by α =
2JxJy sin(q

∗)/J2
z , θ

∗ = θ(q∗), β = (J2
x − J2

y )/J
2
z . Also, in

the above equation x(j, l) =
√
3(l− j/2) and y(j, l) = 3

2j
are the re-defined lattice indices. The integral in Eq. 14
vanishes as we approach the boundary, J2

z → (Jx − Jy)
2,

of the parameter regime defining the gapless phase, since
q∗ → π here. In the opposite limit of J2

z → (Jx + Jy)
2,

q∗ → 0, and as Jz crosses this condition we move into
the gapped phase solution which will be discussed in the
next section, Sec. III B.
For Jx = Jy = Jz , we have q∗ = 2π/3, α =

√
3, θ(q) =

0, and thus the result of Pereira et.al., [29], a(x, y) ∼
ℜ
{

(ei2πx/3
√
3+i2πy/3)/(y − ix)

}

is recovered. A numer-

ically exact zero mode in the gapless phase is shown in
Fig. (2) for a finite system with periodic boundary con-
ditions.

B. Gapped phase

Now consider the gapped phase. For the sake of
concreteness, consider the situation wherein all Js are
taken to be positive and furthermore satisfy the condi-
tion Jx + Jy < Jz . As we have already seen, we have
|f(q)| < 1 for all values of q and hence the solution for
j < 0 is trivially zero. Then the boundary condition at
j = 0 implies (see Eq. 10) that

a0l = 0 ∀ l 6= 0. (16)

The solution of Eq. 10 satisfying this boundary condition
is

aj,l = (−1)j jCl

(

Jx
Jz

)j−l (
Jy
Jz

)l

a0,0, (17)

for all j > 0, l ∈ {0, .., j} and zero everywhere else. Here
jCl is the Binomial coefficient. We note that the solution

FIG. 2. The zero mode intensity |ajl|
2 for the gapless case

(Jx = Jy = Jz = 1) (top) and for the gapped case (Jx = Jy =
1, Jz = 2.05) (bottom) for a system with N = 2500 unit cells
and with periodic boundary conditions.

is non-zero only in a cone-shaped region extending in the
j > 0 direction. For any j > 0,

|aj,l| ≤
∑

l

|aj,l| = [(Jx + Jy)/Jz]
ja0,0. (18)

Therefore |ajl| decay exponentially since (Jx + Jy)/Jz <
1. Note that we have implicitly assumed that the lattice
extends infinitely in the j direction. If we have periodic
boundary condition in the j direction as well, the tail of
this solution can wrap around to the j < 0 region shown
in Fig. 1. The zero mode corresponding to the gapped
phase, but still close to the transition (at Jz = Jx + Jy),
is shown in Fig. (2).
We have two other possibilites, namely, Jy + Jz < Jx

and Jz + Jx < Jy, for the gapped phase. They also
give similar results, and are related to the current result
by rotation of the lattice by 2π/3 and 4π/3 and cyclic
permutation of Jx, Jy, Jz .

C. Participation ratio and site-entanglement

The contrasting nature of the zero modes in the gapped
and gapless phases provides motivation for a closer study.
In the gapless phase there is a “quasilocalized” zero mode
in the terminology of [28], as the amplitude decreases as
1/r from the vacancy. This leads to an anomalous scaling
of the inverse participation ratio (IPR) defined as

P =

∑

j,l |ajl|4

(
∑

jl |ajl|2)2
. (19)
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The IPR in the gapless phase would then depend on the
size of the system N as 1/ ln(N)2 [28], whereas in the
gapped phase the IPR would be independent of the sys-
tem size reflecting the localized nature of the zero mode.
In Fig. (3) is shown the IPR across a transition to the
gapped phase where we can see an increased localization,
as indicated by the rapid increase in the IPR beyond
Jz = 2.
Quite apart from this dependence, it is interesting to

see strong variations of the IPR within the gapless phase
as a function of the parameters (Jx, Jy, Jz). In Fig. (3),
top panel, this is seen in the region Jz < 2. Also note
the strong dependence of these oscillations on the system
size N in this case. The variation of the IPR in the en-
tire gapless phase is most neatly captured in the triangle
with Jx + Jy + Jz = 1, with all Jx, Jy and Jz being ≤
1/2 [25]. The IPR of the zero mode for parameter val-
ues in this triangle corresponding to the gapless phase
is shown in Fig. (3). The borders of the triangle corre-
sponding to an imminent transition to the gapped phase
shows a minimum of the IPR, indicating the existence of
extended zero modes. The dark regions corresponding to
very small IPR and large delocalization are arranged in
an intriguing manner and require further work for elu-
cidation. The complexity of the figure in terms of the
number of such regions with large delocalization increases
with the system size N .
A trivial calculation on the gapped side shows that the

wavefunction is not only square summable but actually
summable:

∑

jl |aj,l| < ∞. As the gapless phase bound-
ary is reached this summability is lost. The total site-
entanglement present in the one-particle modes is closely
related to this sum. Entanglement in the Kitaev model
has been recently studied, and refers to entanglement in
the spins [30]. However if we are to look at single parti-
cle states, we can study entanglement between the sites
themselves, sites that maybe empty or singly occupied,
and the mode is considered to be a superposition of such
singly occupied states.
In the context of the Kitaev model the onsite fermions

are of Majorana type as opposed to complex ones. Al-
though the site-entanglement measure in the context of
Majorana fermions needs further studies, on interpreting
the modes as that of a complex fermion hopping prob-
lem, site entanglement becomes an especially standard
and well studied tool. Such entanglement measures have
been used previously in many contexts including that
of Anderson localization [31], wherein a single site von
Neumann entropy has been studied. If however we study
the entanglement between a pair of sites, say labelled
by (j, l) and (j′, l′), the concurrence [32] measure can be
used. The concurrence measures entanglement between
any two two-state (qubits) systems, and sites with occu-
pancy 0 or 1 are precisely isomorphic to qubits. If the
concurrence is 0, there is no entanglement between the
two sites and if it is 1, they are maximally entangled. For
one-particle states the concurrence is simply [33]

Cjl.j′ l′ = 2|aj,laj′,l′ | (20)
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FIG. 3. The inverse participation ratio of the zero modes
when Jx = Jy = 1 as a function of Jz (top), the gapless to
gapped transition being at Jz = 2. The IPR as a function
of Jx, Jy and Jz in the entire gapless phase (bottom) for
N = 900. The darker (blue color) regions have a low IPR or
large participation ratio.

and the total concurrence, summed over all pairs of sites
is CT where

CT =





∑

j,l

|aj,l|





2

−1 = a20,0
J2
z

(Jz − Jy − Jx)2
−1. (21)

Thus, at the transition when Jz = Jx + Jy we see a di-
vergence of the total site-site entanglement. The inverse
participation ratio P is also simply related to site-site en-
tanglement. The sum of the squares of the concurrence
(also called the tangle) across all pairs of sites is related
to the IPR. While a closed form analytical expression
for the IPR seems difficult, as noted above when dis-
cussing Fig. (3) the IPR is a minimum across the gapless-
gapped transition, indicating increased delocalization of
the states and large site-site entanglement.

IV. TWO VACANCIES

Next we briefly discuss the effects of having a vacancy
pair. To do so, let us first consider a sort of index theo-
rem given in Pereira et. al., in the context of graphene
[28]. Generally, this ”index”- theorem counts the num-
ber of zero modes that arise due to presence of vacancy
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defects in a fermion hopping problem on a bi-partite
lattice. More specifically, it has been shown that the
number of vacancy induced zero modes in such tight-
binding type models is equal to the difference |nB −nA|,
wherein nB(nA) is the number of vacancies on the A(B)
sub-lattice. Now, it is also known that for instance if
nB > nA, then the zero modes have non-zero support
only on the A-sublattice. The situation is reversed if
nB < nA. Thus, according to the above discussion if the
vacancy pair is introduced on different sublattices then
one would assume that the zero-modes interact with each
other lifting away from zero. While this is indeed true
in the gapless case the gapped case comes with an addi-
tional wrinkle. In other words, in an infinite lattice with
open boundary condition, depending on the position of
vacancies, there may still be intact zero modes even when
the two impurities are placed on different sub-lattices. To
see this let us define Atot = A+ V1,r1 + V2,r2 . Then

(Atotφ2,r2) (r) = 2φa(r12)[Jyδr,r1 + Jxδr,r1−(0,1)

+Jzδr,r1−(1,1)]

(

0
1

)

, (22)

where we have written φ ≡ (φa 0)T and r12 = r1 − r2.
Comparison with the previous section gives φa(r) =
ajr−1,lr−1. For the gapped phase, φa(r12) is zero unless
r1 is within the cone where the zero mode is nonzero.
Thus, φ2,r2 is also a zero mode when r1 is outside this
cone. Note that the fact that the lattice is infinite in
the j direction is crucial for this argument. For peri-
odic boundary condition, the cone could wrap around
the torus and the position r1 will be within the cone.
For other cases including the gapless phase, φa(r12) is
nonzero in general and we could represent the effective
coefficient matrix in the space spanned by the two zero
modes φµ,rµ as

iÃ =

(

0 iS
−iS 0

)

, (23)

where S = φT1,r1V1,r1φ2,r2 = 2φa(r12)[Jyφa(0) +
Jxφa((0, 1)) + Jzφa((1, 1))]. Here we have also used the
relation φT1,r1V1,r1φ2,r2 = −φT2,r2V2,r2φ1,r1 which follows
from φ1,r1(r) = τxφ(r1 − r) and the relation between V1
and V2. The quantity within the square brackets is ex-
actly what is excluded from being zero in Eq. 10. S is real
since the zero modes are real. The eigenvalues of iÃ are
±S and the two zero modes lift off from zero eigenvalue
and a crude estimate of the new eigenvalues of iAtot is
given by ±S(r12) that decays with the distance between
the two impurities: S decays as powerlaw, asymptoti-
cally, with r12 in the gapless phase and exponentially
when the A-site impurity is inside the cone defining zero-
mode eigenvector for B-site impurity.

V. CONCLUSION AND OPEN PROBLEMS

The role played by vacancies in identifying the gapped
and gapless phases has been discussed. In particular it

has been shown that a single vacancy in the gapless phase
leads to a “quasi-localized” zero-mode that asymptoti-
cally decays as a power-law. In the gapped phase, the
zero-mode due to the vacancy defect is exponentially lo-
calized with-in a cone that emanates from the vacancy.
These results were obtained analytically by laying re-
course to a technique developed in the context of [28],
[29]. This leads us to conjecture that a single vacancy im-
purity can act as a probe in distinguishing the two-phases
of the Kitaev model. These two phases are characterized
by very different behaviors of the IPR as well, and while
the transition is characterized by a local minimum of this
quantity, it shows for finite lattices, intriguing patterns
as a function of the parameters in the gapless phase. The
localization in the gapped phase leads to summable wave-
functions and to a finite total site-site entanglement as
measured by the concurrence. This diverges as the gap-
less phase is approached in a manner that is very easy to
calculate.

We have also briefly discussed the effect of interacting
zero modes. More specifically, specializing to the case
of two vacancy defects, we have seen that the number
of zero-modes in the gapless phase is equal to the dif-
ference of vacancies in the A and B sub-lattice, in con-
formity with the “index”-theorem in [28], [29]. We have
also argued that there are situations in the gapped phase
of the Kitaev model, (in the infinite lattice limit with
open boundary conditions), wherein the above mentioned
“index”-theorem does not hold.

Now, we turn our attention to some open problems
that still remain to be addressed with regards to the
effect of vacancy disorder on the Kitaev model. As is
obvious from this paper, a proper discussion of multi-
vacancy effect in the Kitaev model is sorely lacking. As
a prelude to any such effort one needs to generalize the
zero-mode counting argument of Pereira et. al. so as
to account for the extreme directionality dependence of
the zero-mode wave function in the gapped phase. In
the limit of multiple impurities it is plausible that one
can reduce the problem to a system that is governed by
an effective free-fermion action with both random mass-
term and random Z2 gauge fields. It is an open question
whether this is indeed the case. If one could write down
such an effective Hamiltonian, in the spirit of [20], [19],
[18], one could analytically investigate the effect of impu-
rities in determining thermodynamic properties like the
DoS. It would be interesting to see whether these models
show Griffiths type behavior exemplified by a divergent
DoS wherein the divergence is controlled by continuously
varying exponents that are a function of the disorder con-
centration, (see Ref. [34] where a similar effect was shown
to exist in the ±J random bond Ising model). Results
that come from such effective action description of dis-
order effects can also serve to shed light on the effect of
disorder on spin-liquids in general

Some of these issues addressed above could be also
studied numerically. More specifically, the functional
form of the DoS as a function of the disorder concen-
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tration and other system parameters are being studied
by numerical investigations [24].
As this paper was being written up, we were made

aware of a pre-print [35] wherein results similar to ours
in the context of Kitaev model were obtained.
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