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Abstract

We perform a three-dimensional, short-wavelength stability analysis on the numerically simulated

two-dimensional flow past a circular cylinder for Reynolds numbers in the range 50 ≤ Re ≤ 300;

here, Re = U∞D/ν with U∞, D and ν being the free-stream velocity, the diameter of the cylinder

and the kinematic viscosity of the fluid, respectively. For a given Re, inviscid local stability

equations from the geometric optics approach are solved on three distinct closed fluid particle

trajectories (denoted as orbits 1, 2 & 3) for purely transverse perturbations. The inviscid instability

on orbits 1 & 2, which are symmetric counterparts of one another, is shown to undergo bifurcations

at Re ≈ 50 and Re ≈ 250. Upon incorporating finite-wavenumber, finite-Reynolds number effects

to compute corrected local instability growth rates, the inviscid instability on orbits 1 & 2 is shown

to be suppressed for Re . 262. Orbits 1 & 2 are thus shown to exhibit a synchronous instability

for Re & 262, which is remarkably close to the critical Reynolds number for the mode-B secondary

instability. Further evidence for the connection between the local instability on orbits 1 & 2,

and the mode-B secondary instability, is provided via a comparison of the growth rate variation

with span-wise wavenumber between the local and global stability approaches. In summary, our

results strongly suggest that the three-dimensional short-wavelength instability on orbits 1 & 2 is

a possible mechanism for the emergence of the mode B secondary instability.
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I. INTRODUCTION

Various regimes occur in the flow past a circular cylinder as the Reynolds number Re =

U∞D/ν is varied. Here, U∞ is the uniform free-stream velocity, D the diameter of the

cylinder and ν the kinematic viscosity of the fluid. For small Re (. 5), the flow is steady

and attached to the cylinder. At Re ≈ 5, flow separation occurs, resulting in the formation

of a vortex pair in the near-wake steady separation bubble [1]. At Re ≈ 47, a supercritical

Hopf bifurcation leads to the time-periodic, laminar vortex shedding flow [2]. Laboratory

experiments have shown two possible modes of vortex shedding, oblique and parallel, for

Re as low as 50 [3]. On further increasing Re, various secondary instabilities occur on

the vortex shedding flow in the range 160 . Re . 260 [4, 5]. Linear stability analyses

on appropriately chosen base flows have provided useful insights on the various transitions

that occur in the flow past a circular cylinder [5, 6]. For example, the absolute instability

of the symmetric mode of perturbations in the time-averaged base flows at Re & 47 is

attributed to the origin of self-sustained vortex shedding [7–9]. In this study, we perform

a three-dimensional, short-wavelength, local stability analysis in the two-dimensional near-

wake region for 50 ≤ Re ≤ 300, i.e. the vortex shedding regime.

Experimental and numerical studies [5] have revealed four different types of secondary

instabilities that occur in the vortex shedding regime: the vortex adhesion mode [4, 10], the

two self-sustaining near-wake instabilities known as modes A & B [3, 4, 10], and another near-

wake instability mode C that occurs with suitable excitation [4]. While all these instabilities

can originate somewhere in the range of 160 . Re . 230, the actual state of the flow and the

transition points depend significantly on various factors like end-conditions, external noise,

and the path along which Re is varied. The vortex dislocations associated with the vortex

adhesion mode are observed in the range 160 . Re . 230, with the number of adhesion

points along the span of the cylinder increasing with Re. Mode A instability, characterized

by its span-wise wavelength of around 3D to 4D, is known to be dominant in the range

180 . Re . 230. Mode B, characterized by a span-wise wavelength of around 1D, is

first seen in laboratory experiments at Re ≈ 230, and subsequently becomes dominant at

Re ≈ 260 [11]. Mode C, of characteristic span-wise wavelength of around 2D, has been

observed in the range 170 < Re < 270 in experiments with a thin wire placed at specific

locations around the cylinder. It is furthermore noteworthy that while modes A & B are
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synchronous (same periodicity as the base flow), mode C is quasi-periodic [4].

A global numerical stability analysis on the two-dimensional periodic base flow revealed

the emergence of an absolute linear instability at Re ≈ 188.5 with a critical span-wise wave-

length of around 3.96D, and a second branch of linear instability at Re ≈ 259 with a critical

span-wise wavelength of around 0.822D [12]. These results are qualitatively consistent with

the mode A and mode B instabilities observed in experiments and numerical simulations. To

identify the mechanisms underlying the secondary instabilities, Williamson [5] and Marxen

et al. [13] investigated experimental and numerical data to conclude that mode A is associ-

ated with the elliptic instability of the vortex cores in the vortex street, and mode B with the

braid regions between the shed vortices. In this study, we perform linear stability analysis

on the fully non-parallel, unsteady, two-dimensional base flow, albeit with the restriction of

short-wavelength perturbations.

We employ the local stability approach [14], which, based on the Wentzel-Kramers-

Brillouin-Jeffreys (WKBJ) approximation [15], investigates the evolution of three-dimensional,

short-wavelength perturbations along fluid particle trajectories in a given base flow. This

approach, which is computationally accessible even for strongly non-parallel flows, has been

instrumental in understanding the mechanisms underlying elliptic instability [16, 17], cen-

trifugal instability [18, 19] and hyperbolic instability [20, 21]. The local stability analysis

has been particularly insightful in the studies on various idealized vortex models, including

Stuart vortices [22, 23] and Taylor-Green vortices [24]. It has also been used to investigate

numerically simulated base flows; for example, Gallaire et al. [25] and Citro et al. [26] stud-

ied the flow over a bump and the incompressible open cavity flow, respectively, albeit only

for transverse perturbation modes in the steady regime. Furthermore, Giannetti [27] used

this approach on the numerically simulated flow past a two-dimensional circular cylinder at

Re = 190 and 260.

In their study, Giannetti [27] numerically solved the inviscid local stability equations on

three different closed fluid particle trajectories for each of Re = 190 and 260. All three

trajectories were found to be inviscidly unstable at Re = 190 & 260, with qualitatively sim-

ilar Floquet exponents for corresponding trajectories at both the Re values. They associate

the instability on two of the trajectories with the asynchronous mode C instability, and the

instability on the third trajectory with the synchronous modes A & B. The relation between

the inviscid local instabilities and the global mode stability analysis, however, remains un-
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clear. In this paper, we perform local stability analysis in the entire range of 50 ≤ Re ≤ 300

to investigate the dependence, with possible transitions, of the short-wavelength instabilities

on Re. Finite Re, finite wavenumber corrections are inferentially incorporated, and com-

parisons between the local and global stability results are presented. We discover previously

unknown bifurcations in the local instabilities, and discuss their potential relation with the

evolution of secondary instabilities with Re.

The paper is organized as follows. In § II, the details of the theory and the numerical

construct are presented. This is followed up with the results and discussion of the local

stability analysis on the fully unsteady flow in § III. We present our conclusions in § IV.

II. METHODOLOGY

We perform a local stability analysis on the incompressible, viscous, two-dimensional

flow past a circular cylinder at various Reynolds numbers specified by Re = 50, 60, 80, 100,

120, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 245, 248, 249, 249.5, 250, 250.5,

251, 252, 255, 260, 270, 280, 290 and 300, all of which are in the unsteady vortex shedding

regime. Smaller steps in Re around Re ≈ 250 ensured that the corresponding bifurcations

were well-resolved.

A. Base flow - numerical simulations

The base flow is obtained by numerically solving the two-dimensional, incompressible

mass and momentum equations for a uniform, horizontal free-stream incident on a circu-

lar cylinder on which the no-slip and no-normal-flow boundary conditions are satisfied. The

numerical simulations were carried out in OpenFOAM [28] using a structured grid. The gov-

erning equations were solved using icoFoam, a finite-volume based incompressible, laminar

Navier-Stokes solver that employs the PISO (Pressure Implicit with Splitting of Operator)

algorithm. A rectangular computational domain of size 40D × 20D was used, with the

inflow and the side boundaries at 10D and the outflow boundary at 30D from the centre

of the cylinder. At the inflow boundary, a uniform horizontal free-stream velocity U∞ is

prescribed, whereas a uniform pressure boundary condition is used at the outflow boundary.

At the two side boundaries, we assume no flow variations in a direction normal to them.
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The structured grid representing the computational domain was built such that the cylinder

surface contained around 240 grid points, with a relatively coarser grid close to the domain

boundaries. The grid size and the time step were appropriately chosen to ensure numerical

convergence of the solutions at the largest Re, i.e. Re = 300. Additionally, we verified that

our results agreed with the existing literature [29, 30] on the values of Strouhal number and

mean drag coefficients to within 3.5% for all Re. In the rest of this paper, the spatial coordi-

nates and the velocity field are non-dimensionalized by D and U∞, respectively, with D/U∞

being the corresponding time scale to non-dimensionalize time. The cylinder orientation is

such that the free-stream is in the direction of positive x−axis and the cylinder axis is along

the z−axis, with y−axis perpendicular to both x− and z− axes.

B. Local stability equations

The local stability equations, i.e. the governing equations for the evolution of three-

dimensional, short-wavelength, small perturbations are derived from the linearized mass

and momentum equations. Within the WKBJ approximation, the velocity and pressure

perturbations, u and p, respectively, are assumed to be of the following forms [14]:

u = exp(iφ(x, t)/ǫ)[a(x, t) + ǫa1(x, t) + ...], (1)

p = exp(iφ(x, t)/ǫ)[π(x, t) + ǫπ1(x, t) + ...], (2)

where x and t denote space and time, respectively; φ(x, t) is any real scalar field and ǫ a small

parameter. The complex amplitude of velocity perturbation at orders ǫ0 and ǫ1 are a and

a1, respectively; the corresponding pressure amplitudes are π and π1. The wave vector of

the perturbations is given by k = ∇φ/ǫ, highlighting that the analysis is restricted to short-

wavelength perturbations. The inviscid local stability equations governing the evolution of

k and a are [14]:

dk

dt
= −(∇UB)

T
· k, (3)

da

dt
= −∇UB · a+

2

|k|2
[(∇UB · a) · k]k, (4)

where d/dt = ∂/∂t + UB · ∇ is the total time derivative with respect to the base flow

UB = ubêx + vbêy. Apart from the evolution equations 3 & 4, the continuity equation also
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requires k · a = 0 to be satisfied. As noted in Mathur et al. [23], the solutions to equations

3 & 4 always satisfy k · a = 0 if the initial conditions do.

We restrict our studies to the solutions of the local stability equations (equations 3, 4) on

closed trajectories in the base flow. The analysis is further restricted to those perturbations

whose wave vector is periodic upon evolution (according to equation 3) around one period

of the closed trajectories, owing to which Floquet theory [31] is applicable to calculate the

corresponding growth rates.

C. Computation of growth rates

For all Re in the range 50 ≤ Re ≤ 300, the growth rates are computed for the three closed

trajectories described in the beginning of § III and shown in figure 1. The closed trajectories,

with the time period the same as that of the base flow, are identified by calculating the fluid

particle trajectories for a dense set of initial conditions in a sufficiently large domain in the

near-wake of the cylinder.

The closed fluid particle trajectories are obtained by numerically integrating the equations

dx/dt = ub(x, y, t) and dy/dt = vb(x, y, t) using the Runge-Kutta fourth-order scheme. Two-

dimensional cubic interpolation in space is used to obtain the velocity field and its spatial

derivatives on the trajectories, along with a linear interpolation in time. The time step of

0.05 used in the numerical integration is small enough to ensure that a further reduction in

the time step does not significantly alter the resulting growth rates, and causes no qualitative

or quantitative changes to our conclusions. For the three closed trajectories in the unsteady

flow for 50 ≤ Re ≤ 300, we numerically verified that only purely transverse perturbations

are periodic upon integration around the closed trajectories. Furthermore, it suffices to

consider initial wave vectors of unit magnitude as the inviscid local stability equations 3 &

4 are linear in k. Inviscid growth rates are therefore computed only for initial wave vectors

specified by ki = êz, for which k remains constant along any fluid particle trajectory (from

equation 3).

For a given closed trajectory and an initial wave vector, the governing equation 4 for the

perturbation amplitude a is solved numerically using the Runge-Kutta fourth order scheme

from t = 0 to t = T , where T is the time period of the flow. Solutions are obtained for

three linearly independent initial conditions for a: a1, i = [1 0 0], a2, i = [0 1 0] and
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FIG. 1. The closed trajectories in the unsteady flow for Re = 80 (solid lines) and 250 (dashed

lines). Orbits 1, 2 & 3 are explicitly labelled for Re = 250. Topologically similar three closed

trajectories are found for all Re ∈ [50, 300]. The uniform free-stream veloctiy U∞ is along the

positive x−axis.

a3, i = [0 0 1], to obtain the final amplitude vectors at t = T as a1, f = [ax,1 ay,1 az,1],

a2, f = [ax,2 ay,2 az,2] and a3, f = [ax,3 ay,3 az,3], respectively. The eigenvalues of the

3×3 matrix M = [ax,1 ax,2 ax,3; ay,1 ay,2 ay,3; az,1 az,2 az,3] represent the Floquet multipliers

[31], denoted as E1, E2 and E3. The corresponding Floquet exponents are σj = (1/T ) log(Ej)

(j = 1, 2, 3), with the inviscid growth rate given by σre
0

= max (ℜ ({σ1, σ2, σ3})), where ℜ

denotes the real part. The imaginary part, σim
0

of the complex growth rate is given by

σim
0

= ℑ(logEm)/T , where Em is the eigenvalue that corresponds to the inviscid growth

rate σre
0

and ℑ denotes the imaginary part. In summary, (1/T ) log(Em) = σre
0
+ iσim

0
. The

methodology we adopt to incorporate the effects of finite Re and finite wavenumber are

discussed in section IIIB.
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III. RESULTS AND DISCUSSION

For every Re ∈ [50, 300], we find three distinct closed fluid particle trajectories whose

time period T is the same as that of the flow. In figure 1, we show the three trajectories

for Re = 250 (dashed lines), which are labelled as orbits 1, 2 and 3. Topologically similar

orbits for Re = 80 are also shown in figure 1 (solid lines). Orbits 1 & 2, which are symmetric

counterparts of each other but with a time lag of T/2, are non-self-intersecting, whereas orbit

3 intersects itself on the centreline. With increasing Re, the three orbits move closer to the

cylinder and simultaneously increase in their spatial extent. Previous studies by Giannetti

[27] identified the same three closed orbits, but only for Re = 190 & 260. As mentioned in

section IIC, for all the three orbits at a given Re, only purely transverse wave vectors are

periodic with the time period T , owing to which we compute growth rates only for ki = êz.

Furthermore, orbits 1 & 2 correspond to the same growth rates, and hence we plot all results

only for orbits 1 & 3.

A. Inviscid growth rates

In figure 2(a), we plot the inviscid growth rate σre
0

for orbit 1 (solid line) and orbit 3

(dashed line) as a function of Re. For orbit 1, σre
0

is zero at Re = 50, which is immediately

followed by a bifurcation as indicated by the positive σre
0

at Re = 60. For Re . 190,

σre
0

increases monotonically, attaining a local maximum of σre
0

≈ 0.8 at Re ≈ 190, before

decreasing to zero at Re ≈ 250. Remarkably, orbit 1 is stable for a small range of Re around

Re = 250, above which it again becomes unstable with σre
0

increasing to 1 at Re = 300.

The two bifurcations associated with orbit 1, immediately below and above Re = 250, are

discussed in more detail later in this section. In contrast, orbit 3 is unstable in the entire

range of [50, 300], with its σre
0

monotonically increasing with Re. The instability associated

with orbit 1 slightly dominates over that of orbit 3 in the range 70 . Re . 157, above which

the instability of orbit 3 clearly dominates up to Re = 300. Also included in figure 2(a)

are the growth rate estimates of Giannetti [27] at Re = 190 & 260, which are in reasonable

agreement with our results. The difference between our computed growth rates and those

of Giannetti [27] may be attributed to differences in the respective numerical schemes used

to generate the base flows.
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FIG. 2. (a) Inviscid growth rate σre
0

and (b) the imaginary part σim
0

of the complex growth rate, for

orbits 1 & 2 (solid line) and orbit 3 (dashed line) plotted as a function of Re for purely transverse

perturbations. Corresponding values from Giannetti [27] for Re = 190 & 260 are indicated by ©

(orbits 1 & 2) and △ (orbit 3). The markers on the curves indicate the actual values of Re at

which the growth rate calculations were performed.

We recall here that the imaginary part of the complex growth rate is given by σim
0

=

ℑ(logEm)/T , where Em is the eigenvalue that corresponds to the inviscid growth rate.

In figure 2(b), we plot σim
0

as a function of Re for orbits 1 & 3. For orbit 1, σre
0

> 0

and σim
0

= π/T (T is the time period of the closed trajectory) in the range 60 ≤ Re ≤ 248,

indicating that the corresponding eigenvalue Em is real and less than -1. For 251 ≤ Re ≤ 300,

σre
0

> 0 with σim
0

= 0, i.e. the corresponding eigenvalue Em is real and greater than 1. The

instability on orbit 1 is therefore seen to switch from being asynchronous (σim
0

6= 0) for

Re ≤ 248 to synchronous (σim
0

= 0) for Re ≥ 251. In physical terms, a synchronous

instability has the same time period as that of the base flow. In contrast, at Re = 260,

Giannetti [27] report σim
0

= π/T , suggesting that Em is real and less than -1. We recall,

however, from figure 2(a) that σre
0

for orbit 1 from our calculations is in good quantitative

agreement with that of Giannetti [27] at Re = 260. We are unable to identify the source

of the discrepancy in σim
0

for orbit 1 as Giannetti [27] report their results only at Re = 190

& Re = 260. For orbit 3, the eigenvalue Em is real and positive at all Re, resulting in σim
0

being zero at all Re.
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To investigate the bifurcations in the stability on orbit 1 at Re ≈ 50 and Re ≈ 250,

we track the evolution of the non-trivial Floquet exponents σ1 and σ2 with Re; the trivial

Floquet exponent is σ3 = 0. σ1 and σ2 are defined such that ℜ(σ1) ≥ ℜ(σ2). At Re = 50,

σ1 = σ∗
2
(∗ denotes complex conjugate) with ℜ(σ1) < 0 and ℜ(σ2) < 0, whereas at Re = 60,

σ1 = −σ∗
2
with ℑ(σ1) = ℑ(σ2) = π/T . In other words, the stability characteristics on orbit

1 switch from being stable-focus-like at Re = 50 to unstable-saddle-like at Re = 60, but

with non-zero imaginary parts in the Floquet exponents. The stability property on orbit 1

remains unstable-saddle-like, with ℑ(σ1) 6= 0 and ℑ(σ2) 6= 0, for Re < 249.

For the two bifurcations at around Re = 250, we plot σ1 and σ2 on the complex plane as

Re is varied in the neighbourhood of Re = 250 (figure 3). For Re = 245 and 248, ℜ(σ1) > 0

and ℜ(σ2) < 0, with both the exponents having the same positive imaginary part. The

exponents then switch to being complex conjugates with negative real parts at Re = 249.

This bifurcation from unstable-saddle-like behaviour (with ℑ(σ1) 6= 0 and ℑ(σ2) 6= 0) to

stable-focus-like behaviour is the reverse of what occurs at Re ≈ 50. The Floquet exponents

remain as complex conjugates with ℜ(σ1) < 0 and ℜ(σ2) < 0 for Re = 249.5, 250 &

250.5. We then observe a switch to Floquet exponents with σ1 = −σ∗
2
at Re = 251, with

ℑ(σ1) = ℑ(σ2) = 0. This bifurcation is therefore from stable-focus-like to unstable-saddle-

like properties. For all Re ≥ 251, the instability property on orbit 1 remains saddle-like

with σ1 = −σ∗
2
and ℑ(σ1) = ℑ(σ2) = 0.

B. Viscous growth rates

To explore the relation between our results and existing knowledge on secondary instabili-

ties in the cylinder wake, we incorporate finite-wavenumber, finite-Re effects in the following

manner [25]

σν(β,Re) = σ0(Re)−
β2

Re
−

A(Re)

β
, (5)

where σν is the corrected growth rate, σ0 the inviscid growth rate from the local stability

calculations, β the transverse wave number, and A a model parameter. The first correction

term, β2/Re, in equation 5 follows from the study of Landman and Saffman [17] that showed

that weak viscous effects always serve to suppress the inviscid local instabilities. The second

correction term, A/β, in equation 5 is based on a previous study [18] that proposed the

construction of localized eigenmodes from local stability calculations. The results of Bayly
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FIG. 3. Path traced by the non-trivial Floquet exponents σ1 (solid line) and σ2 (dashed line) on

the complex plane as Re is varied in the vicinity of Re = 250, with σ1 and σ2 defined such that

ℜ(σ1) ≥ ℜ(σ2). Indicated right next to every datapoint is the corresponding value of Re.

[18] were specific to centrifugal instability on a streamline with locally maximum inviscid

growth rate in a steady flow, implying that the validity of equation 5 for a closed trajectory

in an unsteady flow is unknown. However, equation 5 has been employed for centrifugal

and non-centrifugal-type instabilities, which don’t necessarily satisfy all the assumptions of

Bayly [18], with reasonable accuracy [25, 32]. This suggests that equation 5 may represent

a reasonably accurate generic model for finite-β, finite-Re corrections.

The model parameter, A in equation 5 is assumed to be independent of β [25] and a

function of the base flow Reynolds number Re only. To estimate A(Re), we use inputs from

known secondary instability characteristics. The self-sustained mode-B secondary instability

has a characteristic span-wise wavelength of around 1D, making it more likely to be cap-

tured in a short-wavelength framework than mode-A (characteristic span-wise wavelength

≈ 4D). Furthermore, global mode Floquet analysis reveals the emergence of an instability at

Re ≈ 260 with a dominant mode of span-wise wavelength around 0.822D [12], and is associ-

ated with the mode-B instability observed in experiments and three-dimensional numerical

simulations. Therefore, we explore the possible connection between our local instability cal-

culations and the mode-B secondary instability, specifically focusing on the relevance of the
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FIG. 4. (a) The maximum growth rate σ∗
ν = σ0 − 3β∗2/Re (with β∗ = 7.64) as a function of Re

(solid line with markers) for orbits 1 and 2. The inviscid growth rate σ0 for orbit 1 is reproduced

here for comparison (solid line with no markers). (b) The corrected growth rate σν (equation 5) as

a function of β using two methodologies M1 and M2 for orbit 1 at Re = 280; for comparison, the

global stability growth rates from Barkley and Henderson [12] are plotted using open circles. (c)

and (d): Similar data as in (a) and (b), respectively is plotted for oribt 3.

bifurcation in the instability of orbit 1 at Re ≈ 250.

Barkley and Henderson [12] report that the most unstable perturbation mode at the birth

of the new instability at Re ≈ 260 corresponds to a span-wise wavenumber of β = β∗ ≈ 7.64.

While the exact values of β∗ are not reported for Re > 260 in Barkley and Henderson [12],

the most unstable wavenumber is known to be around the same value as that for Re = 260.

For β = β∗ to be the most unstable transverse wavenumber in the local stability analysis,

i.e. for σν (equation 5) to attain a maximum at β = β∗, we require

A =
2β∗3

Re
, (6)
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thus providing us with an estimate for A. The resulting maximum growth rate σν(β
∗, Re) =

σ0(Re)− 3β∗2/Re is denoted as σ∗
ν . In figure 4(a), we plot σ∗

ν (solid line with markers) as a

function of Re for orbit 1. Strikingly, based on σ∗
ν , orbit 1 is stable for all Re . 262. This

critical Re of 262 above which orbit 1 is unstable is close to the mode-B critical Re of 260

reported by Barkley and Henderson [12]. Additionally, as noted in figure 2(b), the instability

on orbit 1 is synchronous (σim
0

= 0) for Re ≥ 262, and hence leading us to suggest that it is

indeed closely related to the synchronous mode-B secondary instability.

To further explore the relation between the local instability on orbit 1 and the mode-B

secondary instability, we evaluate the extent to which equation 5 captures the growth rate

variation with β. In figure 4(b), we plot σν for orbit 1 as a function of β at Re = 280 (solid

line), with the value of A chosen based on equation 6; such a choice for A is denoted as

methodology M1. The solid line, representing methodology M1, in figure 4(b) is in reasonable

qualitative agreement with the growth rate variation based on the results of Barkley and

Henderson [12] (solid line with markers). Specifically, the range of unstable β based on

σν is [3.72, 13.42], whereas the unstable range reported by Barkley and Henderson [12] is

[6.23, 10.2]. In figure 4(b), we also plot σν vs. β using an alternate method M2 to estimate

A, where we match σν(β
∗) with the corresponding value of growth rate at β∗ from Barkley

and Henderson [12]. While methodology M2 does not guarantee that σν attains a maximum

at β = β∗, we find remarkable qualitative and quantitative agreement with Barkley and

Henderson [12]. Based on methodology M2, the range of unstable β is [5.87, 11.84]. In

summary, the results from figures 4(a) & (b) indicate that the mode-B secondary instability

is possibly a manifestation of the local instability on orbits 1 & 2.

To investigate the effects of finite-β, finite-Re corrections on the local instability identified

on orbit 3, we plot σ∗
ν as a function of Re in figure 4(c), with A again estimated using

β∗ = 7.64. Based on the corrected growth rate, orbit 3 is stable for all Re less than the

critical value of Re ≈ 190, a value of Reynolds number that lies in the so-called transition

regime [5]. However, Re = 190 represents the critical Reynolds number of the mode-A

secondary instability, whose characteristic transverse wavelength is 4D. Therefore, it is not

clear what the implications of the transition at Re = 190 in figure 4(c) are. We also note

that orbit 3 is of noticeably smaller spatial extent than that of orbit 1, and also contains

segments where its radius of curvature is negligibly small, potentially raising questions on

whether a span-wise wavelength of 1D can be considered “short-wavelength” for orbit 3. In
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a manner similar to figure 4(b), we plot σν as a function of β (for both methodologies M1

and M2) at Re = 280 for orbit 3, along with the mode-B instability growth rate variation

reported by Barkley and Henderson [12]. For both methodologies M1 and M2, a significantly

larger range of beta is unstable when compared with the estimate from global analysis. This

further suggests that the local instability on orbit 3, probably, has no relation to the mode-B

secondary instability.

Finally, we performed similar calculations as in figure 4 to explore the relation between

the local instabilities and the mode-A secondary instability. The span-wise wavelength as-

sociated with the mode-A secondary instability is around 4D (β ≈ 1.59), and hence not

necessarily a “short-wavelength instability”. Assuming a β∗ of 1.59, finite-Re, finite-β cor-

rections do not significantly modify the inviscid growth rates on orbits 1 or 3. Therefore, our

study is inconclusive about the role of local instabilities in the mode-A secondary instability.

The related study by Giannetti [27] performed similar inviscid local stability calculations

on the three closed trajectories for Re = 190 & 260. The inviscid instability on orbit 1 was

reported to be asynchronous for both Re, leading Giannetti [27] to suggest that it is related

to the mode-C secondary instability. Orbit 3 was found to display a synchronous instability,

and was linked with both modes A & B secondary instabilities. Our study, however, finds

that the inviscid instability on orbit 1 undergoes an asynchronous-to-synchronous bifurcation

at Re ≈ 250. Additionally, with finite-wavenumber, finite-Re corrections, the synchronous

instability on orbit 1 is shown to occur for Re & 262 only. Furthermore, we also find the

mode B span-wise wavelength of around 1D to be consistent with the local instability on

orbit 1, but not on orbit 3.

IV. CONCLUSIONS

In this paper, we have presented a local stability analysis in the near-wake region resulting

from the uniform flow past a two-dimensional circular cylinder for Reynolds numbers in

the range 50 ≤ Re ≤ 300. The inviscid local stability equations were solved on closed

fluid particle trajectories in the unsteady flow for purely transverse perturbations. Three

closed trajectories with the time period the same as that of the base flow were identified

for all Re ∈ [50, 300]. Two of these closed trajectories, denoted orbits 1 & 2, are non-

self-intersecting and symmetric counterparts of each other. The third closed trajectory,
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referred to as orbit 3, is self-intersecting. The inviscid growth rate associated with orbits 1

& 2 undergoes bifurcations at Re ≈ 50 and Re ≈ 250, with the instabilities in the ranges

50 . Re . 248 and 251 . Re ≤ 300 being asynchronous and synchronous, respectively. In

contrast, orbit 3 was found to be inviscidly unstable in the entire range of [50, 300], with the

corresponding growth rate increasing monotonically with Re.

Finite-wavenumber, finite-Reynolds number corrections on the computed inviscid growth

rates were then obtained by assuming that the most unstable perturbation mode occurs

for the mode-B span-wise wavelength of 0.822D. Based on this corrected growth rate, the

inviscid instability on orbits 1 & 2 is suppressed for Re . 262, and a synchronous instability

occurs for Re > 262. This transition Reynolds number of Re ≈ 262 is remarkably close

to the mode B critical Reynolds number from global stability analysis, experiments and

numerical simulations. Additionally, the corrected growth rate variation with the span-

wise wavenumber for Re = 280 shows excellent qualitative and quantitative agreement

with the corresponding mode B instability growth rates from the global analysis. These

results strongly suggest that the three-dimensional, short-wavelength instability on orbit 1

is closely connected to the mode B secondary instability in the wake of a circular cylinder.

The physical relevance of the inviscid local instability on orbit 3 is unclear.

In the future, it may be worth designing direct numerical simulations with the aim of

studying the evolution of localized three-dimensional perturbations on the closed trajectories

in the two-dimensional cylinder wake, which may lead to devising flow control strategies.

Also, it would be interesting to explore the existence of other closed trajectories in the

time-periodic cylinder wake, whose time period may be any integer multiple of the flow time

period.

We thank S. Ajith Kumar for his help with the numerical simulations of the base flow in

the early phase of this study.
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