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Abstract

It was observed in [1, 2] that the strain smoothing technique over higher

order elements and arbitrary polytopes yields less accurate solutions than

other techniques such as the conventional polygonal finite element method.

In this work, we propose a linear strain smoothing scheme that improves

the accuracy of linear and quadratic approximations over convex polytopes.

The main idea is to subdivide the polytope into simplicial subcells and use

a linear smoothing function in each subcell to compute the strain. This

new strain is then used in the computation of the stiffness matrix. The

convergence properties and accuracy of the proposed scheme are discussed by

solving few benchmark problems. Numerical results show that the proposed

linear strain smoothing scheme makes the approximation based on polytopes

to deliver improved accuracy and pass the patch test to machine precision.
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1. Introduction

One of the popular methods for efficient numerical integration in mesh-

free method is the stablizied conforming nodal integration (SCNI) [3], where

the strain field is sampled at the nodes by smoothing the nodal strain

on the boundary of a representative nodal volume. In this approach, the

nodal strain field is computed by smoothing the standard strain field at

the node. Chen et al. [3] showed that the SCNI scheme is more efficient

than Gauß integration and passes the linear patch test. Based on this, Liu

et al. [4] proposed the smoothed finite element method, which provides a

suite of finite elements with a range of interesting properties. Among them

are the cell-based SFEM (CSFEM) [5], node based SFEM (NSFEM) [6],

edge-based SFEM (ESFEM) [7], face-based SFEM (FSFEM) [8] and alpha-

FEM [9]. All these SFEMs use finite element meshes with linear inter-

polants. A rigorous theoretical framework was provided in [5] and the con-

vergence, stability, accuracy and computational complexity were studied

in [10]. The method was also extended to plates [11], shells [12] and nearly

incompressible solids [13, 14], and coupled with the extended finite element

method [1, 15, 16].

The approach proposed in this paper is closely related to CSFEM. In

the CSFEM, the elements are divided into smoothing cells over which the

standard (compatible) strain field is smoothed, which results in the strain

field being computed from the displacement field on the boundary of the

smoothing cell. The stiffness matrix is then constructed using this new

strain definition and its numerical integration only involves evaluations of
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few basis functions on the boundary of the smoothing cell—derivatives of

basis functions are not needed. It should be noted that the CSFEM employs

quadrilateral elements, whereas all other SFEM models usually rely on sim-

plex elements as reference mesh. When the CSFEM is used with linear

simplex elements, the resulting stiffness matrix is identical to the conven-

tional FEM. Recently, Natarajan et al., [17] showed the connection between

the CSFEM and the virtual element method (VEM) [18–21]. Dai et al., [22]

observed that on an arbitrary polygon with n > 4 (where n is the number

of sides of the polygon), a minimum of n subcells are required to ensure

stability. However, in Reference [2] it was observed that the CSFEM over

arbitrary polytopes yields less accurate solutions than other techniques such

as the conventional polygonal finite element method [23].

In this paper, we refer to CSFEM as constant smoothing (CS) scheme.

Herein, we propose a modification to the CS scheme for arbitrary convex

polytopes that leads to improved accuracy and recovers optimal convergence

rates. To this end, the polytope is divided into subcells (for instance, trian-

gles/tetrahedra) and by appealing to the recent work of Duan et al. [24–26],

a linear smoothing (LS) scheme is used in each subcell. The subdivision of

the polytope into subcells is solely for the purpose of computing the linear

smoothed strain and does not add new degrees of freedom to the system.

Section 2 summarizes the governing equations for the linear elastostatics

problem. A brief discussion about shape functions over arbitrary convex

polygons is given in Section 3. Section 4 presents the construction of the

stiffness matrix for polytopes using strain smoothing, where the linear strain

smoothing scheme is presented. The efficacy, the convergence properties and

the accuracy of the proposed LS scheme for polytopes are studied in Section

5 by solving a few benchmark problems in two- and three-dimensional linear

3



elastostatics. The results from the proposed scheme are compared with

conventional cell-based smoothed finite element method. Major conclusions

and scope for future work are discussed in the last section.

2. Governing equations

Consider an elastic body that occupies the open domain Ω ⊂ IRd and is

bounded by the (d−1)-dimensional surface Γ whose unit outward normal

is n. The boundary is assumed to admit decompositions Γ = Γu ∪ Γt and

∅ = Γu ∩ Γt, where Γu is the Dirichlet boundary and Γt is the Neumann

boundary. The closure of the domain is Ω ≡ Ω ∪ Γ . Let u : Ω → IRd be

the displacement field at a point x of the elastic body when the body is

subjected to external tractions t̄ : Γt → IRd and body forces b : Ω → IRd.

The imposed Dirichlet (essential) boundary conditions are û : Γu → IRd.

The boundary-value problem for linear elastostatics is: find u : Ω → IRd

such that

∀x ∈ Ω ∇ · σ + b = 0, (1a)

∀x ∈ Γu u = û, (1b)

∀x ∈ Γt σ · n = t̂, (1c)

where σ is the Cauchy stress tensor. The corresponding weak form is: find

u ∈ U such that

∀v ∈ V , a(u,v) = ℓ(v) (2a)

a(u,v) =

∫

Ω

σ(u) : ε(v) dV, ℓ(v) =

∫

Ω

b · v dV +

∫

Γt

t̂ · v dS, (2b)
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where ε is the small strain tensor, and U and V are the displacement trial

and test spaces:

U :=
{

u(x) ∈ [C0(Ω)]d : u ∈ [W(Ω)]d ⊆ [H1(Ω)]d, u = û on Γu

}

,

V :=
{

v(x) ∈ [C0(Ω)]d : v ∈ [W(Ω)]d ⊆ [H1(Ω)]d, v = 0 on Γu

}

,

where the space W(Ω) includes linear displacement fields. The domain is

partitioned into elements Ωh, and on using shape functions φa that span at

least the linear space, we substitute vector-valued trial and test functions

uh =
∑

a φaua and vh =
∑

b φbvb, respectively, into Equation (2) and apply

a standard Galerkin procedure to obtain the discrete weak form: find uh ∈

U h such that

∀vh ∈ V
h a(uh,vh) = ℓ(vh), (4)

which leads to the following system of linear equations:

Ku = f , (5a)

K =
∑

h

Kh =
∑

h

∫

Ωh

BTCB dV, (5b)

f =
∑

h

fh =
∑

h

(

∫

Ωh

NTb dV +

∫

Γh
t

NTt̂ dS

)

, (5c)

where K is the assembled stiffness matrix, f the assembled nodal force vec-

tor, u the assembled vector of nodal displacements, N is the matrix of shape

functions, C is the constitutive matrix for an isotropic linear elastic mate-

rial, and B = ∇sN is the strain-displacement matrix that is computed using

the derivatives of the shape functions.

The shape functions over arbitrary polygons/polyhedra are collectively

called as ‘barycentric coordinates’. Because there is no unique way to rep-

resent the shape functions over polytopes, there are multiple approaches to

5



construct them. Interested readers are referred to Reference [27] for a de-

tailed discussion on the construction of shape functions over polytopes. In

this paper, Wachspress interpolants are used [28].

The main issue in computing the stiffness matrix defined in Equation (5)

for polygonal/polyhedral elements is the construction of sufficiently accurate

integration rules. In an effort to improve the accuracy, a modified version

of the strain-displacement matrix is usually defined to compute the stiffness

matrix. This modified strain-displacement matrix is denoted by B̃ and is

constructed using smoothing domains that produce constant strains in the

polygonal/polyhedral element. A smoothing technique that yields linear

strains and improved accuracy in polygonal/polyhedral finite elements is

proposed in this paper. Thus,the stiffness matrix is computed as for the

constant smoothing:

K̃ =
∑

h

K̃
h
=
∑

h

∫

Ωh

B̃
T
CB̃ dV, (6)

This is also true for linear smoothing technique, with only B̃ varies, with a

linear smoothed strain-displacement operator (see Section 4.2) as opposed to

a constant smoothed strain-displacement operator (see Section 4.1) [4, 17].

3. Shape functions for arbitrary convex polytopes

In this section, shape functions employed over arbitrary convex polygons

and polyhedron are discussed. A brief overview of shape functions that are

linear on the element boundary is given, followed by quadratic serendipity

shape functions over arbitrary convex polygons.
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3.1. Wachspress interpolants

Wachspress [29], by using the principles of perspective geometry, pro-

posed rational basis functions on polygonal elements, in which the algebraic

equations of the edges are used to ensure nodal interpolation and linearity

on the boundaries. A discussion on their use for smoothed polygonal ele-

ments is given in [28]. In Reference [30], a simple expression is obtained for

Pi−1

Pi

Pi+1

P

δiγi

Figure 1: Barycentric coordinates: Wachspress basis function

Wachspress shape functions, as follows:

φwi (x) =
wi(x)

∑n
j=1wj(x)

, (7)

wi(x) =
A(pi−1, pi, pi+1)

A(pi−1, pi, p)A(pi, pi+1, p)
=

cot γi + cot δi
||x− xi||2

, (8)

where A(a, b, c) is the signed area of triangle [a, b, c], and γi and δi are shown

in Figure 1. The generalization of Wachspress shape functions to simplex

convex polyhedra was given by Warren [31, 32]. The construction of the

coordinates is as follows: Let P ⊂ IR3 be a simple convex polyhedron with
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facets F and vertices V . For each facet f ∈ F , let nf be the unit outward

normal and for any x ∈ P , let hf (x) denote the perpendicular distance of x

to f , which is given by

hf (x) = (v − x) · nf (9)

for any vertex v ∈ V that belongs to f . For each vertex v ∈ V , let f1, f2, f3

be the three faces incident to v and for x ∈ P , let

wv(x) =
det(nf1 ,nf2 ,nf3)

hf1(x)hf2(x)hf3(x)
. (10)

The shape functions for x ∈ P is then given by

φv(x) =
wv(x)
∑

u∈V

wu(x)
. (11)

The Wachspress shape functions are the lowest order shape functions that

satisfy boundedness, linearity and linear consistency on convex polyshapes [31,

32].

3.2. Quadratic serendipity shape functions

Rand et al., [33] presented a simple construction of shape functions over

arbitrary convex polygons that have a quadratic rate of convergence. This

extends the work on serendipity elements to arbitrary polygons/polyhedron,

which were earlier restricted to quadrilateral (for instance, 8-noded serendip-

ity) and hexahedral elements (for instance, 20 noded serendipity brick ele-

ment). The essential steps involved in the construction of quadratic serendip-

ity shape functions are pictorially shown in Figure 2 and are [33]:

1. Select a set of barycentric coordinates φi, i = 1, · · · , n, where n is the

number of vertices of the polygon.
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2. Compute pairwise functions µab := φaφb. This construction yields a

total of n(n+ 1)/2 functions.

3. Apply a linear transformation A to µab. The linear transformation A

reduces the set µab to 2n set of functions ξij indexed over vertices and

edge midpoints of the polygon.

4. Apply another linear transformation B that converts ξij into a basis

ψij which satisfies the “Lagrange property.”

In the present study, Wachspress interpolants are selected to represent

the barycentric coordinates φi. Instead of using a single ‘reference’ element,

Rand et al., [33], proposed to analyse classes of ‘reference’ elements, namely,

diameter one convex polygons. The transformation matrix A that reduces

the set µab has the following structure:

A :=
[

I | A
′
]

, (12)

where I is the 2n × 2n identity matrix and each column in A′ corresponds

to the relation between the interior diagonal of the pairwise product basis

with the midpoints of boundary edges. The pairwise functions set µab and

the reduced basis set are related by

ξij = Aµab. (13)
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The transformation matrix B is given by

B =











































1 −1 · · · −1

1 −1 −1 · · ·

. . .
. . .

. . .

1 −1 −1

4

0 4

. . .

4











































. (14)

The above transformation matrix, converts the serendipity shape functions

to ψij that satisfies the “Lagrange property,” i.e.,

ψij = Bξij. (15)

Interested readers are referred to Reference [33] for a detailed discussion on

the construction of the linear transformation matrices A and B. Figure 3

shows one of the barycentric coordinates of a pentagon and the quadratic

shape function. The intermediate shape function ξI is also shown to not

possess the Kronecker delta property.

4. Stiffness matrix for polytopes using strain smoothing

The next step in the process is to compute the modified strain-displacement

matrix to build the stiffness matrix Equation (6). To this end we rely on

the smoothed finite element method (SFEM), which has its origin in the

stablilized conforming nodal integration (SCNI) [3] for meshfree methods,

where the strain field is sampled at the nodes by smoothing the nodal strain

on the boundary of a representative nodal volume (‘the smoothed domain’).

10



λi µij ξij ψij

Linear Quadratic Serendipity Lagrange type

1 1 1 12 2 2 2

3 3 3 34 4 4 4

5 5 5

6

7

8 9 8 86 6

7 7

Figure 2: Construction of quadratic serendipity shape functions based on

generalized barycentric coordinates.

In particular, we focus our attention on the cell-based smoothing technique.

In the CSFEM, the elements are divided into subcells as shown in Figure 4.

In this paper, we use triangles in two dimensions and tetrahedra in three

dimensions. The strain smoothing technique is then applied within each

subcell to evaluate the modified strain. For simplicity of the notation, the

derivation of the smoothing scheme is given in detail only for two-dimensions.

The Cartesian coordinate system is chosen, where for convenience x ≡ x1

and y ≡ x2. In addition, nj (j = 1, 2) is the j-th component of the unit

outward normal to a cell edge in the Cartesian coordinate system. The dis-

crete strain field ε̃hij that yields the modified strain-displacement matrix B̃

that is used to build the stiffness matrix is computed by a weighted average

of the standard strain field εhij in each subcell Ωh
C , as follows:

ε̃hij(x) =

∫

Ωh

C

εhij(x)f(x)dV , (16)

where f is a smoothing function. On writing Equation (16) at the basis

functions derivatives level, its right-hand side can be expressed in terms of
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(a) Serendipity shape function (ξ) without the “Lagrange property”.

(b) Serendipity shape function (ψ) with the “Lagrange property”.

Figure 3: Quadratic serendipity shape functions for quadrilateral element.

The shape function for node 6 (see Figure 2) is shown. Note that the func-

tion ξ does not possess the Kronecker delta property. After applying the

transformation matrix B, the serendipity shape function at node 6 possess

the Kronecker delta property.
12



the divergence theorem, as follows:

∫

Ωh

C

φa,jf(x) dV =

∫

Γh

C

φaf(x)nj dS −

∫

Ωh

C

φaf,j(x) dV. (17)

Equation (17) was coined as divergence consistency in Duan et al. [24–26],

where it was introduced to correct integration errors in second- and third-

order meshfree approximations. This divergence consistency was later used

by Sukumar to correct integration errors in quadratic maximum-entropy

serendipity polygonal elements [34] and by Ortiz-Bernardin and co-workers

to correct integration errors in the volume-averaged nodal projection (VANP)

meshfree method [35, 36].

To obtain the modified strain-deformation matrix for the polygonal el-

ement, Equation (17) is solved through Gauß integration, which leads to a

system of linear equations where the values of the shape functions deriva-

tives evaluated at the m-th integration point (denoted by mr) in the interior

of the subcell, namely φa,j(
mr), are the unknowns. In this process, only

basis functions are involved—derivatives of basis functions are not needed.

This effectively means that the interior derivatives are replaced by modified

derivatives that are computed based on the shape functions. The modified

derivatives are then used to compute the discrete modified strain. Thus,

at the m-th integration point in the interior of the subcell Ωh
C , the discrete

modified strain is

ε̃h(mr) = B̃(mr)q, (18)

where q contains unknown nodal displacements that belong to the element.

The number of interior integration points that are required per subcell is

related to the number of terms in the smoothing function f and will be

discussed later (see Remark 1). The smoothed element stiffness matrix for
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(a) 2D: subdivision into triangles

(b) 3D: subdivision into pentahedron

Figure 4: Representative subdivision of an element into subcells: (a) arbi-

trary polygon (b) hexahedron. Note that the polygon/polyhedron can be

subdivided into subcells of any shape. However, for simplicity we employ

triangles in two dimensions and tetrahedra in three dimensions.
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the element h is computed by the sum of the contributions of the subcells

as

K̃
h
=

nc
∑

C=1

(

ngp
∑

m=1

B̃
T
(mr)CB̃(mr)wm

)

(19)

where nc is the number of subcells of the element, ngp the number of

Gauß points per subcell and wm are the integration weights. Two par-

ticular smoothing functions along with their associated modified strain-

displacement matrices are discussed next.

4.1. Constant smoothing

In the conventional cell-based smoothing technique, which we refer to as

constant smoothing (CS) scheme, the smoothing function f is chosen to be

a constant, i.e.,

f(x) = 1, (20)

whose derivative is f,j(x) = 0,∀x in the subcell. Herein, this is referred to

as constant smoothing. One interior Gauß point (ngp = 1) per subcell is

required to compute the smoothed element stiffness matrix Equation (19).

Thus in two dimensions, Equation (17) leads to

φa,1 =
1

AC

∫

Γh

C

φa(x)n1 dS, (21a)

φa,2 =
1

AC

∫

Γh

C

φa(x)n2 dS, (21b)

which for a polygon of n sides, gives the following expression for the modified

strain-displacement matrix evaluated at the interior Gauß point:

B̃ =
[

B̃1 B̃2 · · · B̃n

]

, (22)
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where the nodal matrix is

B̃a =
1

AC

∫

Γh

C











n1 0

0 n2

n2 n1











φa(x)dS (23)

with AC being the area of the subcell. Similarly, in three dimensions the

expression for the nodal matrix is

B̃a =
1

VC

∫

Γh

C





























n1 0 0

0 n2 0

0 0 n3

n2 n1 0

0 n3 n2

n3 0 n1





























φa(x)dS (24)

with VC being the volume of the subcell.

Within this framework, the constant smoothing technique could be used

without subdividing the element into subcells. Figure 5 shows a schematic

representation of the constant smoothing technique over a hexagon. Note

that because of the choice of the smoothing function f , various choices

of subcells are possible. The smoothing can be performed over the entire

element (also referred to as one subcell in the literature) or over each of the

sub-triangles. Natarajan et al. [17], established a connection between the

one subcell version of the smoothing technique and the recently proposed

virtual element method [37].

4.2. Linear smoothing

In the proposed linear smoothing (LS) scheme, the smoothing function

f is the linear polynomial basis

f(x) = [1 x1 x2]
T, (25)
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(a) No subdivision into triangles

1

2

3

45

6 O

Ωc

Γ
c

1

Γ
c

3

Γ
c

2

(b) subdivision into triangles

Figure 5: Schematic representation of the constant smoothing tech-

nique. The interior Gauß points are depicted as ‘open’ squares, while the

Gauß points on the cell’s edges are shown as ‘filled’ circles. The white nodes

are the nodes of the element. The modified derivatives are computed at the

‘open’ squares.
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whose derivative (δij is the Kronecker delta symbol) is

f,j(x) = [0 δ1j δ2j ]
T. (26)

In two dimensions, the expanded version of Equation (17) is

∫

Ωh

C

φa,1 dV =

∫

Γh

C

φan1 dS, (27a)

∫

Ωh

C

φa,1x1 dV =

∫

Γh

C

φax1n1 dS −

∫

Ωh

C

φa dV, (27b)

∫

Ωh

C

φa,1x2 dV =

∫

Γh

C

φax2n1 dS, (27c)

for φa,1, and

∫

Ωh

C

φa,2 dV =

∫

Γh

C

φan2 dS, (27d)

∫

Ωh

C

φa,2x1 dV =

∫

Γh

C

φax1n2 dS, (27e)

∫

Ωh

C

φa,2x2 dV =

∫

Γh

C

φax2n2 dS −

∫

Ωh

C

φa dV (27f)

for φa,2.

Subcells are used to integrate Equation (27). A representative polygon

and its integration subcells are shown in Figure 6. Let the coordinates of

the m-th interior subcell Gauß point be defined as mr = (mr1,
mr2) and

its associated Gauß weight as mw; the coordinates and the Gauß weight

of the g-th Gauß point that is located on the k-th edge of the subcell is

g
ks = (gks1,

g
ks2) and g

kv, respectively; and the unit outward normal to the

k-th edge of the subcell is denoted by kn = (kn1, kn2). In two dimensions,

three interior Gauß points (ngp = 3) per subcell are required to compute

the smoothed element stiffness matrix Equation (19). Using numerical in-

tegration in Equation (27) leads to the following system of linear equations:
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1

2

3

45

6 O

Ωc

Γ
c

1

Γ
c

2

Γ
c

3

Figure 6: Schematic representation of a two-dimensional sub-triangulation

for the linear smoothing scheme. The geometric center of the polygon is

used to sub-triangulate the polygon. The interior Gauß points are depicted

as ‘open’ squares, while the Gauß points on the cell’s edges are shown as

‘filled’ circles. The white nodes are the nodes of the element. Note that the

center of the polygon does not introduce an additional node. It is introduced

solely for the purpose of integration. The modified derivatives are computed

at the ‘open’ squares.
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Wdj = f j, j = 1, 2 (28a)

where

W =











1w 2w 3w

1w 1x1
2w 2x1

3w 3x1

1w 1x2
2w 2x2

3w 3x2











, (28b)

f1 =



















3
∑

k=1

2
∑

g=1

φa(
g
ks) kn1

g
kv

3
∑

k=1

2
∑

g=1

φa(
g
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∑

m=1

φa(
mr)mw
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
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, (28c)

f2 =
















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3
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2
∑
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g
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3
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g
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3
∑
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2
∑
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φa(
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g
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g
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3
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φa(
mr)mw



















, (28d)

and the solution vector of the j-th basis function derivative evaluated at the

three interior subcell Gauß points is

dj =
[

1dj
2dj

3dj

]

=
[

φa,j(
1r) φa,j(

2r) φa,j(
3r)

]T

. (28e)

In the preceding equations, the index a runs through the nodes that

define the polygonal element. For a polygon of n sides, the modified deriva-

tives given in Equation (28e) are used to evaluate the modified strain-

displacement matrix at the interior subcell Gauß points, as follows:

B̃(kr) =
[

B̃1(
kr) B̃2(

kr) · · · B̃n(
kr)

]

, k = 1, 2, 3, (29)
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where the nodal matrix evaluated at the k-th interior subcell Gauß point is

B̃a(
kr) =











kd1 0

0 kd2

kd2
kd1











(30)

Remark 1. For the LS scheme, the arbitrary convex polygonal/polyhedral

element is always sub-divided into triangles (in two dimensions) and tetrahe-

dra (in three dimensions). The LS scheme is then applied over each subdivi-

sion (subcell). This is done because the number of interior Gauß points

needed to integrate in Equation (27) is exactly the number of terms in

the smoothing function. However, for the 4-node quadrilateral element, we

choose f(x) = [1 x1 x2 x1x2]
T and because a four-point Gauß quadrature

rule is available for this element, the sub-division is not performed.

Finally, for a polyhedron the subcell is a tetrahedron and the smoothing

procedure can be derived from the linear basis

f(x) = [1 x1 x2 x3]
T, (31)

and its derivative

f,j(x) = [0 δ1j δ2j δ3j ]
T. (32)

The corresponding triangular/tetrahedral quadratures that are used in the

smoothing scheme for both the interior and edge/face Gauß points are pro-

vided in Appendix Appendix A.

5. Numerical examples

In this section, we demonstrate the accuracy and convergence properties

of the proposed linear smoothing scheme (LS) to compute the shape function
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derivatives in polygonal and polyhedral finite elements. The LS scheme

is compared to the usual constant smoothing (CS) scheme by solving few

benchmark problems. We also demonstrate the performance of the scheme

in a simple three-dimensional elasticity problem. The following convention

is used while discussing the results:

• CS-Q4, LS-Q4: constant and linear smoothing scheme over 4-noded

quadrilateral element, respectively.

• LS-Q8: linear smoothing scheme over 8-noded quadrilateral serendip-

ity element.

• LS-H8: linear smoothing scheme over 8-noded hexahedral element.

• CS-Poly2D (linear), LS-Poly2D (linear): constant and linear smooth-

ing scheme over arbitrary polygons, respectively.

• CS-Poly2D (quadratic), LS-Poly2D (quadratic) - constant and linear

smoothing scheme over arbitrary serendipity polygons, respectively.

• LS-Poly3D - linear smoothing scheme over arbitrary polyhedron.

Table 1 lists the type and the order of approximation functions employed

for various element types considered in this study. For the purpose of error

estimation and convergence studies, the L2 norm and H1 seminorm of the

error are used.

5.1. Linear patch test

In the first example, the accuracy of the proposed LS scheme is demon-

strated with a linear patch test. The following displacements are prescribed
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Table 1: Shape functions used for various element types.

Element Type Type of shape function Order of shape functions

on the boundary

Q4 Lagrange shape functions Linear

Q8 Serendipity shape functions (c.f. Section 3.2) Quadratic

H8 Lagrange shape functions Linear

Poly2D (linear) Wachspress interpolants Linear

Poly2D (quadratic) Serendipity shape functions (c.f. Section 3.2) Quadratic

Poly3D Wachspress interpolants Linear

on the boundary in the two-dimensional case:




û

v̂



 =





0.1 + 0.1x+ 0.2y

0.05 + 0.15x + 0.1y



 (33)

and in the three-dimensional case the following displacements are prescribed

on the boundary:










û

v̂

ŵ











=











0.1 + 0.1x+ 0.2y + 0.2z

0.05 + 0.15x+ 0.1y + 0.2z

0.05 + 0.1x + 0.2y + 0.2z











. (34)

The exact solution to Equation (1) is u = û in the absence of body

forces. The domain is discretized with arbitrary polygonal and polyhedral

finite elements. Figure 7 shows a few representative meshes used for the two-

dimensional study and Figure 8 shows a few representative meshes used for

the three-dimensional study. The performance of the linear smoothing over

hexahedral elements is also studied using a structured mesh (2×2×2, 4×4×4,
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(a) (b)

(c) (d)

Figure 7: Square domain discretized with polygonal elements. Representa-

tive meshes containing (a) 10, (b) 20, (c) 50 and (d) 100 polygons.

8×8×8 and 16×16×16). The errors in the L2 norm and H1 seminorm for

the CS and LS schemes are shown in Table 2 for two-dimensions and in

Table 3 for three dimensions. It can be seen that the proposed LS scheme

passes the linear patch test to machine precision for both polygonal and

polyhedral discretizations, contrary to the linear smoothing as shown in [2].
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(a)

(b)

(c)

(d)

25



Table 2: Error in the L2 norm and H1 seminorm for the two-dimensional

linear patch test.

Mesh CS-Poly2D (linear) LS-Poly2D (linear)

L2 H1 L2 H1

a 1.7334×10−07 2.3328×10−05 5.3835×10−14 2.8388×10−11

b 1.6994×10−07 3.4094×10−05 1.9255×10−13 4.4373×10−11

c 7.2017×10−07 2.2573×10−04 2.0030×10−13 7.0017×10−11

d 7.4144×10−07 2.5773×10−04 2.9567×10−13 1.0199×10−10

Table 3: Error in the L2 norm and H1 seminorm for the three-dimensional

linear patch test.

Mesh LS-H8 Mesh LS-Poly3d

L2 H1 (c.f. Figure 8) L2 H1

2×2×2 2.5242×10−16 2.4820×10−12 a 2.0280×10−12 3.3428×10−10

4×4×4 7.9454×10−16 4.9945×10−12 b 1.9218×10−12 1.7529×10−10

8×8×8 2.9384×10−16 1.0012×10−12 c 2.6660×10−12 4.9320×10−10

16×16×16 8.9235×10−16 2.0093×10−12 d 3.2074×10−12 3.1083×10−10
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5.2. Quadratic patch test

In the quadratic patch test, the following displacements are prescribed

on the boundaries for the two-dimensional case:




û

v̂



 =





0.1x2 + 0.1xy + 0.2y2

0.05x2 + 0.15xy + 0.1y2



 , (35)

and the following in the three-dimensional case:











û

v̂

ŵ











=











0.1 + 0.2x + 0.2x+ 0.1z + 0.15x2 + 0.2y2 + 0.1z2 + 0.15xy + 0.1yz + 0.1zx

0.15 + 0.1x+ 0.1y + 0.2z + 0.2x2 + 0.15y2 + 0.1z2 + 0.2xy + 0.1yz + 0.2zx

0.15 + 0.15x + 0.2y + 0.1z + 0.15x2 + 0.1y2 + 0.2z2 + 0.1xy + 0.2yz + 0.15zx











.

(36)

The exact solution to Equation (1) is u = û when the body is subjected to

the body forces:

b =





−0.2C(1, 1) − 0.15C(1, 2) − 0.55C(3, 3)

−0.1C(1, 2) − 0.2C(2, 2) − 0.2C(3, 3)



 , (37)

in two-dimensions and

b =











−0.3C(1, 1) − 0.2C(1, 2) − 0.15C(1, 3) − 0.6C(4, 4) − 0.35C(6, 6)

−0.15C(1, 2) − 0.3C(2, 2) − 0.2C(2, 3) − 0.55C(4, 4) − 0.4C(5, 5)

0.1C(1, 3) − 0.1C(2, 3) − 0.4C(3, 3) − 0.3C(5, 5) − 0.4C(6, 6)











.

(38)

in three dimensions, where C is the constitutive matrix. For the quadratic

patch test, the domain is discretized with arbitrary polyhedral elements.

The number of elements is kept the same as for the linear patch test (Fig-

ures 7 - 8). The additional difference (in two-dimensions) is that for the

quadratic patch test additional mid-side nodes are added and quadratic

serendipity shape functions are used to represent the unknown fields. Ta-

ble 4 shows the relative error in the L2 norm and H1 seminorm for both
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Table 4: Error in the L2 norm and H1 seminorm for the two-dimensional

quadratic patch test.

Mesh LS-Poly2D (linear) LS-Poly2D (quadratic)

L2 H1 L2 H1

a 3.3983×10−02 11.478×10−01 1.1136×10−13 1.6919×10−11

b 1.7769×10−02 8.4327×10−01 1.2054×10−13 2.3663×10−11

c 6.3758×10−03 5.2839×10−01 1.4929×10−13 3.9634×10−11

d 3.6644×10−03 3.8407×10−01 2.6857×10−13 7.1208×10−11

LS-Poly2D (linear) and LS-Poly2D (quadratic) elements. The quadratic

elements pass the quadratic patch test to machine precision, and the lin-

ear elements asymptotically converge with optimal convergence rates in the

L2 norm and H1 seminorm as shown in Figure 9. Figure 10 shows the

convergence rates when the domain is discretized with the linear smoothed

hexahedral and polyhedral linear elements. It can be inferred that the linear

smoothing operation yields optimal convergence rates.

5.3. Two-dimensional cantilever beam under parabolic end load

In this example, a two-dimensional cantilever beam subjected to a parabolic

shear load at the free end is examined, as shown in Figure 11. The geom-

etry of the cantilever is L = 10 m and D = 2 m. The material properties

are: Young’s modulus, E = 3×107 N/m2, Poisson’s ratio ν = 0.25 and the

parabolic shear force is P = 150 N. The exact solution for the displacement

field is given by:
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Figure 9: Convergence results for the quadratic patch test when the domain

is discretized with LS-Poly2D (linear) elements. The LS scheme delivers

optimal convergence rates in both the L2 norm and H1 seminorm.
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Figure 10: Convergence results for the quadratic patch test when the domain

is discretized with the linear smoothed polyhedral and hexahedral elements.

The scheme yields optimal convergence rates for hexahedral and polyhedral

elements.
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u(x, y) =
Py

6EI

[

(9L− 3x)x+ (2 + ν)

(

y2 −
D2

4

)]

,

v(x, y) = −
P

6EI

[

3νy2(L− x) + (4 + 5ν)
D2x

4
+ (3L− x)x2

]

. (39)

where I = D3/12 is the second area moment. A state of plane stress is

considered. Figure 12 shows sample polygonal meshes. The numerical con-

vergence of the relative error in the L2 norm and H1 seminorm is shown

in Figure 13. It can be seen that the proposed linear smoothing scheme

yields the optimal convergence rate in both the L2 norm and the H1 semi-

norm. With mesh refinement the solution approaches the analytical solution

asymptotically.

Finally, a 4-noded structured quadrilateral mesh is used to discretize the

beam domain and the CS-Q4 and LS-Q4 elements are tested. Four subcells

within each Q4 element when the CS scheme is used, while the smoothing

function f(x1, x2) = [1 x1 x2 x1x2]
T is used for the LS scheme, which

eliminates the subcells that otherwise would be required [10]. Figure 14

shows the convergence rates for the two-dimensional cantilever beam when

the CS-Q4 and LS-Q4 elements are used. It can be inferred from Figure 14

that the proposed LS scheme on the Q4 element delivers rates and accuracy

that are comparable to the CS scheme with subcells on the same Q4 element.

5.4. Three-dimensional cantilever beam under shear end load

In this example, a three-dimensional cantilever beam under shear load

at the free end is studied. Figure 15(a) presents the schematic view of the

problem. The domain Ω for this problem is [−1, 1] × [−1, 1] × [0, L]. The

material is assumed to be isotropic with Young’s modulus, E = 1 N/m2 and
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y

x
D

L
P

Figure 11: Geometry and boundary conditions for the two dimensional can-

tilever beam problem.

(a) (b)

(c) (d)

Figure 12: Sample meshes for the two dimensional cantilever beam problem

containing: (a) 80, (b) 160, (c) 320 and (d) 640 polygons.
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Figure 13: Convergence results for the two dimensional cantilever beam

problem: relative error in the: (a) L2 norm and (b) H1 seminorm. We

note that the LS scheme delivers optimal convergence rates for linear and

quadratic elements.
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Figure 14: Convergence results for the cantilever beam subjected to end

shear when the domain is discretized with constant and linear smoothed Q4

finite elements. The LS-Q4 delivers optimal convergence rates in both the

L2 norm and H1 seminorm and the results are comparable with the results

obtained with CS-Q4 with subcells.
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Poisson’s ratio ν = 0.3. The beam is subjected to a shear force F at z = 0

and at any cross section of the beam, we have:

b
∫

−a

b
∫

−a

σyz dxdy = F,

b
∫

−a

b
∫

−a

σzzy dxdy = Fz. (40)

The Cauchy stress field is given by [38]:
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σxx(x, y, z) = σxy(x, y, z) = σyy(x, y, z) = 0; σzz(x, y, z) =
F

I
yz; (41)

σxz(x, y, z) =
2a2νF

π2I(1 + ν)

∞
∑

n=0

(−1)n

n2
sin
(nπx

a

) sinh
(

nπy
a

)

cosh
(

nπb
a

)

σyz(x, y, z) =
(b2 − y2)F

2I
+

νF

I(1 + ν)

[

3x2 − a2

6
−

2a2

π2

∞
∑

n=1

(−1)n

n2
cos
(nπx

a

) cosh
(

nπy
a

)

cosh
(

nπb
a

)

]

.

(42)

The corresponding displacement field [39]:

u(x, y, z) = −
νF

EI
xyz; v(x, y, z) =

F

EI

[

ν(x2 − y2)z

2
−
z3

6

]

;

w(x, y, z) =
F

EI

[

y(νx2 + z2)

2
+
νy3

6
+ (1 + ν)

(

b2y −
y3

3

)

−
νa2y

3
−

4νa3

π3

∞
∑

n=0

(−1)n

n2
cos
(nπx

a

) sinh
(

cosh
(

(43)

where E is the Young’s modulus, ν Poisson’s ratio and I = 4ab3/3 is the sec-

ond moment of area about the x-axis. Two types of meshes are considered:

(1) a regular hexahedral mesh and (2) a random closed-pack Voronoi mesh.

Four levels of mesh refinement are considered for both the hexahedral mesh

(2×2×10, 4×4×20, 8×8×40, 16×16×80) and the random Voronoi mesh. A

representative structured hexahedral mesh is presented in Figure 15(b) and

Figure 16 depicts the random Voronoi meshes. The length of the beam is

L = 5 m and the shear load is taken as F = 1 N. Analytical displacements

given by Equation (43) are applied on the beam face at z = L and the beam

is loaded in shear on its face at z = 0. All other faces are assumed to be

traction free. Figure 17 shows the relative error in the L2 norm and H1

seminorm with mesh refinement. It can be seen that the LS over hexahedral

and polyhedral elements converges asymptotically with mesh refinement and

delivers optimal convergence rates.
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Figure 15: Three-dimensional cantilever beam problem: (a) Geometry and

boundary conditions and (b) representative structured hexahedral mesh

(4×4×20).
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(a) 50 elements (b) 100 elements

(c) 300 elements (d) 2000 elements

Figure 16: Random closed-pack centroid Voronoi tessellation.
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Figure 17: Convergence results for the three-dimensional cantilever beam

problem.
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5.5. Thick-walled cylinder subjected to internal pressure

In this example, consider a thick-walled cylinder subjected to internal

pressure P . The internal and external radius of the cylinder are denoted by

as a and b, respectively. Due to symmetry, only one quarter of the cylinder

is modelled as shown in Figure 18. In the numerical computations, the

following parameters are chosen: a = 1m, b = 5m and internal pressure P =

3×104 N/m2. The exact solution for this problem is now given. For a point

(x, y), r =
√

x2 + y2, the radial and tangential displacements are given by

ur(r) =
a2Pr

E(b2 − a2)

[

(1− ν) +
b2

r2
(1 + ν)

]

,

uθ = 0. (44)

A state of plate stress is assumed, and under this assumption, the strain

components are only functions of the radius r and given by:

εr(r) =
a2P

E(b2 − a2)

[

(1− ν)−
b2

r2
(1 + ν)

]

,

εθ(r) =
a2P

E(b2 − a2)

[

(1− ν) +
b2

r2
(1 + ν)

]

,

εrθ = 0. (45)

Figure 19 shows a few representative polygonal meshes used in the study.

A convergence study is carried out using these discretizations and the con-

vergence of the relative error in the L2 norm and H1 seminorm are shown

in Figure 20 for both linear and quadratic polygonal elements with constant

and linear smoothing scheme. It can be seen from this figure that linear

smoothing yields optimal convergence rates for both linear and quadratic

elements. Next, we discretize the domain with structured 4-noded quadri-

lateral elements and use f(x1, x2) = [1 x1 x2 x1x2]
T as the smooth-

ing function to eliminate the subcells that are required in the conventional
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x
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Figure 18: Thick-walled cylinder subjected to internal pressure.

SFEM [10]. The convergence of the relative error in the L2 norm and H1

seminorm is shown in Figure 21. It can be seen that the proposed LS scheme

yields optimal convergence in both the the L2 norm and the H1 seminorm.

It can also be deduced that the results of the LS-Q4 element are comparable

with those of the CS-Q4 element with subcells.

6. Conclusions

In this paper, we presented a linear strain smoothing scheme for bilin-

ear and bi-quadratic two-dimensional polygonal elements. We also extended

the linear smoothing scheme to three-dimensional trilinear hexahedral ele-

ment and arbitrary polyhedral element. Through numerical examples it was

shown that the proposed smoothing scheme achieves accurate results and

passes the patch test to machine precision in two and three dimensions. The

extension of quadratic serendipity elements to arbitrary polyhedra and its
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Figure 19: Representative meshes for the thick-walled cylinder containing:

(a) 10, (b) 200 ,(c) 400 and (d) 800 polygons.
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Figure 20: Convergence results for the thick-walled cylinder subjected to

internal pressure when the domain is discretized with smoothed polygo-

nal finite elements. We note that the LS-Poly2D (linear) and LS-Poly2D
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Figure 21: Convergence results for the thick-walled cylinder subjected to

internal pressure when the domain is discretized with smoothed 4-noded

quadrilateral elements. The results of the LS-Q4 are comparable with the

results of the CS-Q4 element with subcells.
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use within the linear smoothing technique is in progress and will be a topic

of future communication.
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Appendix A. Quadratures for the linear smoothing scheme

The quadratures given here ensure invertibility of W in Equation (28).

For a triangular cell, the following 3-point rule is used for the interior

Gauß points:

T =











2/3 1/6 1/6

1/6 2/3 1/6

1/6 1/6 2/3











(A.1)

as the triangular coordinates, and

w =
[

1/3 1/3 1/3
]T

(A.2)

as the corresponding weights; whereas the following 2-point rule for the edge

Gauß points:

ξ =





−0.577350269189625764509148780502

0.577350269189625764509148780502



 (A.3)

as the normalized coordinates, and

v =
[

1 1
]T

(A.4)

as the corresponding weights.

For a tetrahedral cell, the following 4-point rule is used for the interior

Gauß points:

T =













0.585410196624969 0.138196601125011 0.138196601125011 0.138196601125011

0.138196601125011 0.585410196624969 0.138196601125011 0.138196601125011

0.138196601125011 0.138196601125011 0.585410196624969 0.138196601125011

0.138196601125011 0.138196601125011 0.138196601125011 0.585410196624969













(A.5)

as the tetrahedral coordinates, and

w =
[

1/4 1/4 1/4 1/4
]T

(A.6)
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as the corresponding weights; whereas the 3-point rule that is used for the

interior Gauß points of a triangular cell is employed for the face Gauß points

of the tetrahedral cell.
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