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We consider metrics related to each other by functionals of a scalar field ϕ(x) and it’s gradient
∇ϕ(x), and give transformations of some key geometric quantities associated with such metrics.
Our analysis provides useful and elegant geometric insights into the roles of conformal and non-
conformal metric deformations in terms of intrinsic and extrinsic geometry of ϕ-foliations. As a
special case, we compare conformal and disformal transforms to highlight some non-trivial scaling
differences. We also study the geometry of equi-geodesic surfaces formed by points p at constant
geodesic distance σ(p, P ) from a fixed point P , and apply our results to a specific disformal geometry
based on σ(p, P ) which was recently shown to arise in the context of spacetime with a minimal length.

PACS numbers:

I. INTRODUCTION

Consider a spacetime described by a metric g, and let
ϕ(x) be a given scalar field. From these variables, one can
construct another metric on the same manifold defined
by

?
gab = Ω2gab − εBtatb (1)

where Ω = Ω[ϕ] and B[ϕ] are arbitrary functions of the
scalar field ϕ, and

ta =
∂aϕ√

εgij∇iϕ∇jϕ
; gabtatb = ε = ±1 (2)

Our aim in this paper would be study the relationship

between geometric quantities associated with
?
g and g.

However, before doing that, let us first give a brief moti-
vation for considering such geometries. Under what cir-
cumstances can such geometries arise, and what might
be their use in physical theories? Over the past several
decades, it has been realized (although not widely appre-
ciated) that the geometry relevant for describing matter
in presence of gravitational field could be related to the
spacetime geometry in a non-trivial manner, going be-
yond the well known relation based on conformal trans-
formations which have otherwise been ubiquitous in such
contexts. A very transparent presentation of this argu-
ment can be found, for example, in Bekenstein’s paper
[1]. He argued that if one takes Finsler, rather than Rie-
mannian, geometry as more fundamental, and imposes
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some physically motivated constraints, a Finsler geome-
try can be re-cast in terms of a Riemannian geometry
with a metric that is related to the spacetime metric
by transformations which are non-conformal. Since the
transformation in (1) is qualitatively of such form (al-
though differs in detail from the ones in [1]), we refer
to such geometries as “Finsleresque”, and shall be work-
ing throughout this paper in this restricted context. A
more recent reason for considering such geometries comes
from semi-classical and quantum gravity. In particular, it
was recently shown [3] that space(time)s with a minimal
length scale might be described by an effective “metric”
of the form (1), with the non-local Synge world-function
bi-scalar replacing the field ϕ(x). We discuss this geom-
etry in detail in Section III A 4 below.

Summary: I outline a method which gives, in a conve-
nient form, the expressions for Ricci scalar associated

with the metric
?
gab in terms of geometric quantities as-

sociated with the level surfaces Σ of ϕ(x). In Section II, I
focus on the geometry of Σ and find several relationships
between intrinsic and extrinsic geometric quantities as-

sociated with Σ as embedded in
?
gab and gab. In Section

III, I use these relations in the Gauss-Codazzi equation

to re-construct the Ricci scalar of
?
g (see Eqs. (20, 21)),

and give several specific applications, including a recent
result in which a non-local disformal coupling based on
Synge world function arises naturally in spacetimes with
a minimal length. In Section IV, I recast the derived
expression for the Ricci scalar in a manner which ele-
gantly highlights the (well-known) contribution of the
conformal part, and the additional contribution due to
the non-conformal part expressed in a transparent, geo-
metric way. Finally, I end with brief concluding remarks
in Section V.

Notation: The signature is (−,+,+, . . .) for Lorentzian
spaces. I will also use the convenient notation Dk = D−k
which is handy when working in D dimensions.
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II. INTRINSIC AND EXTRINSIC GEOMETRY

Given the metric
?
gab, the inverse metric is easily found

to be

?
gab =

1

Ω2
gab + ε

(
Ω−2B

Ω2 − B

)
qaqb (3)

where qa = gabtb and
?
gai

?
gib = δab.

To begin with, introduce the vectors

Ta =
√

Ω2 − B ta
T a =

?
gabTb

=
1√

Ω2 − B
qa (4)

which are normalized with respect to
?
gab. Of course,

any characterization of Σ in
?
gab must be based on these

vectors. The metric determinants are related by√
−?g =

{
Ω(D−2)

√
Ω2 − B

Ω−2

}
√
−g (5)

which follows from the matrix determinant lemma:

det
(
M + uvT

)
= (det M)×

(
1 + vTM−1u

)
(6)

where M is an invertible square matrix, and u,v are
column vectors (of same dimension as M).

The first fundamental form

Using the above relations, one can immediately deduce
the following relation between the induced metrics, or the

first fundamental forms, of Σ in
?
g and g.

?

hab =
?
gab − εTaTb

=
(
Ω2gab − εBtatb

)
− ε
(
Ω2 − B

)
tatb

= Ω2 hab (7)

That is, the induced geometries on Σ in any two
space(time)s related by Eq. (1) are related by a conformal
transformation.

This observation will enormously simplify the evaluation

of Ricci scalar of
?
gab in terms of quantities associated

with gab.

The intrinsic Ricci scalar

The above result implies that intrinsic geometries of Σ are
conformal to each other, and since the conformal factor
is Ω2[ϕ] which is constant on Σ, one immediately obtains

?

RΣ = Ω−2RΣ (8)

which is a simple rescaling, and, most importantly, inde-
pendent of B.

The second fundamental form

Our next aim would be relate the extrinsic geometries, or
the second fundamental forms, of Σ in the two metrics.
These are defined by

Kij = ∇itj − εajti
?

Kij =
?

∇iTj − ε
?
ajTi (9)

where aj and
?
aj are the acceleration vectors associated

with vectors qi and T i respectively.

aj = qk∇ktj
?
aj = T k

?

∇kTj (10)

Since
?

∇bTc = ∂bTc−
?

ΓabcTk, we need the relation between
Christoffel connections of the two metrics. This is given
by

?

Γabc = Γabc +
1

2

?
gam

(
−∇m

?
gbc + 2∇(b

?
gc)m

)
(11)

We only need
?

ΓkijTk, which is relatively straightforward
to obtain using the identities proved in Appendix A, from
which we obtain

?

∇bTc =
√

Ω2 − B
(
∇btc +

∇qΩ2

2 (Ω2 − B)
hbc +

B
Ω2 − B

K(bc)

)
It immediately follows that

?
ac = T b

?

∇bTc

=
1√

Ω2 − B
qb

?

∇bTc

= ac (12)

Putting everything together, and noticing that hypersur-
face orthogonality implies K(bc) = Kbc, we finally obtain

?

Kab =
?

∇aTb − ε
?
abTa

=
1√

Ω2 − B

[
Ω2Kab +

1

2

(
∇qΩ2

)
hab

]
(13)

and

?

K =
?
gab

?

Kab

=
Ω−2

√
Ω2 − B

[
Ω2K +

D1

2
∇qΩ2

]
(14)
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Summary

To summarize, we have derived the following rela-
tions between first and second fundamental forms of
ϕ(x) =constant

?

hab = Ω2hab
?

RΣ = Ω−2RΣ

?

Kab =
Ω2

√
Ω2 − B

[
Kab + (∇q ln Ω)hab

]
?

K =
1√

Ω2 − B

[
K +D1∇q ln Ω

]
(15)

Of special interest are two cases which are displayed in
Table I, corresponding to conformal and disformal trans-
formations.

III. RE-CONSTRUCTING THE RICCI SCALAR
FROM GEOMETRY OF Σ

Having the relationship between intrinsic and extrinsic
geometrical properties of Σ, we can now re-construct the

point wise Ricci scalar of
?
gab by using the Gauss-Codazzi

relation:

?

R =
?

RΣ − ε
(
?

K2 +
?

K2
ab

)
− 2ε

?

∇T

?

K + 2ε
?

∇i
?
a
i

(16)

where
?

∇T ≡ T i
?

∇i and
?

K2
ab ≡

?
gia

?
gjb

?

Kab

?

Kij .

Our aim is to express all the quantities on the RHS of the
above equation in terms of quantities associated with gab,

thereby obtaining the transformation of
?

R. This is easily
done by using the results of the previous sections, which
give the required relationships for quantities appearing
in RHS above.

At this stage, it is useful to trade off the function B in
terms of a new function α, defined by

Ω2 − B = α−1 (17)

The significance of introducing α will become clear as we
go along. In particular, the set of metric transformations
of the form (1) turn to have an extremely simple compo-
sition law in terms of the functions

(
Ω2, α

)
; see Appendix

B.

Using expressions from previous section, one can derive

the following relations after few (long) algebraic steps:

?

K2
ab = α

[
K2
ab +K∇q ln Ω2 +D2

1 (∇q ln Ω)
2
]

?

K2 = α
[
K2 +D1K∇q ln Ω2 +D2

1 (∇q ln Ω)
2
]

?

∇T

?

K = α∇qK +
1

2
(K +D1∇q ln Ω)∇qα

+D1α∇q∇q ln Ω
?

∇i
?
a
i

= Ω−2∇iai (18)

where ∇q ≡ qi∇i as above.

We now have everything needed to evaluate the RHS of
Eq. (16). Putting everything together, and using the
(easily proved) identity

∇qK = qi∇i∇jqj

= −K2
ab −Rabqaqb +∇iai (19)

we get

?

R = Ω−2R + ε
(
α− Ω−2

)
Jd − εαJc (20)

where

Jc = ε
[
2D1Ω−1�Ω +D1D4Ω−2(∇Ω)2

]
+ (K +D1∇q ln Ω)×∇q lnαΩ2

Jd = 2Rabq
aqb +K2

ab −K2 − 2∇iai

= ε
(
R−RΣ − 2∇iai

)
(21)

which is the required expression.

The crucial role played by the non-conformal term in the
metric Eq. (1), characterized by B 6= 0, is immediately
obvious from the above relation. In particular, Jd in the
above expression is multiplied by α−Ω−2 = αΩ−2B (see
Eq. (17)). For conformally related metrics, B = 0, and
therefore this term does not play any role in conformal
transformations. This observation is crucial, since it

couples the non-conformal part of the metric
?
gab to the

object Jd which has a very special structure!

A. Applications and Analyses

1. Raychaudhuri equation

The first application we give is based on the third relation
in Eqs. (18).
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Consider the congruence of integral curves of qi, which
need not necessarily be geodesics. Then, the expansion
associated with these congruences is θ = K, and it’s rate
of change along the curves given by θ̇ = ∇qK. The

corresponding quantities in metric
?
gab are given by

?

θ =
?

K and
?

θ̇ =
?

∇T

?

K, and their relationship, translated to
variables more familiar from the Raychaudhuri equation,
is given by

?(
dθ

dλ

)
= α

dθ

dλ
+

1

2

(
θ +D1

d ln Ω

dλ

)
dα

dλ
+D1α

d2 ln Ω

dλ2

(22)

where we have replaced ∇q on the RHS with d/dλ - the
derivative along the curve. (The special case of conformal
transformation corresponds to α = 1/Ω2.)

The above relation gives the modification to the Ray-
chaudhuri equation, and hence should be useful in study-
ing the focussing and de-focussing behavior of geodesics
in Finsler-Riemann spaces. If the origin of the scalar field
ϕ(x) is due to some fundamental physics associated with
quantum gravitational effects, such a modification would
be key to understand the effect of quantum gravity on
spacetime singularities.

In this context, it is also worth pointing out the relation
between the symmetric, traceless part of Kab, or the so-
called shear-tensor, which happens to be much simpler
that the relation between Kab themselves. Using again
Eqs. (18), we get

?
σab =

?

Kab − (1/D1)
?

K
?

hab

=
√
α Ω2σab (23)

and hence

?
σ2
ab = α σ2

ab (24)

It is particularly obvious from the above that the confor-
mal (α = 1/Ω2) and disformal (α = Ω2) cases correspond
to completely different scaling of the shear tensor associ-
ated with ϕ(x) foliations.

A more general discussion on the propagation of ex-
pansion, shear and vorticity in the context of Finsler-
Riemann geometries can be found, for example, in [2].

2. Conformal transformation

As mentioned at the end of previous section, for confor-
mal transformations, α = 1/Ω2, and the expression for

Ricci scalar reduces to
?

R = Ω−2R− εΩ−2 [Jc]αΩ2=1

= Ω−2
[
R− 2D1Ω−1�Ω−D1D4Ω−2(∇Ω)2

]
(25)

since lnαΩ2 = 0 in this case, and hence the second term
in Jc in Eq. (21) vanishes.

We have therefore re-derived the well known expression
for conformal transformation of the Ricci scalar, in a
manner which gives a geometric origin for the Ω depen-
dent terms.

3. Disformal transformation

For the special case of disformal transformations 1 , α =
Ω2, and we obtain

?

R = Ω−2R+ ε
(
Ω2 − Ω−2

)
Jd − εΩ2 [Jc]α=Ω2 (26)

Since disformal modifications of spacetime geometry play
an important role in several studies such as modified
gravity, the above expression can provide considerable
insight into construction of sensible action for such mod-
els.

4. Small scale structure of spacetime:
Disformal coupling through Synge world function bi-scalar

In a recent work [3], it was argued that a spacetime with
a minimal length is endowed, under certain conditions,
with precisely a disformal structure based on the bi-scalar
of geodesic distance, σ(p, P ), between spacetime events
p and P , with

Ω2 = 1 +
L2

0

σ(p, P )2
(27)

It is a straight forward exercise to plug the above form
for Ω in Eq. (26) and obtain Eq. (14) of [4].

Equi-geodesic surfaces:

The key role here is played by the congruence of geodesics
emanating from a fixed spacetime event P , and the sur-
face comprised of events p lying at constant geodesic in-
terval from P , which we call as the equi-geodesic surface.

1 We should clarify that we are using the term disformal here to
refer to a special subclass of metrics (1), while sometimes all such
metrics are called disformal. This is just a matter of terminology.
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(a) The geometry of equi-geodesic “foliation”. (b) Equi-geodesic surface Σ in Minkowski
spacetime. H is the null cone at P .

FIG. 1: Set of events p at constant geodesic distance from a given space(time) event P . The shaded region
represents the normal convex neighborhood N (P ) of P , and p ∈ N (P ).

We give below several properties of the foliation based on
such surfaces, and also sketch the derivation of Eq. (14)
in [4] which was based on the analysis presented here.
Let us start with the key geometric quantities associated
with σ2 =constant surfaces with one of the events, say
P , is fixed; see Fig. 1.

Since the affinely parametrized tangent vector to the
geodesic connecting P to p is the normal to the Σ, and
given by [5]

ta =
∇aσ2

2
√
εσ2

(28)

the extrinsic curvature tensor of σ2 =constant surface,
Σ, is given by

Kab = ∇atb =
∇a∇b

(
σ2/2

)
− εtatb√

εσ2
(29)

This particular foliation, formed out of points which are
at a fixed geodesic interval from a given point, has many
interesting characteristics, all deriving from the fact that
the bi-tensor∇a∇b

(
σ2/2

)
has a well know covariant Tay-

lor series expansion at p near P [6]:

∇a∇b
(

1

2
σ2

)
= gab −

λ2

3
Eab +

λ3

12
∇qEab

− λ4

60

(
∇2

qEab +
4

3
EiaE ib

)
+O(λ5)

(30)

where ∇q ≡ qi∇i, Eab = Rambnq
mqn, and λ =

√
εσ2 is

the numerical value of the geodesic distance between P
and p.

Therefore, we see that the extrinsic geometry of such a
equi-geodesic “foliation” is very special, and completely
characterized by the tidal tensor Eab = Rambnq

mqn. In
fact, the intrinsic and extrinsic curvatures can be charac-
terized by a systematic Taylor expansion around P , given
by

Kab =
1

λ
hab −

1

3
λEab +

1

12
λ2∇qEab −

1

60
λ3Fab +O(λ4)

K =
D1

λ
− 1

3
λE +

1

12
λ2∇qE −

1

60
λ3F +O(λ4)

RΣ =
εD1D2

λ2
+R− 2ε(D + 1)

3
E +O(λ) (31)

where E = gabEab = Rabq
aqb, Fab = ∇2

qEab+(4/3)EakEkb,
and F = Fabg

ab.

The exact form of the Ricci scalar (in which the above
Taylor expansions can be plugged if needed) turns out to
be

?

RP (p) = Ω2 R(p)−
(
Ω2 − Ω−2

)
×
(
RΣ −Rflat

Σ

)
+ 2ε(Ω2 − 1) (D−1/D1)Kflat ×

(
K −Kflat

)
(32)

where Rflat
Σ = D1D2/σ

2 and Kflat = D1/
√
εσ2 are the

induced and extrinsic curvatures of σ2 =const. surfaces
in flat spacetime. Note that, in flat space(time), these
surfaces are simply hyperboloids, and hence maximally
symmetric (D − 1) spaces with positive or negative cur-
vature; see Fig. 1(b).
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Let us point out some special features of the above ex-
pression, which are absent for a generic ϕ(x), being a
consequence of (i) disformal nature of the coupling, (ii)
the very specific form of Ω2 = 1 + L2

0/σ
2 which implies

that Σ corresponds to σ2 = constant surfaces.

1. The first two terms on RHS mimic the relationship

between gab and
?
gab.

2. The form of the RHS clearly indicates an interplay

between Ω2 = 1 and g ≡ Riemann flat: the disformal
character of the modification Ω2 6= 1 only couples to
the curvature of the background spacetime, that is: flat
space(time) is immune to the disformal modification of
the above form!

3. The geometrical structure of the above expression
might hold the key to a generic study of behavior a disfor-
mal spacetime near curvature singularities of g in terms
of focusing and de-focussing of geodesics.

Conformal transformations Disformal transformations

B = 0; α = Ω−2 B = Ω2 − Ω−2; α = Ω2

?
gab = Ω2gab

?

hab = Ω2hab

?

Kab = ΩKab + (∇qΩ)hab

?

K = Ω−1K +D1Ω−2∇qΩ

?
gab = Ω2gab − ε

(
Ω2 − Ω−2

)
tatb

?

hab = Ω2hab

?

Kab = Ω3Kab +
(
Ω2∇qΩ

)
hab

?

K = ΩK +D1∇qΩ

TABLE I: Comparison of conformal and disformal transforms of first and second fundamental forms.

IV. CONFORMAL AND NON-CONFORMAL
PARTS OF THE RICCI SCALAR

Let Ric [g] denote the Ricci scalar associated with metric
g, and define Θ = αΩ2−1 which measures deviation from
the conformal case, for which α = Ω−2 and hence Θ = 0.

Then, recalling that

RΣ,g = Ric [g] + ε
(
K2
ab +K2

)
+ 2ε∇qK − 2ε∇ · a

is the intrinsic Ricci scalar of the Σ foliation embedded
in g, Eq. (20) can be cast in the following elegant form:

Ric
[
Ω2g − εα−1Θ t⊗ t

]
= (1 + Θ) Ric

[
Ω2g

]︸ ︷︷ ︸
the conformal part

− Ω−2

 Θ

purely intrinsic︷ ︸︸ ︷
(RΣ,g + 2ε∇ · a)− εΘ̇

purely extrinsic︷ ︸︸ ︷
(K +D1∇q ln Ω)


︸ ︷︷ ︸

contribution of the t⊗t term

= (1 + Θ) Ric
[
Ω2g

]
− Θ (RΣ + 2ε∇ · a)Ω2h + εΘ̇ Ω−1KΣ,Ω2h (33)

where Θ̇ = ∇qΘ.

We believe that the above expression holds the key to
the importance of the non-conformal term in Finsler like

spaces. It brings in some important geometric quanti-
ties associated with the ϕ foliation, and drastically alters
the behavior of the Ricci scalar in a manner which pure
conformal transformations can not.
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The above fact was drastically brought to focus recently
in the context of small scale structure of spacetime in
presence of a minimal length [4], where the non-conformal
part leads to some remarkable cancellations which dras-
tically alters the low energy manifestation of minimal
length effects, leaving a finite, O(1), relic. This suggests
that the non-conformal transformations, if they arise due
to quantum gravitational effects, might have non-trivial
effect on physics at all scales.

Besides the above, the geometric approach advocated
here should also find immediate application in several
other physical contexts; we here mention a few, and also
point out related generalizations.

Relativistic MOND: The class of metrics we have con-
sidered here have been most prominent in the context of
Modified Newtonian Dynamics (MOND), where disfor-
mal transformations have played an important role. The
relativistic generalization of MOND, proposed by Beken-
stein [7], involves a metric g̃ab constructed from the back-
ground metric gab, a normalised timelike vector field Ua,
and a scalar field ϕ. The structure of this modification
has been extensively studied, specifically in the context
of cosmology. The geometric formalism presented here
should be useful to investigate the characteristics of g̃ab,
in particular, for better understanding of the contribu-
tion of non-conformal part of the deformation as well
structure of modified action for the theory. This is al-
ready suggested by the discussion in Section IV above.
Doing so would require a generalization of the present
analysis to the case when the vector field in question
Ua 6= ∇aϕ. Such a generalization should be straightfor-
ward, and we hope to address it in future work. We here
simply illustrate the power of our method in a simplified
context in cosmology.

Consider the simplest (yet most studied) case of k = 0
(flat), D = 4, FLRW metric gab in standard co-moving
coordinates (t, x, y, z) with scale factor a(t). To study
deformations which respect the background symmetry,
we assume that Ω and B are functions of t only. Fur-
ther, since conformal deformations are already well un-
derstood, we set Ω = 1. In such a case, α = (1−B)−1, and
the relevant foliation is the one provided by t =constant
surfaces. For such a foliation, K = 3 (ȧ/a) and Kab =
(1/3)Khab. Referring to Eq. (33), and noting that
RΣ = 0 = a, we immediately get the modified Ricci
scalar to be

Ric
[
gab + B δ0

aδ
0
b

]
=

Ric [gab]

1− B
− 3H(t)Ḃ

(1− B)2
(34)

where H(t) = ȧ/a is the Hubble parameter. The non-
flat case, k = ±1, is also easy to obtain by noting that
the metric hab (being maximally symmetric) immediately
yields RΣ,h = 6k/a2, which can then be plugged in Eq.
(33) along with other terms.

Lanczos-Lovelock (LL) lagrangians: These class of
lagrangians have played an important role in generalizing
and understanding various classical and semi-classical as-
pects of gravity over the past decade [8]. Therefore, gen-
eralizing the calculation for Ricci scalar R presented here
to generic LL lagrangians would provide another most
natural extension of the analysis presented here. Not
only would this extend the study of disformal modifica-
tions of gravity to Lanczos-Lovelock models of gravity,
but it would open up a completely new avenue of re-
search into semi-classical aspects of conformal and non-
conformal deformations of LL lagrangians. Let us briefly
elaborate on this point. The LL lagrangians Lbulk

m of or-
der m are built from m copies of curvature tensor Rabcd,
while the surface term Ksurface

m which makes the varia-
tional problem well defined is built from sum of products
of (D−1)Rabcd and Kab. Therefore, although finding the
bulk term requires the knowledge of full modified Rie-
mann tensor (which remains a formidable task), the sur-
face term Ksurface

m , since it involves only induced geom-
etry hab, can be evaluated in a straightforward manner
from the expressions given here. Since the surface term
has played a very important role in semi-classical grav-
ity, especially black hole thermodynamics, it’s disformal
transformation can lead to new insights beyond those ob-
tained from purely conformal transformations. We hope
to take up this calculation in future work.

V. CONCLUDING REMARKS

The mathematical expressions derived here, and their ge-
ometric properties, should be useful in several contexts

in which an object like
?
gab arises, either as a ‘physi-

cal metric’ to which matter fields couple [1], or through
some effective quantum gravitational model [3, 4]. We
hope that these expressions and the method of deriva-
tion would be applicable to a wider class of problems in
which the relevant scalar (or bi-scalar) degree of freedom
arises through some physical consideration, and couples
non-conformally to the spacetime geometry. Moreover,
since the Ricci scalar forms the basis for setting up the

standard gravitational action, the expression for
?

R in the
form given in Eq. (33) might provide insight into con-
struction of the action involving gab and ϕ(x).

Acknowledgements – The author thanks IUCAA, Pune,
where part of this work was done, for kind hospitality.
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Appendix A: Derivation of Christoffel connection
component

We start with the following relations which are straight-
forward to establish:

qm∇m
?
gbc =

(
∇qΩ2

)
gbc − εB (tbac + tcab)− ε (∇qB) tbtc

qm∇b
?
gmc = −B∇btc + ε

[
∇q

(
Ω2 − B

)]
tbtc (A1)

where ∇q ≡ qm∇m. Using Eq. (A1) in Eq. (11), a few
steps of algebra give

?

ΓabcTa =
√

Ω2 − B Γabcta +
1

2
√

Ω2 − B
∆bc (A2)

where

∆bc = −
(
∇qΩ2

)
hbc + ε

[
∇q

(
Ω2 − B

)]
tbtc − 2BK(bc)

Appendix B: Composition law of transformations

As an interesting aside, we note the following composi-
tion law for the transformations we are considering in this

paper. Using the variables
(
A = Ω2, α

)
, let us consider

the following class of metrics, all defined on the same
manifold.

g
(1)
ab = A10g

(0)
ab − ε

(
A10 − α−1

10

)
t(0)
a t

(0)
b

g
(2)
ab = A21g

(1)
ab − ε

(
A21 − α−1

21

)
t(1)
a t

(1)
b (B1)

Then, noting that t
(1)
a = t

(0)
a /
√
α10, it is easy to show

that

g
(2)
ab = (A21A10) g

(0)
ab − ε

[
A21A10 − (α21α10)

−1
]
t(0)
a t

(0)
b

(B2)

which immediately yields the following simple composi-
tion law

A20 = A21A10

α20 = α21α10 (B3)

or symbolically

g
(0)
ab

A10,α10

−−−−−→ g
(1)
ab

A21,α21

−−−−−→ g
(2)
ab

g
(0)
ab

A20=A21A10

−−−−−−−−−−−−−−−−−→
α20=α21α10

g
(2)
ab (B4)
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