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Abstract—Wireless access to data using visible light,
popularly known as light-fidelity (Li-Fi), is one of the key
emerging technologies which promises huge bandwidths and
data rates. In Li-Fi, the data is modulated on optical intensities
and transmitted and detected using light-emitting-diodes (LED)
and photodiodes respectively. A network of such LED access
points illuminates a given region in the form of attocells.
Akin, to wireless networks, co-channel interference or simply
interference is a major impediment in Li-Fi attocell networks.
Also, when in such networks, the field-of-view (FOV) of a
photodiode is limited, the network interference distribution
gets affected significantly. So, for any given network scenario,
interference characterization is critical for good system design.
Currently, there are no good closed-form approximations to
interference in Li-Fi attocell networks, that can be used for the
analysis of signal-to-interference-plus-noise-ratio (or coverage),
particularly for the case of limited FOVs. In this paper, using
a technique from Fourier analysis, we provide a very close
approximation to interference in one and two dimension Li-Fi
attocell networks for any given finite inter-LED separation. We
validate the interference approximation by providing theoretical
error bounds using asymptotics and by performing numerical
simulations. We show that our method of approximation can be
extended to characterize interference in limited FOV scenarios
as well.

Index Terms- Asymptotics, attocell dimension, characteri-
zation, field-of-view, half-power-semi-angle, interference, Li-Fi,
light-emitting-diode, photodiode.

I. INTRODUCTION

Light-Fidelity (Li-Fi) is being seen as one of the key

emerging technologies to provide wireless access of data

using visible light at high data rates [1]. In Li-Fi, the data

is usually intensity modulated to the visible light using

light emitting diodes (LED), also called as downlink Li-Fi

access points. The modulated intensities travel through an

optical channel and are detected by a receiver photodiode

(PD). There have been several experiments conducted [2],

[3], [4], [5], [6] to determine the optical wireless channel

model and how it behaves with the transmitted visible light

intensities. The channel is usually modelled as a linear and

time invariant system [7] and as a result, time varying fading

on the line-of-sight links is absent.

The LED access points are usually arranged in a regular

geometry to form a Li-Fi attocell network. In such a network,

the LEDs simultaneously transmit information packets on

modulated intensities of different colours or light wavelengths.

The LEDs transmitting on the same optical wavelength can be

considered as co-channel interferers. Co-channel interference

or simply interference in downlink of such networks, is one

of the limiting factors which decreases the downlink system

throughput. The interference experienced inside the attocell

of the serving LED, depends on the location of the user

relative to the interferers and the field-of-view (FOV) of the

PD1. Additionally, the limitation of the FOV significantly

affects the network interference distribution inside the serving

attocell compared to the case when FOV is π
2 radians. So, for

both the scenarios of FOV, the characterization of interference

and Signal-to-Interference-plus-Noise-Ratio (SINR), is critical

to understand the system performance and for good system

design. Moreover, a simple closed form characterization, for

both the cases of FOV, can be further used for simple analytical

computation of other metrics like probability of coverage and

area spectral efficiency.

A. Related works and common approaches

In [8], [9], [10], the SINR has been used to analyze

fractional frequency reuse and angle diversity schemes, where

the interference is calculated by numerical techniques. The

order or number of terms of the interference summation

increases linearly with the size of the network and one has

to resort to simulations for understanding the behaviour of

the system. In [11], the downlink system performance and

interference are analyzed in Li-Fi optical attocell networks.

There, for a deterministic hexagonal geometry, the interference

in an infinite attocell network is approximated by only the

first layer of hexagonal interferers around the central attocell

using the flower model approximation [12]. Similarly in [13],

the interference is obtained as a finite summation over the six

interferers in the first layer of the hexagonal LED arrangement.

But in a Li-Fi attocell network, when the inter LED separation

reduces, more layers need to be considered into the interfer-

ence approximation and hence the first layer approximation

remains sub-optimal. Moreover, such approximations cannot

be extended to any other deterministic lattice and any finite

separation between the LEDs. Further, the analysis has been

1When the FOV < π
2

radians, an interfering LED which does not have
a line of sight link within the PD’s FOV range, cannot be considered as a
potential interferer.
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done only for the case of FOV = π
2 radians. In [14], the

problem of orientation and FOV of the PD in Li-Fi networks

has been discussed to derive closed form expressions for the

channel gain characteristics and probability of coverage. But,

the characterization for both one and two dimension attocell

networks and for any separation distance between the LEDs

has not been shown. In [15], for the calculation of outage

probability and SINR in a random deployment of LEDs, the

interference is characterized by extracting its moments from

its complementary function and approximation similar to the

one in [16]. But an explicit simple closed form expression for

interference in a deterministic LED arrangement has not been

provided.

B. Our approach and contributions

The contributions of this paper are as follows:

• We assume a regular arrangement of LEDs in both one

and two dimensions. For such an arrangement of LEDs,

a close approximation to interference has been proposed

for any given finite separation between the LEDs. Here

we assume that the FOV of the PD used in the network

is = π
2 radians. So, being a simple closed form expres-

sion, large scale network summations are shown to be

circumvented using this characterization.

• The above results are generalised to characterize the in-

terference when the photodiodes used in the environment

have an FOV < π
2 radians.

• Theoretical error bounds have also been provided for

the approximation using asymptotics, which give a clear

idea on how good is the approximation for a given set

of network parameters. The error bounds are validated

through extensive numerical simulations.

This paper is arranged as follows. Section II describes

the downlink system model and the arrangement of Li-Fi

LEDs in both one and two dimension attocell network models.

Section III is the main technical section of the paper, which

describes our interference characterization (along with the

FOV limitation case) in both one and two dimensions. The

paper concludes with Section IV.

II. DOWNLINK SYSTEM MODEL

In this section, we describe the assumptions made for the

line of sight channel model and derive the SINR at any location

on the ground in such a communication scenario. Also, we

describe the attocell network models, considered in this study,

for both one and two dimensions. The attocell dimension or

the attocell length, both refer to the inter-LED separation in

the network.

A. Propagation channel assumptions

The optical wireless channel is considered as a linear time

invariant attenuation channel [17]. Further, for simplicity, the

small scale path loss or fading due to multi path is neglected in

this work. In Li-Fi, the baseband signal modulates the intensity

of the optical signal, not the amplitude or phase. This is

called the intensity-modulation and direct-detection (IM/DD).

In [18], various modulation techniques for Li-Fi have been

discussed and compared. In this study, we consider a single

carrier method of IM/DD, namely the non-return-zero-on-off-

keying (NRZ-OOK)2. Moreover, we neglect any non-linear

effects of the LED during intensity modulation.

(0, 0) d(−z, 0)

Receiver photodiode (PD)

Transmitter LED

(d, h)

h

z

θh

(HPSA)θd,t

θd,r

θf

Figure 1. This figure shows the free space line-of-sight (LOS) light prop-
agation geometry. The triangular shaped LED source is at a height h and
distance d from the origin (0, 0) and is tagged to the PD at a distance z on
the ground. The PD has a given field-of-view (FOV) θf . The free space LOS
link from the LED to PD is shown by the dashed line. The angles θd,t and
θd,r are respectively the transmission angle at the LED and incidence angle
to the PD with respect to the normals drawn as dotted lines. We assume that
the PD has no orientation towards the LED and its surface is parallel to the
ground. So, we have θd,t = θd,r . θh is the half power semi angle (HPSA)
of the LED. In this figure, the distance Dd, on ground, between the LED and
the PD is z+d. This is adapted from [9].

Consider the free space Li-Fi downlink of an LED-PD

communication scenario shown in Fig.1 (dashed line). Let the

light source be at an elevation height h and distance d from the

origin (0, 0) and let the PD be at a distance z on the ground.

θd,t is the transmission angle from the LED which is at a

distance d from the origin and θd,r is the angle of incidence

at the PD, from the same LED. We assume that the PD has

no orientation towards the LED and its surface is parallel to

the ground. So, we have θd,t = θd,r. θf denotes the FOV of

the PD, which is the maximum angle to which the received

rays can be detected. θh denotes the half-power-semi-angle

(HPSA) of the transmitter LED, which is the angle at which

the optical power becomes half of the power at normal. Let

Apd be the light receiving cross sectional area of the PD. Let

Dd (which equals z+d in Fig.1, but not shown explicitly) be

the distance on ground, between the PD (located at a distance

z on the ground from (0, 0)) and the LED (located at (d, h)

2While we choose NRZ-OOK for simplicity, the SINR expression holds
true for other IM/DD modulation schemes as well with simple modifications.



from (0, 0)). From [9, Eqn. 1], the channel gain from the LED

to the PD with a given FOV θf is

Gd(z) =
(m+ 1)Apdh

m+1

2π
(D2

d + h2)
−(m+3)

2 ρ(Dd), (1)

where m = − ln(2)
ln(cos(θh))

is the Lambertian emission order of

the LED and ρ(Dd) is the FOV constraint function defined as

ρ(Dd) =

{

1, |Dd| ≤ h tan(θf ),
0, |Dd| > h tan(θf ).

B. The SINR expression

Extending the above discussion, we consider the downlink

of a Li-Fi attocell network in one dimension to derive the

SINR expression. In the attocell network, all the LEDs, as data

access points, illuminate a given region in the form of attocells.

An attocell is the region of data coverage due to illumination

on the ground (or surface) by a particular LED, where, this

LED becomes the nearest data source to a PD to be tagged

upon, inside that region. The optical attocell dimensions are in

the range of metres. The co-channel LEDs, which illuminate

at the same visible light wavelength, interfere. We consider

interference at the PD only due to line of sight LEDs, fixed at

a height h and symmetrically arranged with uniform separation

a in an infinite one dimension corridor as shown in Fig. 2.

h

h

z

Infinite one dimension corridor

(0, 0) (z, 0)

(0, h) (a, h) (2a, h)(−a, h)(−2a, h)

x
Attocell

tagged-LED

Photodiode (PD)

Figure 2. (One dimension model) This figure shows the infinite one dimension
corridor. There are infinite number of LEDs (circular dots) arranged at an
equal interval a, all along the corridor, installed at a height h. The rectangular
dotted regions on ground depict the attocells corresponding to each LED
above. The user PD (small cuboid) at (z, 0) (inside one of the attocell),
receives data wirelessly from the tagged-LED corresponding to the attocell
in which it is located. Here, that attocell is highlighted as dash-dot. All other
LEDs are co-channel interferers. Here, we assume that the user PD moves
only along the thick line on ground, i.e length of the corridor.

We assume that all the LEDs operate at the same optical

wavelength and transmit at same average optical power Po.

So, all the LEDs, other than the tagged-LED at (0, h), are

interferers, as shown in Fig. 2. We calculate the SINR γ(z),
at every PD location z, inside the attocell. Let xi(t) be the

baseband signal, during the time slot t, from each ith LED in

the network before transmission. Let si(t) be the optical IM

signal on baseband signal xi(t), during the time slot t. Using

the gain expression in (1) and the geometry of the links in Fig.

1, we can modify Gd(z) (and distance Dd from every other

LED at (ia, h)) as

Gia(z) =
(m+ 1)Apdh

m+1

2π
((z + ia)2 + h2)

−(m+3)
2 ρ(Dia).

(2)

Now, the signal current I(z, t) (in amperes), received at the

PD, at (z, 0) with responsivity Rpd, during the time slot t is

given as

I(z, t) = s0(t)G0(z)Rpd

+

+∞
∑

i=−∞\0
si(t)Gia(z)Rpd + n(t). (3)

In (3), n(t) is the noise current at the PD, which is modelled

as additive white Gaussian noise, has a noise power spectral

density of No. If the total IM bandwidth of the receiver PD

is W (which can be assumed as the total system bandwidth),

then the total receiver noise variance σ2, at the PD is

σ2 = NoW.

From [19], the average transmit optical power Po, for every

ith LED can be defined as

Po = E[si(t)],

where E[.] is the expectation operator over time slot t. The

average received current Ii(z) = E[si(t)Gia(z)Rpd], at the

PD from the ith LED, after suffering through the channel gain

Gia(z), is

Ii(z) = PoGia(z)Rpd.

So, γ(z), at user position z is

γ(z) =
I20 (z)

∑+∞
i=−∞\0 I

2
i (z) + σ2

,

=
P 2
oG

2
0(z)R

2
pd

∑+∞
i=−∞\0 P

2
oG

2
ia(z)R

2
pd + σ2

. (4)

Now, substituting for Gia(z) from (2) into (4) and further

rearranging the constants, we have

γ(z) =
(z2 + h2)−m−3ρ(D0)

∑+∞
i=−∞\0((ia+ z)2 + h2)−m−3ρ(Dia) + Ω

, (5)

where Ω is given as

Ω =
4π2N0W

P 2
o (m+ 1)2A2

pdR
2
pdh

2m+2
.

C. Attocell network models

In this work, we consider two cases of lighting described

below.

1) One dimension infinite corridor network: We consider

an infinite length corridor, along which an infinite number

of LEDs are arranged with uniform spacing a, as shown in

Fig. 2. Importantly, we also assume that all the LEDs are

Li-Fi capable and all transmit data at the same time along

with illumination. The corresponding derivation for SINR was

shown in the previous subsection and was derived in (5) as

γ(z) =
(z2 + h2)−m−3ρ(D0)

I∞(z) + Ω
, (6)



where the interference term3
I∞(z) in (6), is given as

I∞(z) =

+∞
∑

i=−∞\0
((ia+ z)2 + h2)−m−3ρ(Dia). (7)

Also, for a PD with an FOV θf = π
2 radians, I∞(z) in (7)

can be written as

I∞(z) =
+∞
∑

i=−∞\0
((ia+ z)2 + h2)−m−3. (8)

2) Two dimension infinitely spread square grid network:

The two dimension network model is shown in Fig. 3. Let the

user PD be located at distance z =
√

d2x + d2y from the origin

inside the respective attocell of the LED. Here, the tagged-

LED, considered at (0, 0, h), has an attocell symmetrically

around it on the ground, as a square of dimension a. Similar

to the one dimension model, importantly, we here too assume

that all the LEDs are Li-Fi capable and all transmit data

at the same time along with illumination. From the one

dimension case, the same expression for the SINR can be

extended to a two dimension scenario. Let the interfering

LEDs, indexed by (u, v), be located at (u, v, h). Now, for

(0,−a, h)

(−2a, 0, h)

Attocell

(−a, 0, h) (0, 0, h)

tagged-LED

(a, 0, h) (2a, 0, h)

(0, a, h)

x

(0, 0, 0)

h

PD at (dx, dy, 0)

za

a

Infinite two dimension plane

Figure 3. (Two dimension model) This figure shows the infinite two di-
mension model. There are infinite number of LEDs (circular dots) arranged
symmetrically at regular intervals of a as a uniform square grid, all over the
plane, installed at a height h. The rectangular dotted regions on ground depict
the attocells corresponding to each LED above. The user PD (small cuboid)
at (dx, dy , 0) (inside one of the attocell), receives data wirelessly from the
tagged-LED corresponding to the attocell in which it is located. Here, that
attocell is highlighted as dash-dot. All other LEDs are co-channel interferers.
Here we assume that the user PD can move anywhere on the ground plane.

Du,v =
√

(ua+ dx)2 + (va+ dy)2, the FOV constraint func-

tion ρ(.), for two dimensions is defined as

ρ(Du,v) =

{

1, |Du,v| ≤ h tan(θf ),
0, |Du,v| > h tan(θf ).

3In this work, we characterize the normalized interference power I∞(z)
(for one dimension) and I∞(dx, dy) (for two dimension model), normalized
by the average optical power Po. This we simply call the interference. So, all
the assumed practical dimensions and further derived theoretical expressions
for interference get linearly scaled by Po, if it has to be introduced.

The SINR γ(dx, dy), at a distance z from origin is

γ(dx, dy) =
(z2 + h2)−m−3ρ(Du,v)

I∞(dx, dy) + Ω
,

where the interference term I∞(dx, dy) is given by

I∞(dx, dy) =

+∞
∑

u=−∞

+∞
∑

v=−∞\(0,0)
((ua+ dx)

2 + (va+ dy)
2

+ h2)−m−3ρ(Du,v). (9)

For a PD of FOV θf = π
2 radians, I∞(dx, dy) in (9) can be

written as

I∞(dx, dy) =

+∞
∑

u=−∞

+∞
∑

v=−∞\(0,0)
((ua+ dx)

2 + (va+ dy)
2

+ h2)−m−3. (10)

A closed form expression for the interference term in (7) and

(9) (or (8) and (10) for FOV=π
2 radians) is required in both

one and two dimension scenarios, which is discussed in the

following section.

III. INTERFERENCE CHARACTERIZATION

In this Section, we characterize the interference as a closed

form approximation using the Poisson summation theorem

[20], which is stated for reference:

Theorem 1 (Poisson summation theorem). Let q(x) be a

continuous function. Under some mild regularity conditions

we have
+∞
∑

i=−∞
q(i) =

+∞
∑

w=−∞
Q(w), (11)

where

Q(w) =

∫ ∞

−∞
q(t)e−2πιwtdt,

is the Fourier transform of q(x).

In the following subsections for one and two dimension

network models in succession, we first proceed with our

interference characterization for FOV θf = π
2 radians. In

a simultaneous subsection, we show that our method of

interference characterization using Fourier analysis, can be

extended for the case of FOV θf <
π
2 radians.

A. One dimension model with FOV = π
2 radians

We now look at the interference characterization using the

above Poisson summation theorem.

Theorem 2. Consider a photodiode, with θf = π
2 radians,

situated at a distance z (inside an attocell) from the origin,

in an infinite one dimension corridor network of Li-Fi LEDs,

emitting light with a Lambertian emission order m, installed

at a height h with uniform inter-LED separation distance a.

Then, for a wavelength reuse factor of unity, the interference



I∞(z), caused by the co-channel interferers at the photodiode

is

I∞(z) =
h1−2β√πΓ(β − 0.5)

aΓ(β)
− 1

(z2 + h2)β
+

∞
∑

w=1

g(w),

where

g(w) =
22−β

√
2πh0.5−β(2πw)β−0.5

Kβ−0.5(
2πhw

a ) cos(2πwz
a )

a0.5+βΓ(β)
.

Here Γ(x) =
∫∞
0 tx−1e−tdt denotes the standard Gamma

function, β = m+3 and Kv(y) =
Γ(v+ 1

2 )(2y
v)√

π

∫∞
0

cos(t)dt

(t2+y2)v+
1
2

is the modified bessel function of second kind.

Proof. The proof is provided in Appendix A. �

In the next proposition, we quantify the error when the

summation in the above infinite series is truncated after4 k

terms using the asymptotic notation5 O(.).

Proposition 1. From Thm. 2, for a finite integer k, the

interference inside an attocell can be approximated to a closed

form expression as

I∞(z) = Îk(z) +O((k + 1)β−2e
−2πh(k+1)

a ), (12)

where

Îk(z) ,
h1−2β

√
πΓ(β − 0.5)

aΓ(β)
− 1

(z2 + h2)β
+

k
∑

w=1

g(w).

Proof. The proof is provided in Appendix B. �

Since in practice, the number of LEDs are finite, we also

look at In(z), i.e., looking at interference by a finite number

of LEDs in (8). In Fig. 4, we observe that as the number of

interferers n increases, the interference In(z), saturates to a

constant value which is I∞(z). So, the approximation results

in Prop. 1 hold true for finite number of LEDs as well, even

though the results are derived for an infinite corridor.

We now try to understand the interference characterization

in Prop. 1 by taking a few theoretical examples and further

validation through numerical simulations. Firstly, in Prop. 1,

the interference for any position z of the user inside the

attocell, always has a constant term given as

h1−2β
√
πΓ(β − 0.5)

aΓ(β)
.

This term represents the average spatial interference seen at

all locations.

4Over-usage: This variable has been used twice in the paper, but in two
completely disjoint and separate contexts. In the one dimension model,
k represents the number of terms in the approximation that needs to be
considered. Again, in the description of the two dimension model, we have
used k to denote the frequency term. This is due to lack of variables and the
authors assure that this, in no way affects the understanding of the paper.

5The asymptotic notation f(n) = O(g(n)) is defined as, ∃no and ∃k1 >
0 ∋ ∀n > no, f(n) ≤ k1 × g(n).

0 10 20 30 40 50
10−5

10−4

10−3

10−2

Number of interferers (n)

In
te

rf
er

en
ce

I
n
(z
)

h = 2.5m
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Figure 4. (One Dimension Model) Here the variation of interference In(z),
with respect to the number of interferers (n) is drawn for different height h of
LED installation. We consider a = 0.5m, the half-power-semi-angle (HPSA)
θh of the LED as π

3
radians and the position z of the receiver photodiode

(PD) at half the attocell length a
2

.

We see that the asymptotic error in (12) becomes exponen-

tially small when h
a is large. Hence the interference can be well

approximated with small values of k as long as the ratio h
a

is large. Hence, considering only k = 0 term, the interference

can be approximated as

I∞(z) ≈ Î0(z) =
h1−2β

√
πΓ(β − 0.5)

aΓ(β)
− 1

(z2 + h2)β
.

For example, if we consider a = 0.2m and h = 2.5m, leading

to h
a = 12.5, we can choose k = 0 and have a theoretical error

bound of O(e−25π). This can be verified from Fig. 5. We

see that all the terms from w = 1 have negligible contribution.

When h
a is not large, a few more terms (w) are necessary to

improve the approximation accuracy. For example, in Fig. 6,

when we consider h = 2.5m and a = 0.5m, leading to h
a = 5;

w = 0 and w = 1 are significant, with an error bound on w >

1 as O(e−20π). So, k = 1 or Î1(z) is a good approximation

for this case. Further, in most practical cases, the ratio h
a varies

between 2.5 to 5. So, the above approximation to Î1(z) i.e.

I∞(z) ≈ Î1(z) =
h1−2β

√
πΓ(β − 0.5)

aΓ(β)
− 1

(z2 + h2)β
+ g(1),

can be extended in general to this practically seen range6 of
h
a because we still have a theoretical asymptotic error bound

on w > 1 as O(e−10π).

For numerical validation, firstly, from Fig. 7, we see the

tightness of this approximation, for the above given range

of h
a . We proceed by considering h = 2.5m and plotting

the interference w.r.t. the variation of a from 0.1m to 1m

6For lower values of h
a

i.e. < 2.5, k > 1 may have to be considered
to improve the approximation accuracy. Also, from the proof of Prop. 1, k

should be chosen such that k ≥ ⌈a(β−2)
2πh

⌉ for a good approximation.
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Figure 5. (One Dimension Model) (Large h
a

case) This graph shows the

magnitude of the individual terms of |g(w)| for a height h of the LED =
2.5m and a = 0.2m. The half-power-semi-angle (HPSA) θh = π

3
radians

and z = a
2

.
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Figure 6. (One Dimension Model) This graph shows the magnitude of the
individual terms of |g(w)| for a height h of the LED = 2.5m and a = 0.5m.
The half-power-semi-angle (HPSA) θh = π

3
radians and z = a

2
.

(i.e. h
a in the range of 25 to 2.5). We see that In(z) (for

n = {4, 10, 20, 40}) and Î1(z) are tightly bounded with each

other, which validates our approximation. Now, from the

above numerical validation for k = 1, we take a given value

of a = 0.5m and proceed for further numerical validation w.r.t

various system parameters h, θh and z in Fig. 8, 9 and 10

respectively. The corresponding graphs for the approximation

error ê = |In(z) − Î1(z)| are respectively shown in Fig.

11, 12 and 13 for different number of interferers n. All the

simulations are obtained using the parameter values given in

Table I.

From Fig. 8 and it’s corresponding approximation error

plot in Fig. 11, we observe that for any given height h, as the

number of interferers increase, the error ê, decreases. On the

log axis, we observe a maximum error êmax in the order of

Table I
PARAMETERS : THIS TABLE SHOWS THE PARAMETERS CONSIDERED IN

THIS STUDY.

Parameter Symbol Value Unit

Temperature of Operation T 300 K

Noise power spectral den-
sity at Photodiode

No 4.14× 10−21 WHz−1

Modulation bandwidth of
LED

W 40× 106 Hz

Area of Photodiode Apd 10−4 m2

Responsivity of PD Rpd 0.1 AW−1
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Figure 7. (One Dimension Model) Here the variation of interference In(z),
is drawn with respect to a linear variation of the inter-LED spacing a for
different number interferers (n) in the network. The graph for the proposed
interference expression Î1(z) is also drawn. We consider height h of the LEDs
as 2.5m, the half-power-semi-angle (HPSA) θh of the LED as π

3
radians and

the position z = 0.25m.

10−4 with respect to Î1(z), that is in the order of 10−2. This

error further reduces as the number of interferers is increased.

The same can be observed with the variation of HPSA in

graphs of Fig. 9 and the error plot in Fig. 12, where êmax is

in the order of 10−7, for Î1(z) in the order of 10−3. Again,

this error reduces as the number of interferers increases.

Similarly, in graphs of Fig. 10 and Fig. 13, we observe êmax

in the order of 10−5, for Î1(z) in the order of 10−2. So,

when compared with the interference values, these errors are

small, which numerically validates the approximation to Î1(z).

As seen in the above example, Prop. 1 essentially implies

that for a given value of h
a the approximation to Îk(z) is tight

and very close to the actual interference I∞(z) in (8), with

an approximation error bounded by an exponential decay. So,

this characterization can be summarized as

In(z) < I∞(z) ≈ Îk(z).

This also implies that our characterization provides closed

form analytical bounds for interference in finite LED networks.

B. One dimension model with FOV θf <
π
2 radians

We now look at the interference characterization when θf <
π
2 radians. Here we show that, the Fourier analysis method can
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Figure 8. (One Dimension Model) Here the variation of interference In(z),
is drawn with respect to a linear variation of the height h of installation
of the LED for different number interferers (n) in the network. The graph
for the proposed interference expression Î1(z) is also drawn. We consider
a = 0.5m, the half-power-semi-angle (HPSA) θh of the LED as π

3
radians

and the position z of the receiver photodiode (PD) at half the attocell length
a
2

.
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Figure 9. (One Dimension Model) Here the variation of interference In(z), is
drawn with respect to a linear variation of the half-power-semi-angle (HPSA)
θh of the LED for different number interferers (n) in the network. The graph
for the proposed interference expression Î1(z) is also drawn. We consider the
attocell length a = 0.5m, the height h of the LED as 2.5m and the position
z of the receiver photodiode (PD) at half the attocell length a

2
.

be used to give a suitable interference approximation for such

cases as well. The infinite summation in (8) becomes a finite

summation, when the FOV constraint function ρ(Dd), acts on

every interferer. From the proof of Thm. 2, we can modify the

function q(.) in (18) as

q′(x) = (x2 + h2)−βρ(Dd).

The Poisson summation theorem can be used to obtain a

similar result as in the previous subsection if the Fourier

transform of q′(x) can be obtained.
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Figure 10. (One Dimension Model) Here the variation of interference In(z),
is drawn with respect to a linear variation of the position z of the receiver
photodiode (PD) inside the attocell for different number interferers (n) in the
network. The graph for the proposed interference expression Î1(z) is also
drawn. We consider a = 0.5m, the half-power-semi-angle (HPSA) θh of the
LED as π

3
radians and the height h of LED as 2.5m.
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Figure 11. (One Dimension Model) Here the variation of interference
approximation error ê = |In(z) − Î1(z)| is drawn for a linear variation
of the height h of installation of the LED for different number interferers (n)
in the network. We consider a = 0.5m, the half-power-semi-angle (HPSA)
θh of the LED as π

3
radians and the position of the receiver photodiode (PD)

at half the attocell length a
2

.

Hence the Fourier transform of q′(x) equals

Q′(w) =

∫ ∞

−∞
q′(x)e−ι2πwxdx,

=

∫ ∞

−∞
(x2 + h2)−βρ(Dd)e

−ι2πwxdx,

=

∫ h tan(θf )

0

2 cos(2πwx)

(x2 + h2)β
dx.

Hence we have the following Lemma.

Lemma 1. For an FOV θf <
π
2 radians and a finite integer
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Figure 12. (One Dimension Model) Here the variation of interference
approximation error ê = |In(z) − Î1(z)| is drawn for a linear variation
of the half-power-semi-angle (HPSA) θh of the LED for different number
interferers (n) in the network. We consider the attocell length a = 0.5m, the
height h of the LED as 2.5m and the position z of the receiver photodiode
(PD) at half the attocell length a

2
.

0 5 · 10−2 0.1 0.15 0.2 0.25

10−14

10−12

10−10

10−8

10−6

Distance (z) of the PD from origin in metres

A
p

p
ro

x
im

at
io

n
er

ro
r
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Figure 13. (One Dimension Model) Here the variation of interference
approximation error ê = |In(z) − Î1(z)| is drawn for a linear variation of
the position z of the receiver photodiode (PD) inside the attocell for different
number interferers (n) in the network. We consider a = 0.5m, the half-
power-semi-angle (HPSA) θh of the LED as π

3
radians and the height h of

LED as 2.5m.

k ≥ 1 we have

I∞(z) ≈ Î
′
k(z) =

1

a

[

Q′(0) +
k
∑

w=1

2Q′
(

w

a

)

cos

(

2πwz

a

)

]

− 1

(z2 + h2)β
. (13)

Proof. Follows from the Poisson summation theorem and

approximations. �

The constant term evaluated at w = 0 is

Q′(0) =

∫ h tan(θf )

0

2

(x2 + h2)β
dx,

= 2h1−2β tan(θf )2F1(0.5, β; 1.5;− tan2(θf )),

where 2F1(.; .; .) is the generalized hypergeometric function.

As earlier, this represents the average spatial interference

seen at all locations. A closed form expression for Q′(w
a

)

can be simply evaluated using numerical integration.

We consider h = 2.5m and a = 0.5m, leading to h
a = 5

to numerically validate (13) for k = 1 over various values

of θf and compare it with I∞(z) in (7). In Li-Fi attocell

networks, if the FOV θf < θo
(

= tan−1
(

a
h

))

, the PD does

not experience any interference. Here the ratio a
h = 0.2 and

θo = 0.197 radians. So, in Fig. 14, we observe that both

I∞(z) and Î
′
1(z) drop down to zero once θf < θo = 0.197

radians. Also, for θf > θo, both the graphs, I∞(z) and

Î
′
1(z) are tightly bounded, which numerically validates our

proposition in Lem. 1 for k = 1. Also, as θf → 1.57(= π
2 )

radians, the interference values converge to the earlier case

of θf = π
2 radians.

So, the approximation above in Lem. 1 is a good

approximation for various practical parameter values based

on the choice of k. As shown above, if we choose h = 2.5m

and a = 0.5m, considering k = 1 is sufficient. When h
a

becomes small, a few more terms are necessary to improve

the approximation accuracy.
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Figure 14. (One Dimension Model) (θf < π
2

radians) Here the variation of

Î
′

1(z) is drawn for a linear variation of the FOV θf of the receiver photodiode
(PD). I∞(z) from (7) (or In(z) for n = 20) is also drawn to validate the
same. We consider a = 0.5m, the half-power-semi-angle (HPSA) θh of the
LED as π

3
radians, the height h of the LED as 2.5m and z = a

2
.

C. Two dimension model with FOV θf = π
2 radians

We now extend the result for two dimensions.



Theorem 3. Consider a photodiode, with θf = π
2 radians,

situated at a distance z =
√

d2x + d2y (inside an attocell) from

the origin, in an infinite two dimension plane network of Li-

Fi LEDs arranged as a regular square lattice of dimension

a, emitting light with a Lambertian emission order m and

installed at a height h. Then, for a wavelength reuse factor

of unity, the interference I∞(z), caused by the co-channel

interferers at the photodiode is

I∞(dx, dy) =
h2−2βπ

a2(β − 1)
− 1

(d2x + d2y + h2)β

+

∞
∑

w=0

∞
∑

k=0\(0,0)
g(w, k),

where

g(w, k) =
(

h
2π

√
k2+w2

)1−β
Kβ−1

(

2πh
√
k2+w2

a

)

cos
(

2πwdx

a

)

cos
( 2πkdy

a

)

2β−4aβ+1 Γ(β)
π

.

Here Γ(x) =
∫∞
0
tx−1e−tdt denotes the standard Gamma

function, β = m+3 and Kv(y) =
Γ(v+ 1

2 )(2y
v)√

π

∫∞
0

cos(t)dt

(t2+y2)v+
1
2

is the modified bessel function of second kind.

Proof. The proof is provided in Appendix C. �

In the next proposition, we quantify the error when the

summation in the above infinite series is truncated after j × l

terms using the asymptotic notation O(.), similar to the one

dimension case.

Proposition 2. From Thm. 3, for finite integers j ≥ 0 and

l ≥ 0, the interference inside an attocell can be approximated

to a closed form expression as

I∞(dx, dy) = Îj,l(dx, dy)

+O((
√

j2 + l2 + 1)β−2.5e
−2πh(

√
j2+l2+1)
a ),

(14)

where

Îj,l(dx, dy) ,
h2−2βπ

a2(β − 1)
− 1

(d2x + d2y + h2)β

+
∑

(w,k)∈A

g(w, k),

and the set A , (Z2 ∩ ([0, j]× [0, l])) \ {(0, 0)} over the set

of integers Z
2.

Proof. The proof is provided in Appendix D. �

We give similar theoretical and numerical validations to

the two dimension model, as that of the one dimension model.

Since in practice, the number of LEDs are finite, we also

look at In(dx, dy), i.e., looking at interference by a finite

number of LEDs in (10). In Fig. 15, we observe that as the

number of interferers n increases, the interference In(dx, dy),

saturates to a constant value which is I∞(dx, dy). So, the

approximation results in Prop. 2 hold true for finite number

of LEDs as well, even though the results are derived for an

infinite plane.

We now try to understand the interference characterization

in Prop. 2 by taking a few theoretical examples and further

validation through numerical simulations. Firstly, in Prop. 2,

the interference for any position (dx, dy) of the user inside the

attocell, always has a constant term given as

h2−2βπ

a2(β − 1)
.

This term represents the average spatial interference seen at

all locations.
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Figure 15. (Two Dimension Model) Here the variation of interference
In(dx, dy), with respect to the number of interferers n, is drawn for different
height h of the LED installation. We consider a = 0.5m, the half-power-semi-
angle (HPSA) θh of the LED as π

3
radians with dx = dy = 0.

As in the one dimension model, the approximation error

depends on the ratio h
a . For larger values of h

a , we can choose

j = l = 0 leading to

I∞(dx, dy) ≈ Î0,0(dx, dy) =
h2−2βπ

a2(β − 1)
− 1

(d2x + d2y + h2)β
,

which can be verified from Fig. 16. We see that all the terms

from w = k = 1 have negligible contribution.

When h
a is not large, a few more terms (w, k) are necessary

to improve the approximation accuracy. For example, in Fig.

17, when we consider h = 2.5m and a = 0.5m, leading to
h
a = 5; w = k = 0 and w = k = 1 are significant, with an

error bound, similar to that in one dimension, for w > 1 and

k > 1 as O(e−24π). So, j = l = 1 or Î1,1(dx, dy) is a good

approximation in this case. Further, in most practical cases, the



ratio h
a varies between 2.5 to 5. So, the above approximation

to Î1,1(dx, dy) i.e.

I∞(dx, dy) ≈ Î1,1(dx, dy)

=
h2−2βπ

a2(β − 1)
− 1

(d2x + d2y + h2)β
+ g(1, 1),

can be extended in general to this practically seen range7 of
h
a because we still have a theoretical asymptotic error bound

on w > 1 and k > 1 as O(e−12π).
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Figure 16. (Two Dimension Model) (Large h
a

case) This graph shows the

magnitude of the individual terms of |g(w, k)| for a height h of the LED
=2.5m and a = 0.2m. The half-power-semi-angle (HPSA) θh = π

3
radians

and dx = dy = 0.
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Figure 17. (Two Dimension Model) This graph shows the magnitude of the
individual terms of |g(w,k)| for a height h of the LED =2.5m and a = 0.5m.
The half-power-semi-angle (HPSA) θh = π

3
radians and dx = dy = 0.

For numerical validation, firstly, from Fig. 18, we see the

tightness of this approximation, for the above given range of

7For lower values of h
a

i.e. < 2.5, higher values of (j, l) may have to be
considered to improve the approximation accuracy. Also, from the proof of

Prop. 2, (j, l) should be chosen such that
√

j2 + l2 ≥ ⌈
a(β−2.5)

2πh
⌉ for a

good approximation.

h
a . We proceed by considering h = 2.5m and plotting the

interference w.r.t. the variation of a from 0.1m to 1m (i.e.
h
a in the range of 25 to 2.5). We see that In(dx, dy) (for

n = {8, 15, 24, 35}) and Î1,1(dx, dy) are tightly bounded

with each other, which validates our approximation. Now,

from the above numerical validation for j = l = 1, we

take a given value of a = 0.5m and proceed for further

numerical validation w.r.t various system parameters h, θh

and z =
√

d2x + d2y in Fig. 19, 20 and 21 respectively.

The corresponding graphs for the approximation error

ξ̂ = |In(dx, dy)− Î1,1(dx, dy)| are respectively shown in Fig.

22, 23 and 24 for different number of interferers n. All the

simulations are obtained using the parameter values given in

Table I.
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Figure 18. (Two Dimension Model) Here the variation of interference
In(dx, dy), is drawn with respect to a linear variation of the inter-LED
spacing a for different number interferers n in the network. The graph for
the proposed interference expression Î1,1(dx, dy) from approximation is also
drawn. We consider height h of the LEDs as 2.5m, the half-power-semi-
angle (HPSA) θh of the LED as π

3
radians and the position of the receiver

photodiode (PD) as dx = dy = 0.

From Fig. 19 and it’s corresponding approximation error

plot in Fig. 22, we observe that for any given height h, as

the number of interferers increase, the error ξ̂, decreases. We

observe a maximum error ξ̂max in the order of 10−8 with

respect to Î1,1(dx, dy), that is in the order of 10−3. This error

further reduces as the number of interferers is increased. The

same can be observed with the variation of HPSA in graphs of

Fig. 20 and the error plot in Fig. 23, where ξ̂max is in the order

of 10−5, for Î1,1(dx, dy) in the order of 10−1. Again, this

error reduces as the number of interferers increases. Similarly,

in graphs of Fig. 21 and Fig. 24, we observe ξ̂max in the

order of 10−7, for Î1,1(dx, dy) in the order of 10−2. So, when

compared with the interference values, these errors are small,

which numerically validates the approximation to Î1,1(dx, dy).

As seen in the above example, Prop. 2 essentially implies

that for a given value of h
a the approximation to Îj,l(dx, dy)

is tight and very close to the actual interference I∞(dx, dy) in
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Figure 19. (Two Dimension Model) Here the variation of interference
In(dx, dy), is drawn with respect to a linear variation of the height h of
installation of the LED for different number interferers n in the network. The
graph for the proposed interference expression Î1,1(dx, dy) from approxima-
tion is also drawn. We consider a = 0.5m, the half-power-semi-angle (HPSA)
θh of the LED as π

3
radians and dx = dy = 0.
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Figure 20. (Two Dimension Model) Here the variation of interference
In(dx, dy), is drawn with respect to a linear variation of the half-power-
semi-angle (HPSA) θh of the LED for different number interferers n in the
network. The graph for the proposed interference expression Î1,1(dx, dy)
from approximation is also drawn. We consider the attocell length a = 0.5m,
the height h of the LED as 2.5m and dx = dy = 0.

(10), with an approximation error bounded by an exponential

decay. Hence, the above discussion can be summarized as

In(dx, dy) < I∞(dx, dy) ≈ Îj,l(dx, dy).

Similar to the one dimension model, this also implies that our

characterization provides closed form analytical bounds for

interference in finite LED networks.

D. Two dimension model with FOV θf <
π
2 radians

We now look at the interference characterization when θf <
π
2 radians. Here we show that, the Fourier analysis method can

be used to give a suitable interference approximation for such
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Figure 21. (Two Dimension Model) Here the variation of interference
In(dx, dy) is drawn with respect to a linear variation of the position

z =
√

d2x + d2y of the receiver photodiode (PD), radially inside the square

attocell for different number interferers n in the network. The graph for the
proposed interference expression Î1,1(dx, dy) from approximation is also
drawn. We consider a = 0.5m, the half-power-semi-angle (HPSA) θh of the
LED as π

3
radians and the height h of the LED as 2.5m.
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Figure 22. (Two Dimension Model) Here the variation of interference

approximation error ξ̂ = |In(dx, dy) − Î1,1(dx, dy)| is drawn for a linear
variation of the height h of installation of the LED for different number
interferers n in the network. We consider a = 0.5m, the half-power-semi-
angle (HPSA) θh of the LED as π

3
radians and dx = dy = 0.

cases as well. The infinite summation in (10) becomes a finite

summation, when the FOV constraint function ρ(Du,v), acts

on every interferer. From the proof of Thm. 3, we can modify

the function q(.) in (29) as

q′(r) = (r2 + h2)−βρ(Du,v).

The Poisson summation theorem can be used to obtain a

similar result as in the previous subsection if the Fourier

transform of q′(r) can be obtained.

Using the Hankel transform [21], the Fourier transform of
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Figure 23. (Two Dimension Model) Here the variation of interference approx-

imation error ξ̂ = |In(dx, dy)− Î1,1(dx, dy)| is drawn for a linear variation
of the half-power-semi-angle (HPSA) θh of the LED for different number
interferers n in the network. We consider the attocell length a = 0.5m, the
height h of the LED as 2.5m and dx = dy = 0.
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Figure 24. (Two Dimension Model) Here the variation of interference

approximation error ξ̂ = |In(dx, dy) − Î1,1(dx, dy)| is drawn for a linear

variation of the position z =
√

d2x + d2y of the receiver photodiode (PD),

radially inside the attocell for different number interferers n in the network.
We consider a = 0.5m, the half-power-semi-angle (HPSA) θh of the LED
as π

3
radians and the height h of the LED as 2.5m.

q′(r) equals

Q′(w, k) =2π

∫ ∞

0

J0(2πr
√
w2 + k2)ρ(Du,v)

(r2 + h2)β
rdr,

=2π

∫ h tan(θf )

0

J0(2πr
√
w2 + k2)

(r2 + h2)β
rdr.

Hence we have the following Lemma.

Lemma 2. For an FOV θf < π
2 radians and finite integers

j ≥ 0 and l ≥ 0 we have

I∞(dx, dy) ≈Îj,l(dy, dy)

=
1

a2

[

Q′(0, 0) + 4
∑

(w,k)∈A

Q′
(

w

a
,
k

a

)

cos

(

2πwdx
a

)

cos

(

2πkdy
a

)]

− 1

(d2x + d2y + h2)β
, (15)

where A , (Z2 ∩ ([0, j] × [0, l])) \ {(0, 0)} over the set of

integers Z
2.

Proof. Follows from the Poisson summation theorem and

approximations. �

The constant term evaluated at w = k = 0 is

Q′(0, 0) = 2π

∫ ∞

0

J0(0)ρ(Du,v)

(r2 + h2)β
rdr,

= 2π

∫ h tan(θf )

0

J0(0)

(r2 + h2)β
rdr,

=
h2−2βπ

β − 1
(1− cos(θf )

2β−2).

As earlier, this represents the average spatial interference

seen at all locations. A closed form expression for Q′(wa ,
k
a )

can be simply obtained from numerical integration.

Similar to the one dimension model, we consider h = 2.5m

and a = 0.5m, leading to h
a = 5 to numerically validate

(15) for j = l = 1 over various values of θf and compare

it with I∞(dx, dy) in (9). In Li-Fi attocell networks, if the

FOV θf < θo
(

= tan−1
(

a
h

))

, the PD does not experience

any interference. Here the ratio a
h = 0.2 and θo = 0.197

radians. So, in Fig. 25, we observe that both I∞(dx, dy)
and Î

′
1,1(dx, dy) drop down to zero once θf < θo = 0.197

radians. Also, for θf > θo, both the graphs, I∞(dx, dy)
and Î

′
1,1(dx, dy) are tightly bounded, which numerically

validates our proposition in Lem. 2 for j = l = 1. Also, as

θf → 1.57(= π
2 ) radians, the interference values converge

to the earlier case of θf = π
2 radians, for the two dimension

model, giving similar validation results as in the one

dimension model.

So, the approximation above in Lem. 2 is a good

approximation for various practical parameter values based on

the choice of (j, l). As shown above, if we choose h = 2.5m

and a = 0.5m, considering j = l = 1 is sufficient. When h
a

becomes small, a few more terms are necessary to improve

the approximation accuracy.

IV. CONCLUSION

In this work, the Poisson summation theorem has been used

to provide a simple closed form approximation to co-channel-

interference in Li-Fi attocell networks for both one and two
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Figure 25. (Two Dimension Model) (θf < π
2

radians) Here the variation of

Î1,1(dx, dy) is drawn for a linear variation of the FOV θf of the receiver
photodiode (PD). I∞(dx, dy) from (9) (or In(dx, dy) for n = 24) is also
drawn to validate the same. We consider a = 0.5m, the half-power-semi-
angle (HPSA) θh of the LED as π

3
radians, the height h of the LED as 2.5m

and dx = dy = 0.

dimensions. We also show that the approximation has an error

that is tight with respect to an exponential decay for a given set

of system parameters. The advantage of this characterization

is, it can be used to compute interference power with a high

degree of accuracy for any given finite separation between the

LEDs and provide upper bounds for interference in finite atto-

cell networks. Using this characterization, large scale network

interference summations can be circumvented and important

metrics like probability of coverage, area spectral efficiency,

optimal LED spacing etc. can be analytically computed in an

easy way. Further, we show that our method of Fourier analysis

can be extended to characterize interference when the user PDs

have limited FOVs as well.
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APPENDIX A

PROOF OF THEOREM 2

Proof. From (7), for θf = π
2 , we can write the interference

term I∞(z) as

I∞(z) =
+∞
∑

i=−∞\0
((ia+ z)2 + h2)−β . (16)

We scale and shift the function q(i) in (11) as q(z + ia)
and using the time shifting [22, Prop.4.3.2] and scaling [22,

Prop.4.3.5] property of Fourier transform, we obtain

a

+∞
∑

i=−∞
q(z + ia) =

+∞
∑

w=−∞
Q
(w

a

)

e
ι2πwz

a . (17)



In (17), from (16), we consider a real and even function q(i)
given as

q(i) = (i2 + h2)−β . (18)

Correspondingly it’s Fourier transform Q(w) =
∫∞
−∞ q(x)e−ι2πwxdx will also be real and even [22,

Prop.4.3.3] and is given as

Q(w) =











h1−2β√πΓ(β−0.5)
Γ(β) ; w = 0,

21−β
√
2πh0.5−β(2πw)β−0.5

Kβ−0.5(2πhw)
Γ(β) ;w 6= 0.

(19)

Now, substituting (18) and (19) into (17) we get

+∞
∑

i=−∞
((ia+ z)2 + h2)−β

=
1

a

(

Q(0) +
+∞
∑

w=−∞\0
Q

(

w

a

)

e
j2πwz

a

)

,

=
h1−2β

√
πΓ(β − 0.5)

aΓ(β)

+

+∞
∑

w=−∞\0

21−β
√
2πh0.5−β(2πw)β−0.5

Kβ−0.5(
2πhw

a )

a0.5+βΓ(β)
e

j2πwz
a .

(20)

We remove the redundant addition of i = 0 term from both

sides of (20), which refers to the signal power from the tagged

LED source at origin and we get

I∞(z)

=
+∞
∑

i=−∞\0
((ia+ z)2 + h2)−β ,

=
+∞
∑

i=−∞
((ia+ z)2 + h2)−β − 1

(z2 + h2)β
,

=
1

a

(

Q(0) +
+∞
∑

w=−∞\0
Q

(

w

a

)

e
j2πwz

a

)

− 1

(z2 + h2)β
.

(21)

Now, that the Fourier transform Q(w) is real and even, we

can modify (21) as

I∞(z)

(a)
=

1

a

(

Q(0) +
+∞
∑

w=−∞\0
Q

(

w

a

)

cos

(

2πwz

a

))

− 1

(z2 + h2)β
,

(b)
=

1

a

(

Q(0) +

+∞
∑

w=1

2Q

(

w

a

)

cos

(

2πwz

a

))

− 1

(z2 + h2)β
,

=
h1−2β

√
πΓ(β − 0.5)

aΓ(β)

+

+∞
∑

w=1

22−β
√
2πh0.5−β(2πw)β−0.5

Kβ−0.5(
2πhw

a ) cos(2πwz
a )

a0.5+βΓ(β)

− 1

(z2 + h2)β
,

where (a) follows from the fact that Q(w) is real, (b) follows

from the fact that Q(w) is even and hence proving the theorem.

�

APPENDIX B

PROOF OF PROPOSITION 1

Proof. The interference power obtained in Thm. 2 can be

written as

I∞(z) =
h1−2β

√
πΓ(β − 0.5)

aΓ(β)
+

k
∑

w=1

g(w) +
∞
∑

w=k+1

g(w)

− 1

(z2 + h2)β
.

Let E(k) =
∑∞

w=k+1 g(w), then

g(w) =
M

a
cos

(

2πzw

a

)

rβ−0.5
Kβ−0.5

(

2πhw

a

)

, (22)

where M = 22−β(2π)βh0.5−β

Γ(β) . From [23], for large w, the

modified Bessel function Kβ−0.5

(

2πhw
a

)

can be expanded as

Kβ−0.5

(

2πhw

a

)

=

√

aπ

4πhw
e

−2πhr
a

(

1 + Θ
( 1

w

))

,

where Θ(.) is an asymptotic notation8. The cosine term

cos
(

2πwz
a

)

in (22) is bounded by Θ(1), as w becomes large.

So, for large w, the asymptotic bound on g(w) in (22), can

be shown as

g(w) ≤M
a
Θ(1)

(

w

a

)β−0.5√
a

4hw
e

−2πhw
a

(

1 + Θ
( 1

w

))

,

∈Θ(wβ−2e
−2πhw

a ). (23)

Summing (23) over large w, we write the total error E(k) as

E(k) =

∞
∑

w=k+1

g(w),

∈
∞
∑

w=k+1

Θ(wβ−2e
−2πhw

a ),

= Θ

( ∞
∑

w=k+1

|wβ−2e
−2πhw

a |
)

. (24)

8The asymptotic notation f(n) = Θ(g(n)) is defined as ∃k1 > 0, k2 >
0, no > 0 ∋ ∀n > no, k1 × g(n) ≤ f(n) ≤ k2 × g(n).



Observe that summand h(w) = wβ−2e
−2πhw

a increases and

then decreases with respect to w and attains its maximum at

w0 = a(β−2)
2πh . Let w1 = max{k + 1, ⌈w0⌉}. Hence we have

∞
∑

w=k+1

|h(w)| ≤ (w1 − (k + 1))|wβ−2
1 e

−2πhw1
a |

+

∫ ∞

w1

|wβ−2e
−2πhw

a |dw,

= (w1 − (k + 1))|wβ−2
1 e

−2πhw1
a |

+

(

a

2πh

)β−1

Γ

(

β − 1,
2πhw1

a

)

,

(25)

where Γ(x, t) =
∫∞
t
wx−1e−wdw is the incomplete gamma

function. Now, for large t, from [24], we can asymptotically

bound Γ(x, t) as

Γ(x, t) ≤ Θ(tx−1e−t).

Using this result and the fact that for large k or large h
a , w1 =

k + 1, we have

E(k) ≤ Θ

((

a

2πh

)β−1(
2πh

a
(k + 1)

)β−2

e
−2πh(k+1)

a

)

,

∈ Θ
(

(k + 1)β−2e
−2πh(k+1)

a

)

,

proving the proposition. �

APPENDIX C

PROOF OF THEOREM 3

Proof. From (9), for θf = π
2 , we can write interference term

I∞(dx, dy) as

I∞(dx, dy) =

+∞
∑

u=−∞

+∞
∑

v=−∞\(0,0)
((ua+ dx)

2 + (va+ dy)
2

+ h2)−β .

(26)

For two dimensions, we can scale and shift the function

q(u, v) in (11) as q(dx+ua, dy+va) and from [25] we extend

the time shifting [22, Prop.4.3.2] and scaling [22, Prop.4.3.5]

property of Fourier transform for two dimensions to obtain

a2
+∞
∑

u=−∞

+∞
∑

v=−∞
q(dx + ua, dy + va) =

+∞
∑

w=−∞

+∞
∑

k=−∞
Q
(w

a
,
k

a

)

e
j2πwdx

a e
j2πkdy

a . (27)

Now, from (26), q(u, v) can be expressed as a real and even

function, given as

q(u, v) = (u2 + v2 + h2)−β . (28)

We define a parameter s = 2π
√
w2 + k2 and r =

√
u2 + v2.

So, q(u, v) can be expressed as a radially symmetric function

q(r) as

q(r) = (r2 + h2)−β . (29)

Let Q(s) be the radial Fourier transform of q(r). We evaluate

this using the Hankel function [21] for two dimensions. The

Hankel function for n dimensions is defined as

s
n−2
2 Qn(s) = (2π)

n
2

∫ ∞

0

Jn−2
2
(sr)r

n−2
2 q(r)rdr.

For n = 2,

Q(s)

= (2π)

∫ ∞

0

J0(sr)q(r)rdr,

= (2π)

∫ ∞

0

J0(sr)r

(r2 + h2)β
dr,

=











h2−2βπ
a2(β−1) ; s = 0,

22−βπ
Γ(β)

(

h
s

)1−β
Kβ−1(hs); s 6= 0.

(30)

Considering the dimension of the attocell as a, we obtain the

scaled Radial Fourier transform of q(ar), from (30) as

1

a2
Q
(s

a

)

=











h2−2βπ
a2(β−1) ; s = 0,

22−βπ
aβ+1Γ(β)

(

h
s

)1−β
Kβ−1

(

hs
a

)

; s 6= 0.

(31)

Substituting s = 2π
√
w2 + k2 in (31), we get 1

a2Q
(

w
a ,

k
a

)

as

1

a2
Q
(w

a
,
k

a

)

=



























h2−2βπ
a2(β−1) ; w = k = 0,

22−βπ
aβ+1Γ(β)

(

h
2π

√
w2+k2

)1−β

Kβ−1

(

2πh
√
w2+k2

a

)

;w 6= 0, k 6= 0.

(32)

Now, substituting (32) in (27) and after removing the

redundant term of u = v = 0, which represents the signal

power from the tagged LED, we get

I∞(dx, dy)

=

+∞
∑

u=−∞

+∞
∑

v=−∞\(0,0)
((ua+ dx)

2 + (va+ dy)
2 + h2)−β ,

=

+∞
∑

u=−∞

+∞
∑

v=−∞
((ua+ dx)

2 + (va+ dy)
2 + h2)−β

− 1

(d2x + d2y + h2)β
,

=
1

a2

(

Q(0, 0)

+

+∞
∑

w=−∞

+∞
∑

k=−∞\(0,0)
Q

(

w

a
,
k

a

)

e
j2πwdx

a e
j2πkdy

a

)

− 1

(d2x + d2y + h2)β
. (33)



Now, because q(u, v) in (28) is a real and even signal, it’s

Fourier transform is also real and even [22, Prop.4.3.3]. So,

we modify (33) as

I∞(dx, dy)

(a)
=

1

a2

(

Q(0, 0)

+

+∞
∑

w=−∞

+∞
∑

k=−∞\(0,0)
Q

(

w

a
,
k

a

)

cos

(

2πwdx
a

)

cos

(

2πkdy
a

))

− 1

(d2x + d2y + h2)β
,

(b)
=

1

a2

(

Q(0, 0)

+

+∞
∑

w=0

+∞
∑

k=0\(0,0)
4Q

(

w

a
,
k

a

)

cos

(

2πwdx
a

)

cos

(

2πkdy
a

))

− 1

(d2x + d2y + h2)β
,

=
h2−2βπ

a2(β − 1)

+
+∞
∑

w=0

+∞
∑

k=0\(0,0)

(

24−βπ

aβ+1Γ(β)

( h

2π
√
w2 + k2

)1−β

Kβ−1

(2πh
√
w2 + k2

a

)

cos
(2πwdx

a

)

cos

(

2πkdy
a

))

− 1

(d2x + d2y + h2)β
,

where (a) follows from the fact that Q(w, k) is real, (b)
follows from the fact that Q(w, k) is even and hence proving

the theorem. �

APPENDIX D

PROOF OF PROPOSITION 2

Proof. Consider the set A , (Z2 ∩ ([0, j]× [0, l])) \ {(0, 0)},

over the set of integers Z. The interference power obtained in

Thm. 3 can be written as

I∞(dx, dy) =
h2−2βπ

a2(β − 1)
− 1

(d2x + d2y + h2)β

+
∑

(w,k)∈A

g(w, k) +
∑

(w,k)/∈A∪{(0,0)}
g(w, k).

Let E(j, l) =
∑

(w,k)/∈A∪{(0,0)} g(w, k) and r =
√
w2 + k2,

then

g(w, k) = ψ(r)

=
M

aβ+1
cos

(

2πwdx
a

)

cos

(

2πkdy
a

)

rβ−1
Kβ−1

(

2πhr

a

)

,

(34)

where M = 23πβh1−β

Γ(β) . From [23], for large r, the modified

Bessel function Kβ−1

(

2πhr
a

)

can be expanded as

Kβ−1

(

2πhr

a

)

=

√

a

4hr
e

−2πhr
a

(

1 + Θ
(1

r

))

,

where Θ(.) is the same asymptotic notation introduced for

the one dimension model. The cosine terms cos
(

2πwdx

a

)

and

cos
( 2πkdy

a

)

in (34) are bounded by Θ(1), as w or k becomes

large. So, for large r, the asymptotic bound on ψ(r) in (34),

can be shown as

ψ(r) ≤ M

aβ+1
Θ(1)rβ−1

√

a

4hr
e

−2πhr
a

(

1 + Θ
(1

r

))

,

∈Θ(rβ−2.5e
−2πhr

a ). (35)

Summing (35) over large r, we get the total error E(j, l) as

E(j, l) =
∑

r:(w,k)/∈A∪{(0,0)}
ψ(r),

∈
∑

r:(w,k)/∈A∪{(0,0)}
Θ(rβ−2.5e

−2πhr
a ),

= Θ

(

∑

r:(w,k)/∈A∪{(0,0)}
|rβ−2.5e

−2πhr
a |

)

. (36)

The summand inside the summation in (36) is symmetric with

r. So E(j, l) can be bounded by a symmetric summation as

E(j, l) ≤ Θ

(

∑

r≥
√

j2+l2+1

|rβ−2.5e
−2πhr

a |
)

.

Observe that summand h(r) = rβ−2.5e
−2πhr

a increases and

then decreases with respect to r and attains its maximum at

r0 = a(β−2.5)
2πh . Let r1 = max{

√

j2 + l2+1, ⌈r0⌉}. Hence we

have

∞
∑

r=
√

j2+l2+1

|h(r)| ≤ (r1 − (
√

j2 + l2 + 1))|rβ−2.5
1 e

−2πhr1
a |

+

∫ ∞

r1

|rβ−2.5e
−2πhr

a |dr,

= (r1 − (
√

j2 + l2 + 1))|rβ−2.5
1 e

−2πhr1
a |

+

(

a

2πh

)β−1.5

Γ

(

β − 1.5,
2πhr1
a

)

,

(37)

where Γ(x, t) =
∫∞
t rx−1e−rdr is the incomplete gamma

function. Now, for large t, from [24], we can asymptotically

bound Γ(x, t) as

Γ(x, t) ≤ Θ(tx−1e−t).



Using this result and the fact that for large
√

j2 + l2 or large
h
a , r1 =

√

j2 + l2 + 1, we have

E(j, l) ≤ Θ

((

a

2πh

)β−1.5(
2πh

a
(
√

j2 + l2 + 1)

)β−2.5

e
−2πh(

√
j2+l2+1)
a

)

,

∈ Θ
(

(
√

j2 + l2 + 1)β−2.5e
−2πh(

√
j2+l2+1)
a

)

,

proving the proposition. �
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