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There has been a recent interest in integrating external fields with inertial microfluidic
devices to tune particle focusing. In this work, we analyze the inertial migration of an
electrophoretic particle in a 2-D Poiseuille flow with an electric field applied parallel to the
walls. For a thin electrical double layer, the particle exhibits a slip-driven electrokinetic
motion along the direction of the applied electric field, which causes the particle to lead or
lag the flow (depending on its surface charge). The fluid disturbance caused by this slip-
driven motion is characterized by a rapidly decaying source-dipole field which alters the
inertial lift on the particle. We determine this inertial lift using the reciprocal theorem.
Assuming no wall effects, we derive an analytical expression for a phoretic-lift which

captures the modification to the inertial lift due to electrophoresis. We also take wall
effects into account at the leading order, using the method of reflections. We find that for
a leading particle, the phoretic-lift acts towards the regions of high shear (i.e. walls), while
the reverse is true for a lagging particle. Using an order-of-magnitude analysis, we obtain
different components of the inertial force and classify them on the basis of the interactions
from which they emerge. We show that the dominant contribution to the phoretic-lift
originates from the interaction of source-dipole field (generated by the electrokinetic slip
at the particle surface) with the stresslet field (generated due to particle’s resistance
to strain in the background flow). Furthermore, to contrast the slip-driven phenomenon
(electrophoresis) from a force-driven phenomenon (buoyancy) in terms of their influence
on the inertial migration, we also study a non-neutrally buoyant particle. We show that
the gravitational effects alter the inertial lift primarily through the interaction of the
background shear with the buoyancy induced stokeslet field.

1. Introduction

1.1. Inertial migration

Inertial focusing is the cross-stream migration of particles in the presence of finite fluid
inertia. This phenomenon was first observed by Segre & Silberberg (1961, 1962a,b). Their
experiments revealed a cross-stream migration of a dilute suspension of rigid neutrally
buoyant particles in a pressure driven flow. The peak concentration of the particles
occurred at a radial position of ∼0.6Rp, where Rp is the pipe radius. Bretherton (1962)
showed that in the absence of inertia (i.e. Stokes regime), a rigid sphere cannot migrate
across streamlines owing to the reversibility of the Stokes flow. Therefore, cross-stream
migration was attributed to the fluid inertia.
To qualitatively understand this behavior, the first theoretical studies were conducted

for unbounded flows. Rubinow & Keller (1961) used matched asymptotic expansion to
find the inertial force on a particle exhibiting constant rotation in a uniform flow. They
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found a viscosity independent force in a direction perpendicular to the axis of rotation
and the incident flow. In a Poiseuille flow, this force always acts towards the axis of
the channel which contradicts the observations of Segre & Silberberg (1961). Therefore
their results failed to explain the primary reason behind the lateral migration. Later
Saffman (1965) derived an expression for the lift on a small sphere exhibiting a relative
motion along the streamlines of an unbounded shear flow. Saffman demonstrated that a
particle would migrate towards the regions of higher relative velocity; a particle leading
(or lagging) in a shear flow would migrate transversely towards the region of low (or
high) velocity. Although this study aided in understanding some aspects of the migration
observed by Segre-Silberberg (buoyancy and near-wall effects), it could not explain the
migration of neutrally buoyant particles.
Migration of a particle in the presence of boundaries was first studied in great generality

by Cox & Brenner (1968). They considered a spherical particle suspended in a three-
dimensional Poiseuille flow. They made a crucial observation that, in bounded flows, the
viscous stresses are more dominant than the inertial stresses, provided ReV ≪ κ (ReV is
the particle Reynolds number defined as: V ′ a′/ν′, where V ′ is the particle velocity relative
to the background flow, ν′ is the kinematic viscosity and κ is the ratio of particle radius
a′ to the channel height l′). Using a regular perturbation expansion, they derived an
expression for migration velocity as a volume integral involving the velocity field in Stokes
regime (these velocity fields were represented in terms of Green’s function). However, the
solution was not provided in an explicit form as it involved numerous integrals. Therefore
no conclusions were drawn with respect to lateral migration or equilibrium positions.
Ho & Leal (1974) studied the migration of a neutrally buoyant particle in a 2D

Couette and Poiseuille flow and were the first to calculate the lift force explicitly. Similar
to Cox & Brenner (1968) they found that the viscous stresses dominate throughout
the channel, provided Rep ≪ κ2. Here Rep = U ′

maxκ a
′/ν′ is the particle Reynolds

number based on the average shear rate (U ′
max is the maximum centerline velocity).

They employed a regular perturbation expansion in Rep in conjunction with Lorentz
reciprocal theorem to find the inertial lift as a volume integral over creeping flow
velocities. These velocities were found using the method of reflections and wall corrections
were incorporated using Faxen transformations (originally developed by Faxén (1922) for
bounded viscous flows). For Poiseuille flow, the equilibrium positions were found to be
in agreement with the observations of Segre & Silberberg (1961) i.e. ∼0.6 times the half
channel width. Recently, Hood et al. (2015) extended the approach of Ho & Leal (1974)
to a 3-D Poiseuille flow. They derived an asymptotic model and calculated lift on the
particle as a function of size ratio κ. Through a numerical analysis, they demonstrated
that the methodology developed by Ho and Leal was applicable over a wider range of
Rep than their theoretical constraint, Rep ≪ κ2.
Vasseur & Cox (1976) used the general results of Cox & Brenner (1968) to compute the

inertial lift on neutrally and non-neutrally buoyant spherical particles in 2D Couette and
Poiseuille flows. They approximated the particle as a point force and used an approach
based on Green’s functions to solve for the flow field. Their results for the migration
velocity of neutrally buoyant particles showed a significant deviation from that obtained
by Ho & Leal (1974) near the walls.

1.2. Electrophoresis tuned inertial focusing

In the past decade, numerous experimental studies have focused on the implementation
of inertial focusing in microfluidic Lab-on-Chip devices to separate and trap, particles
and cells (Martel & Toner 2014; Zhang et al. 2016). There has been a recent interest
towards the integration of external electric fields with inertial microfluidics to have
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(a) (b)

Figure 1: Disturbance velocity fields around the particle in a quiescent fluid for movements due
to (a) forced (sedimentation) and (b) force-free (phoresis) mechanisms. The external field is
applied in the horizontal direction.

an active control over particle migration. This can be exploited to separate particles
and biological cells on the basis of their ability to acquire a surface charge when
suspended in an aqueous (polar) medium. Recent experimental studies by Kim & Yoo
(2009a,b); Cevheri & Yoda (2014); Yuan et al. (2016); Li & Xuan (2018); Rossi et al.
(2019) demonstrated an electric field induced lateral migration by making a polystyrene
microsphere lag behind the background Poiseuille flow (this—electric field imposed—
relative motion is in addition to the lag induced by the curvature of the background
Poiseuille flow and interaction with the boundaries). The particles were observed to
focus on the axis (or walls) of the channel when they were made to lag (or lead) the
pressure driven flow.
A common hypothesis put forth by these experimental studies is that a charged

particle under the action of a parallel Coulombic force leads or lags the background
flow analogous to a non-neutrally buoyant particle suspended in a Poiseuille flow (with
gravity aligned parallel to the flow) which generates a Saffman-lift (Saffman 1965).
However, a closer examination reveals differences in the two phenomena. The mechanism
by which the lag/lead occurs due to gravitational field is fundamentally different from
that in an electrolytic medium due to the external electric field. In the latter, a layer
of ions (consisting primarily of the counter-ions) forms around the charged particle by
electrostatic attraction. This layer is subject to a thermo-electrostatic equilibrium and is
known as the electrical double layer. The particles used in the experiments (Li & Xuan
2018) were a few micrometers in diameter, with zeta potential a few times the thermal
potential (∼25 mV). The double layer (λ′d) associated with such particles is a few
nanometers thick. Therefore, these systems lie in the thin-double layer limit (λ′d/a

′ ≪ 1).
In such cases, an external field does not affect the particle directly as a thin ionic layer
shields it. The external field however, exerts a Coulomb force on the fluid in the thin
layer (as the net charge is non-zero), resulting in a tangential slip on the surface of the
particle. As a result, a freely suspended particle moves in the direction opposite to the
slip, known as electrophoresis (Kirby 2010).
In the absence of boundaries, electrophoretic motion corresponding to such particles

can be viewed as force-free and is fundamentally different from the motion associated
with sedimentation (Anderson 1989). Figure 1 shows the disturbance a particle creates
in a quiescent fluid when subjected to these two mechanisms. The force-free phoretic
particle motion occurs due to slipping of counter-ions over its surface. The associated
disturbance field is governed by a rapidly decaying source-dipole field (∼ O(1/r3)). How-
ever, the disturbance field generated from the motion induced due to density difference
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Investigation Description Regime Remarks/comments

Rubinow and
Keller (1961)

Effect of rotation
in unbounded uniform
flow

Re ≪ 1 Migration direction perpendicular
to incident flow and axis of rotation

Saffman
(1965)

Effect of relative
velocity in unbounded
shear flows

Rep ≪ 1 Saffman lift: migration towards
the regions of higher relative
velocity

Ho and Leal
(1974)

Neutrally buoyant
particle in 2D flows

Rep ≪ κ2

κ ≪ 1
Migration owing to two
counteracting forces:
(i)Wall-lift (towards center)
(ii)Shear-gradient-lift (towards walls)

Vasseur and
Cox (1976)

Non-neutrally buoyant
particle in 2D flows

ReV ≪ κ
κ ≪ 1

Shift in equilibrium position in
concordance with Saffman (1965)

Yariv (2006),
(2016)

Electrophoretic particle
near a wall

ǫ ≫ 1 Maxwell stress induced wall
repulsion

Bike and Prieve
(1995);

Schnitzer and
Yariv (2016)

Electrophoretic
particle near a wall,
suspended in shear flow

Pe = O(1)
ǫ ≪ 1

Shear-induced electroviscous wall
repulsion

This work Neutrally buoyant
electrophoretic
particle in plane
Poiseuille flow

Rep ≪ κ2

κ ≪ 1
ǫ ≫ 1

To potentially explain
the observations of
Kim et al. (2009a, 2009b);
Cevheri and Yoda (2014);
Yuan et al. (2016);
Li and Xuan (2018); Rossi et al. (2019)

Table 1: A summary of theoretical studies in the past addressing various forces acting on the
particle. Table is divided with respect to origin of the lift: (i.) weak inertia and (ii.) electrostatics
and electrokinetics. Re is the flow Reynolds number; Rep is the particle Reynolds number based
on average shear; ReV is the particle Reynolds number based on particle velocity relative to
background flow; Pe is the Peclet number defined as a′2G′/D′

i (G′ is the background velocity
gradient and D′

i being the ionic diffusion coefficient of ith ionic species); ǫ is the particle-wall
gap, non-dimensionalized with respect to particle radius a′.

(buoyancy induced motion), on the contrary, is a stokeslet at the leading order (flow
field generated due to point force), which decays significantly slower (∼ O(1/r)). This
stokeslet upon interaction with the background shear gives rise to a buoyancy combined
inertial migration (Feng et al. 1994; Matas et al. 2004). Since a direct analogy cannot
be extended, the question then arises as to how electrophoresis affects inertial migration
and what are the responsible underlying interactions?
Apart from the inertial lift, there are various other forces which act laterally on an

electrophoretic particle. Yariv (2006) found that a wall-repulsive electric force acts on the
electrophoretic particle when a parallel electric field is applied. As this force arises from
the asymmetry in Maxwell stresses, it is decoupled from the hydrodynamics and gets
altered in the presence of surface conduction effects (Yariv 2016). In addition to this, an
externally imposed mechanical flow over an electrophoretic particle generates a ‘stream-
ing potential’ (arises due to streaming of ions inside the double layer). Schnitzer et al.
(2012a) showed that this consequently generates a streaming electric field which is
O(λ′d/a

′)2 for moderate Peclet numbers: Pe ∼ O(1) (Pe = κU ′
maxa

′/D′
i, where D

′
i is the

ionic diffusivity). Since we consider double layer to be asymptotically thin (λ′d/a
′ ≪ 1),

the effect of streaming potential is neglected in this work. However, in the aforementioned
regime, the streaming potential may generate when the particle is very near the walls.
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This modifies the electrokinetic slip, and the associated Newtonian stresses result in a
lateral ‘electro-viscous force’ (Bike & Prieve 1995; Schnitzer & Yariv 2016). In this work,
we neglect the electro-viscous force and focus on the migration in the bulk of the channel.
For the same reason, we exclude the forces arising from (i) the van der Waals interactions
and (ii) interactions of the double layer between particle and walls.
Table 1 summarizes various theoretical studies in the past which analyzed lateral mi-

gration of neutral and electrophoretic particles in different regimes. Recent experimental
studies (Kim & Yoo 2009a,b; Cevheri & Yoda 2014; Yuan et al. 2016; Li & Xuan 2018;
Rossi et al. 2019) discuss the electric field effect on the migration of electrophoretic
particles in Poiseuille flow. However, the physical cause and magnitude of this effect
remains unclear. Also, a closer look at table 1 sparks a further question: Does a slip-driven
motion (electrophoresis) have a different effect on inertial migration than a force-driven
motion (movement due to buoyancy)?
Motivated by the recent experimental studies, the objectives of this work are: (i) to

study the inertial lift on an electrophoretic sphere in a combined electro-osmotic Poiseuille
flow, (ii) to obtain physical insight on the various interactions which contribute to the
migration of an electrophoretic particle, (iii) and to draw comparisons with the buoyancy
combined inertial lift. The parameters reported by the experimental studies (Kim & Yoo
2009a,b; Cevheri & Yoda 2014; Yuan et al. 2016; Li & Xuan 2018; Yee & Yoda 2018;
Rossi et al. 2019) correspond to the regime of weak inertia, where the entire domain
is dominated by viscous forces. Therefore, our approach builds on the framework of
Ho & Leal (1974).
This work is organized as follows: The problem formulation and different simplifying

assumptions are presented in §2. We apply a regular perturbation expansion in Rep, and
derive the lift force using the Lorentz reciprocal theorem. In §3, the electrostatic potential
and velocity fields are found using the method of reflections. We employ Lambs general
solution (Lamb 1975) and Faxens transform (Faxén 1922) to calculate the reflections of
fields. In §4, we draw qualitative insights on the migration behaviour by neglecting wall
effects and derive an approximate expression for a ‘phoretic-lift’. In §5, we summarize the
solution methodology. We illustrate the migration of an inert particle and validate our
results with the previous studies in §6. In §7, the effect of electrophoresis on the inertial
lift is analyzed. The different constituents contributing to the lift force are analyzed
here. In §8, we study a non-neutrally buoyant particle and draw comparisons with the
electrophoretic particle in terms of their influence on the inertial migration. In §9, we
discuss a decoupled electrical lift force which stems from the Maxwell stresses (Yariv
2006) and compare it with the inertial lift. The key results and conclusions are discussed
in §10. Appendix and supplementary material provides the details of calculations for the
interested reader.

2. Problem formulation

The system analyzed in this work is shown in figure 2. It depicts a neutrally buoyant
particle of radius a′ suspended in a combined electro-osmotic Poiseuille flow of an elec-
trolytic solution, moving with a maximum velocity of U ′

max (where ′ denotes dimensional
variables). The system is subjected to an externally imposed uniform electric field parallel
to the walls (E′

∞ = E′
∞ex). Both the particle and wall surface are assumed to have a

constant zeta potential. The origin of Cartesian coordinate system is placed at the particle
centre, which is located at a distance d′ from the bottom wall. The thin double layer is
depicted by dashed lines in figure 2. We analyze the system under the thin-double-layer
limit (λ′d/a

′ ≪ 1). The thin double layer assumption implies that the ionic distribution in
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Figure 2: Schematic depicting the problem configuration and the coordinate system in particle
reference frame. The dashed layer around the particle and walls depicts the outer edge of the
double layer. Prime denotes the dimensional variables and θ denotes the polar angle is measured
from the z′-axis. a′ includes the particle radius and thin electrical double layer λ′

d.

it is at quasi-equilibrium. Here λ′d denotes the thickness of the electrical double layer. At
large zeta potentials, the conduction of ions in the double layer can exceed than that in
the bulk. As a result, polarization of ions occurs inside the double layer, formally known
as the surface conduction effect (O’Brien & White 1978; O’Brien & Hunter 1981). In this
work, since we do not address logarithmically large zeta potentials (Schnitzer & Yariv
2012), we neglect the surface conduction effects.

2.1. Governing equations

We represent the system in non-dimensional variables using a′, κU ′
max, µ

′κU ′
max/a

′

and a′|E′
∞| as the characteristic scales for length, velocity, pressure and electrostatic

potential, respectively. Here, κ is the size ratio of the particle radius a′ to the channel
width l′, and µ′ denotes the viscosity of the electrolyte. If no external concentration
gradient is applied, the electrostatic potential (φ) in the electro-neutral bulk region (zero
charge density) is governed by the Laplace equation:

∇2φ = 0. (2.1)

Since the effect of streaming potential is neglected in this work, a no-flux condition for
the electrostatic potential is imposed at the surface of the particle:

er · ∇φ = 0 at r = 1. (2.2)

The electric field remains parallel to the walls (located at z = s and z = 1 − s, where
s ≡ d′/l′), yielding:

ez · ∇φ = 0 at walls . (2.3)

Far away from the particle, the electric potential distribution approaches its undisturbed
state (φ∞ ∼ −x):

φ→ φ∞ as r → ∞. (2.4)

The hydrodynamics of the current problem consists of three time scales: (i) viscous
time scale (t′visc ∼ a′2/ν′), (ii) convective time scale of the flow (t′conv ∼ a′/κU ′

max) and
(iii) migration (or geometric) time scale (t′mig ∼ a′/U ′

mig). Since the time dependence
enters the system through the migration time scale, temporal variations can be assumed
to be negligible if the migration time scale is much larger than the convective time scale
(t′mig ≫ t′conv) (Becker et al. 1996). Since the migration occurs due to weak inertia, the
migration velocity is much smaller than the characteristic velocity (U ′

mig ≪ κU ′
max),
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which suggests that we can neglect the temporal variations. Therefore, the velocity and
pressure distribution in the electroneutral bulk are governed by continuity and quasi-
steady Navier-Stokes equation. The term quasi-steady implies that the dynamics depend
only on the instantaneous geometric configuration (i.e. particle position between the
walls), provided U ′

mig ≪ κU ′
max†. In the frame of reference of the moving particle, the

flow is governed by:

∇ ·U = 0, ∇2U −∇P = Rep (U · ∇U) . (2.5)

Here, Rep is particle Reynolds number defined as:

Rep =
ρ′U ′

maxκa
′

µ′
. (2.6)

The sphere moves with a—yet to be determined—translational and rotational velocity:
U s and Ωs, respectively. Since the domain is infinite in the y-direction, we can consider:
U s = Usxex + Uszez and Ωs = Ωsyey (i.e. the particle rotates in the direction of the
background flow vorticity). To account for the electrokinetic effects inside the double
layer, we employ a macroscale description i.e. the slip-boundary condition derived by
Smoluchowski (1903). We obtain the following boundary condition at the particle surface:

U = Ωs × r +HaZp∇φ at r = 1. (2.7)

Here, Zp is the dimensionless particle surface zeta potential (ζ′p/E
′
∞a

′).Ha is a Hartmann-
type number: Ha = ε′E′2

∞a
′/4πµ′κU ′

max, which denotes the ratio of electrical energy
density to shear stress. Here ε′ is the electrical permittivity. In this work, based on the
experimental conditions (Kim & Yoo 2009a; Cevheri & Yoda 2014; Li & Xuan 2018),we
address Ha ∼ O(1) and Zp ∼ O(1) regime (E′

∞ ≈ O(103) − O(104) V/m, ζ′p= 50 mV,
a′=10 µm, µ = 10−3 Pa s, U ′

max = 2.25 mm/s, κ = 10−2, ε′ = 80 ε′vacuum).

At walls (z = s and z = 1− s), the flow satisfies the Smoluchowski slip condition:

U = HaZw∇φ−U s at walls. (2.8)

Here, Zw is the dimensionless wall surface zeta potential (ζ′w/E
′
∞a

′). The flow remains
undisturbed far away from the particle and satisfies:

U → V ∞ as r → ∞. (2.9)

Here, V ∞ denotes the undisturbed background flow (Poiseuille flow combined with
electro-osmosis) in the frame of reference of the particle:

V ∞ =
(

α+ βz + γz2
)

ex +HaZw∇φ∞ −U s. (2.10)

The constants α, β and γ are:

α = 4Umaxs (1− s) , β = 4Umaxκ (1− 2s) , γ = −4Umaxκ
2, (2.11)

where β and γ represent the shear and curvature of the background flow.

Determination of Us and Ωs: The translational and rotational velocities of the sphere
are evaluated by acknowledging that the freely suspended neutral particle (charged
surface plus counter-ions) is force-free and torque-free (see Appendix A.1 for details).
Therefore, in the formulation above, the overall (hydrodynamic and electric) force (FH+

† A detailed derivation is described in the supplementary information S1.
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FM ) and torque (LH +LM ) on the particle must be zero:

F = FH + FM =

∫

Sp

n ·ΣHdS + 4πHa

∫

Sp

n ·ΣMdS = 0, (2.12)

L = LH +LM =

∫

Sp

n× (n ·ΣH) dS + 4πHa

∫

Sp

n× (n ·ΣM ) dS = 0. (2.13)

The above force and torque have been normalized with µ′a′κU ′
max and µ′a′2κU ′

max,
respectively. Here, ΣH is the dimensionless Newtonian stress tensor which contributes
to hydrodynamic force; ΣM is the dimensionless Maxwell stress tensor which contributes
to the electric force:

ΣH = −P I +∇U + (∇U)
T
and ΣM = ∇φ∇φ−

1

2
(∇φ · ∇φ) I . (2.14)

Here, I is the second order identity tensor and the superscript T denotes transpose.

2.2. Equations governing the disturbance

The solution to equations (2.1)-(2.5), (2.7)-(2.9), (2.12) and (2.13) is sought in terms
of disturbance variables: electrostatic potential (ψ = φ − φ∞), velocity (v = U − V ∞)
and pressure (p = P − P∞). These represent the deviation of actual fields from the
undisturbed fields. The disturbance electrostatic potential is governed by:

∇
2ψ = 0, (2.15)

and is subject to the following boundary conditions:

er · ∇ψ = −er · ∇φ∞ at r = 1, (2.16)

ez · ∇ψ = 0 at walls , (2.17)

ψ → 0 as r → ∞. (2.18)

The disturbance velocity is governed by:

∇ · v = 0, ∇2v −∇p = Rep (v · ∇v + v · ∇V ∞ + V ∞ · ∇v) , (2.19)

and is subject to the following boundary conditions:

v = Ωs × r +HaZp∇ (ψ + φ∞)− V ∞ at r = 1, (2.20)

v = HaZw∇ψ at walls, (2.21)

v → 0 as r → ∞. (2.22)

The disturbance hydrodynamic and Maxwell stresses are defined as:

σH = −pI +∇v + (∇v)
T

σM = ∇ψ∇ψ −
1

2
(∇ψ · ∇ψ) I . (2.23)

Since only the disturbance stresses must contribute to force and torque on the particle,
we write:

F = FH + FM =

∫

Sp

n · σHdS + 4πHa

∫

Sp

n · σMdS = 0, (2.24)
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L = LH +LM =

∫

Sp

n× (n · σH) dS + 4πHa

∫

Sp

n× (n · σM ) dS = 0. (2.25)

2.3. Regular perturbation expansion

The primary objective of this work is to obtain the lift associated with inertia for an
asymptotically small Rep. Towards this, we perform a regular perturbation expansion in
Rep. This expansion is valid only when the inertia persists as a perturbation throughout
the domain. Therefore, the wall particle distance must be shorter than the length scale
where the inertial force balances viscous force (Guazzelli & Morris 2011). The order of
magnitude of the ratio of inertial to viscous forces shows that the length scale associated
with the bulk shear (a′/

√

Rep) is much shorter than that based on the electrokinetic slip
(a′/HaZpRep). Therefore, based on the inertial length scale of bulk shear, we arrive at
the following constraint for the entire domain to be dominated by viscous forces:

O(Rep) ≪ κ2. (2.26)

This allows us to seek the solution for disturbance velocity, pressure, translational and
rotational velocities as a perturbation expansion in Rep:

v = v(0) + Repv
(1) + · · · p = p(0) + Repp

(1) + · · ·

U s = U (0)
s + RepU

(1)
s + · · · Ωs = Ω(0)

s + RepΩ
(1)
s + · · · .

(2.27)

We substitute the above expansion into the equations governing hydrodynamics (2.19)-
(2.22). We obtain the O(1) problem as:

∇ · v(0) = 0,

∇2v(0) −∇p(0) = 0,

v(0) = Ω(0)
s × r +HaZp∇ (ψ + φ∞)− V (0)

∞ at r = 1,

v(0) = HaZw∇ψ at walls,

v(0) → 0 as r → ∞,























(2.28)

and the O(Rep) problem as:

∇ · v(1) = 0,

∇2v(1) −∇p(1) = v(0)
· ∇v(0) + V (0)

∞ · ∇v(0) + v(0)
· ∇V (0)

∞ ,

v(1) = U (1)
s +Ω(1)

s × r at r = 1,
v(1) = 0 at walls,

v(1) → 0 as r → ∞.























(2.29)

We do not perform a similar expansion for the electrostatic potential because the problem
governing electrostatics is decoupled from the flow field.

Owing to (2.27), the hydrodynamic force and torque can be expanded as:

FH = F
(0)
H + RepF

(1)
H and LH = L

(0)
H + RepL

(1)
H . (2.30)

Here, F
(0)
H represents the hydrodynamic force in the Stokes regime and therefore acts

in the x-direction alone. As the flow is two-dimensional, the hydrodynamic force due to

inertia (F
(1)
H ) is of the following form: {F

(1)
x , 0, F

(1)
z }. The cross-stream inertial migration

arises from F
(1)
z , whose evaluation is the primary objective of this work. One way to obtain

this is by solving (2.28) and (2.29), and evaluating Rep ez ·
∫

Sp

n · σ
(1)
H dS. Alternatively,

an application of the Lorentz reciprocal theorem allows us to determine the inertial lift
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force (FI ≡ RepF
(1)
z ) associated with v(1), without solving for (2.29). In the next section,

we will elaborate on this approach which was proposed originally by Ho & Leal (1974).

2.4. Lift force

The reciprocal theorem relates the properties of an unknown Stokes flow (σ,v) to a
known test flow field (σt,ut), provided both fields correspond to the same geometry. The
test field is taken to be that generated by a sphere moving in the positive z-direction
with unit velocity ez in a quiescent fluid between the walls. The test field is governed by:

∇ · ut = 0, ∇2ut −∇pt = 0,
ut = ez at r = 1,
ut = 0 at the walls,
ut → 0 at r → ∞.















(2.31)

The generalized reciprocal theorem (Kim & Karrila 2013) states:
∫

Sp

v ·
(

σt · nt
)

dS +

∫

Vf

v ·
(

∇ · σt
)

dV =

∫

Sp

ut · (σ · n) dS +

∫

Vf

ut · (∇ · σ) dV .

(2.32)
Here σt and σ are the stress tensors corresponding to the test Stokes field and unknown
Stokes field. The Navier-Stokes equations (2.29) and (2.31) are expressed in terms of
stress tensors as:

∇ · σ
(1)
H = v(0)

· ∇v(0) + V (0)
∞ · ∇v(0) + v(0)

· ∇V (0)
∞ , and ∇ · σt = 0. (2.33)

Substituting σ
(1)
H as σ in (2.32) and using the boundary conditions expressed in (2.29),

we obtain:

U s
(1)

·
∫

Sp
(σt · nt) dS +

∫

Sp
(Ωs

(1) × r) · (σt · nt)

= ez ·
∫

Sp

(

σ
(1)
H · n

)

dS +
∫

Vf
ut ·

(

v(0)
· ∇v(0) + V (0)

∞ · ∇v(0) + v(0)
· ∇V (0)

∞

)

dV .

(2.34)
The surface integral in the first term on the left-hand side denotes the hydrodynamic force
on the sphere due to the z-direction motion ≈ −6π(1 +O(κ))ez (with first order wall
correction). The second term can be shown to be zero by invoking symmetry arguments.
Also, since the particle is freely suspended and neutrally buoyant, the first term on the
right-hand side is zero. This yields the following expression for the migration velocity of
the particle due to inertia:

U (1)
sz =

−1

6π (1 +O(κ))

∫

Vf

ut ·
(

v(0)
· ∇v(0) + V (0)

∞ · ∇v(0) + v(0)
· ∇V (0)

∞

)

dV . (2.35)

Following Ho & Leal (1974), at the present order of approximation (for migration of
O(Rep)), we alternatively prescribe Usz ≡ 0 in (2.34). In other words, the particle is not
allowed to migrate across streamlines †. This implies that a finite inertial force F I acts
on the particle:

FI ≡ Rep

(

ez ·
∫

Sp

(

σ
(1)
H · n

)

dS
)

= −Rep
∫

Vf
ut ·

(

v(0)
· ∇v(0) + V (0)

∞ · ∇v(0) + v(0)
· ∇V (0)

∞

)

dV .
(2.36)

† Since the particle is free to move in the flow direction, at O(Re0
p) the problem remains

force-free in x-direction and torque free in y-direction (Ho & Leal 1974).
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We have now obtained the inertia induced lift force as a volume integral which can
be evaluated by solving (2.28) (equations governing the creeping flow v(0)), (2.15)-(2.18)
(equations governing the electrostatic potential ψ) and (2.31) (equations governing the
test field). In the next section, we evaluate the disturbance fields and the test field.

3. Evaluation of disturbances

In this work, the disturbance potential (ψ) is independent of the hydrodynamics. It
affects the hydrodynamics through the slip conditions at the particle and wall surfaces
(see eq. 2.28). Therefore, the electrostatic potential is evaluated first.

3.1. Electrostatic potential

When the particle is not too close to the wall (κ/s ≪ 1), the solution can be sought
in terms of successive reflections (Brenner 1962). The first reflection represents the
disturbance due to a particle in an unbounded domain. The second reflection corrects the
previous disturbance by imposing the boundary condition at the walls and ignoring the
particle. Subsequently, each reflection imposes the boundary condition alternatively at
the particle and walls. Every successive pair of reflections increases the accuracy by O(κ)
(Happel & Brenner 2012). This iterative process is performed until a desired accuracy is
attained. We seek the disturbance potential as a sum of reflections:

ψ = ψ1 + ψ2 + · · · . (3.1)

Here, ψi represents the i
th reflection. Substituting this in (2.15)-(2.18), we obtain for the

first reflection:

∇2ψ1 = 0,
er · ∇ψ1 = −er · ∇φ∞ at r = 1,

ψ1 → 0 as r → ∞,







(3.2)

and for the second reflection:

∇2ψ2 = 0,
ez · ∇ψ2 = −ez · ∇ψ1 at walls.

}

(3.3)

Solution to ψ1: Equation (3.2) suggests that ψ1 is a harmonic function which decays
as r → ∞. The boundary condition suggests that it must be linear in the driving force:
∇φ∞(= −ex). Therefore, the solution is sought in terms of spherical solid harmonics
(Guazzelli & Morris 2011) as:

ψ1 =
1

2

r

r3
.∇φ∞ = −

1

2

x

r3
. (3.4)

Solution to ψ2: To evaluate ψ2, we adopt the approach devised by Faxén (1922) in
the context of bounded viscous flows. Using this, the disturbance around the particle
is expressed in an integral form which satisfies the boundary conditions at the walls.
The first reflection is characterized by particle scale (a′). The second reflection ψ2 is
characterized by a length scale (l′) which is O(1/κ), because the walls are remotely
located. Therefore, the coordinates for second reflection are stretched, and are termed as
‘outer’ coordinates. These outer coordinates (denoted by capital letters) are defined as:

R = rκ X = xκ Y = yκ Z = zκ. (3.5)



12 A. Choudhary, T. Renganathan and S. Pushpavanam

Using Faxen’s transformations (see Appendix A.2), we obtain the second reflection:

ψ̃2 =
κ2

2π

+∞
∫

−∞

+∞
∫

−∞

eiΘ
(

e(−
λZ
2 )b2 + e(+

λZ
2 )b3

)

(

iξ

λ

)

dξdη. (3.6)

Here b1 and b2 are:

b2 =
1

8

(

1 + e(1−s)λ
)

−1 + eλ
, b3 =

1

8

(

1 + esλ
)

−1 + eλ
. (3.7)

The next reflection (ψ3) is O(κ
3). As we restrict κ≪ 1, the first two reflections capture

the leading order contribution to the disturbance potential.

Solution of FM and LM : Before determining the inertial lift FI through the evaluation
of velocity disturbances in the creeping flow limit, we find the electrical force and torque
on the particle caused by Maxwell stress. These are used later in the calculation of U (0)

s

and Ω(0)
s (see §3.3).

We substitute (3.4) and (3.6) in both (2.24) and (2.25). Upon simplification (see
Appendix A.3) we obtain:

FM = 4πHa

(

3π

16
κ4 (Z(4, s)− Z (4, 1− s))

)

ez +O
(

κ7
)

, (3.8)

LM = 0. (3.9)

Here, Z is the generalized Riemann zeta function (Abramowitz et al. 1972). This leading
order electrical force acts only in the z-direction and always away from the walls (i.e.
positive below the channel centerline and vice-versa). As the particle approaches walls
(s → 0 or 1), (3.8) asymptotically matches with the single wall expression derived by
Yariv (2006). We also find that the Maxwell stresses exert no torque on the particle, at
the present level of approximation.
Having obtained the leading order potential distribution, we next evaluate the velocity

disturbance.

3.2. Velocity disturbance

We seek the disturbance (v(0), p(0)) as successive reflections:

v(0) = v
(0)
1 + v

(0)
2 + v

(0)
3 + · · · , p(0) = p

(0)
1 + p

(0)
2 + p

(0)
3 + · · · . (3.10)

Upon substituting the above expansion in (2.28), we obtain the following set of problems:

∇ · v
(0)
1 = 0, ∇2v

(0)
1 −∇p

(0)
1 = 0,

v
(0)
1 = U

(0)
sx ex +Ω

(0)
sy ey × r +HaZp(∇ψ1 +∇ψ2)

−
(

α+ βz + γz2 +Ha(Zp − Zw)
)

ex at r = 1,

v
(0)
1 → 0 at r → ∞.



















(3.11)

∇ · v
(0)
2 = 0, ∇2v

(0)
2 −∇p

(0)
2 = 0,

v
(0)
2 = HaZw (∇ψ1 +∇ψ2)− v

(0)
1 at the walls,

v
(0)
2 → 0 at r → ∞.











(3.12)

∇ · v
(0)
3 = 0,∇2v

(0)
3 −∇p

(0)
3 = 0,

v
(0)
3 = −v

(0)
2 at r = 1,

v
(0)
3 → 0 at r → ∞.











(3.13)
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Solution of v
(0)
1 : The odd reflections are found using Lambs general method (Lamb

1975). We obtain the following leading terms for v
(0)
1 :

v
(0)
1 = A1

(

ex +
xr

r2

) 1

r
+B1

(

−ex +
3xr

r2

)

1

r3
+C1

(zex
r3

−
xez
r3

)

+D1

(zxr

r5

)

. (3.14)

The coefficients A1, B1, C1 and D1 are associated with the stokeslet, source-dipole,rotlet
(generated due to relative rotation of the particle) and stresslet flow disturbances,
respectively. These are:

A1 = 3
4 (U

(0)
sx − α− γ

3 −Ha(Zp − Zw) + κ3HaZp sx(ψ̃2)),

B1 = 1
2 (HaZp)−

1
4 (U

(0)
sx − α− 3γ

5 −Ha(Zp − Zw) + κ3HaZp sx(ψ̃2)),

C1 = Ω
(0)
sy − β/2, and D1 = −5β/2.

(3.15)

Here, s(ψ̃2) is a vector denoting the contribution to slip at the particle surface due to
wall correction of the disturbance potential. This correction enters the solution at O(κ3).

s(ψ̃2) =

∞
∫

0

−
1

4
(b2 + b3) λ

2dλ ex. (3.16)

Solution to v
(0)
2 : Similar to §3.1, we use Faxen transformation technique to obtain the

solution to ṽ
(0)
2 = {ũ

(0)
2 , ṽ

(0)
2 , w̃

(0)
2 } as:

ũ
(0)
2 =

1

2π

∫ +∞

−∞

∫ +∞

−∞

eiΘ





e(
−λZ

2 )
(

ℓ4 +
ξ2

λ2

(

ℓ5 +
λZ
2 ℓ6 −

HaZwκ
3λ

2 b2

))

+ e(
+λZ

2 )
(

ℓ7 +
ξ2

λ2

(

ℓ8 −
λZ
2 ℓ9 −

HaZwκ
3λ

2 b3

))



 dξdη,

(3.17)

ṽ
(0)
2 =

1

2π

∫ +∞

−∞

∫ +∞

−∞

eiΘ





e(
−λZ

2 )
(

ℓ5 +
λZ
2 ℓ6 −

HaZwκ
3λ

2 b2

)

+ e(
+λZ

2 )
(

ℓ8 −
λZ
2 ℓ9 −

HaZwκ
3λ

2 b3

)





(

ξη

λ2

)

dξdη,

(3.18)

w̃
(0)
2 =

1

2π

∫ +∞

−∞

∫ +∞

−∞

eiΘ





e(
−λZ

2 )
(

ℓ4 + ℓ5 +
(

1 + λZ
2

)

ℓ6 −
HaZwκ

3λZ
2 b2

)

− e(
+λZ

2 )
(

ℓ7 + ℓ8 +
(

1− λZ
2

)

ℓ9 −
HaZwκ

3λZ
2 b3

)





(

iξ

λ

)

dξdη.

(3.19)

Here, the terms ℓ4, ℓ5 · · · , ℓ9 are functions of the Fourier variable λ and the coefficients
(A1, B1, C1, and D1) defined in (3.15). Details of the derivation are skipped for brevity
and can be found in the supplementary material.

At the leading order it suffices to represent the velocity disturbance field using the
first two reflections. However, the solution is incomplete because the translational and
angular velocities are unknown (see (3.15)). These can be found by imposing force-free

and torque-free conditions on the particle at O(Re0): F
(0)
H +FM = 0 and L

(0)
H +LM = 0.

Since the electric force (3.8) acts only along the z-axis and the electric torque (3.9) is

zero, U
(0)
s x and Ω

(0)
s y are found by hydrodynamic force and torque balance in x and y

directions, respectively.
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3.3. Evaluation of U (0)
s and Ω(0)

s

For a particle-wall system, Happel & Brenner (2012, p. 239) derived the hydrodynamic
force and torque on a spherical particle in terms of successive reflections:

F
(0)
H = F

(0)
H 1 + F

(0)
H 3 + · · · and L

(0)
H = L

(0)
H 1 +L

(0)
H 3 + · · · . (3.20)

Since the particle is absent in the formulation of even-numbered reflections, the hydro-
dynamic drag and torque, due to even fields vanishes. Thus, the contribution to force
and torque arises only from the odd-numbered reflections.

At the current order of reflections of the velocity disturbance field (v(0) = v
(0)
1 +

v
(0)
2 ), imposing force-free and torque-free conditions provides translational and rotational

velocities without the wall correction. F
(0)
H 3 incorporates the first order wall effects into

U
(0)
s x and Ω

(0)
s y , which requires v

(0)
3 . Appendix A.4 describes the determination of v

(0)
3

using Lamb’s general solution (Lamb 1975).
The force and torque on a spherical particle can be expressed through the coefficients

of stokeslet and rotlet disturbances, respectively. Following Kim & Karrila (2013, p. 88),
we write (3.20) as:

F
(0)
H x = −4π (A1 +A3 + · · ·) and L

(0)
Hy = −8π (C1 + C3 + · · ·) . (3.21)

The coefficients A1, C1 and A3, C3 are associated with the Lambs solution of the first
reflection of the velocity disturbance (3.14) and third reflection (see A 17), respectively.
A3 and C3 can be expressed in terms of A1, B1, C1 and D1 as:

A3 = A1 (κWA) +B1

(

κ3WB

)

+ C1

(

κ2WC

)

+D1

(

κ2WD

)

−
3

4
κ3HaZw sx(ψ̃2), (3.22)

C3 = A1

(

κ2XA
)

+B1

(

κ3XB
)

+ C1

(

κ4XC
)

. (3.23)

Here, κWA, κ
3WB, κ

2WC and κ2WD represent the wall corrections to hydrodynamic
drag due to the reflection of stokeslet, source-dipole, rotlet and stresslet disturbances,
respectively. Similarly, κ2XA, κ3XB, and κ4XC represent wall correction to the
hydrodynamic torque. These corrections are integrals over Fourier variable λ and
are a function of distance from the walls.

Substitution of (3.22) and (3.23) into (3.21) results in a system of two equations

for: U
(0)
s x and Ω

(0)
s y . Imposing the hydrodynamic force and torque to be zero and upon

expanding the coefficients A1, B1, C1, and D1, we obtain:

U (0)
s x ≈







[ (α+ γ/3) (1 + κWA)− 10κ2βWD

/

9 ]/(1 + κWA)

+Ha (Zp − Zw)
(

1− 2
3

WBκ
3

(1+κWA)

)

− κ3 sx(ψ̃2)Ha
(

Zp −
Zw

(1+κWA)

)

,
(3.24)

Ω(0)
s y ≈

β (1 + κWA)− 10XDκ
3β
/

3

2 (1 + κWA)
−Ha (Zp − Zw)

XBκ
4

2 (1 + XCκ3)
. (3.25)

Validation of the above two velocities with the literature can be found in Appendix B.

With (3.14), (3.17)-(3.19), (3.24) and (3.25), we have obtained the solution to v(0). We
use a similar procedure to evaluate the test field ut governed by (2.31) (the details are
described in Appendix A.5). The calculation of the inertial lift force using the disturbance
and test field is discussed next.
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4. Inertial force volume integral

In §3.1, we found that the electrical force FM acts in the lateral direction (see (3.8)).
The total lateral force experienced by an electrophoretic particle arises from inertial
stresses (FI) and Maxwell stresses (FM z). Since the primary objective of this work is to
determine lateral migration due to inertia, we now focus on FI . Later, in section §9, we
compare the contributions from FI and FM z.

In §2, we derived the inertial migration force (2.36) as:

FI = −Rep

∫

Vf

ut · f dV. (4.1)

Here, f = v(0)
· ∇v(0) + V (0)

∞ · ∇v(0) + v(0)
· ∇V (0)

∞ . Before discussing the evaluation of
(4.1), in this section, we draw a few qualitative insights on the behaviour of the lift force
integral.

The domain of integration extends from the surface of particle to the walls of the
channel. Following Ho & Leal (1974); Hood et al. (2015), we divide the fluid domain:
Vf = V1 + V2. These sub-domains are defined by:

V1 = {r : 1 6 |r| 6 δ} , V2 = {R : κδ 6 |R| 6 ∞} . (4.2)

Here δ is an intermediate radius which satisfies: 1 ≪ δ ≪ 1/κ. The length scale
corresponding to the inner domain (V1) is particle radius a. Whereas, channel width
l is the characteristic length in the outer domain (V2).

We first inspect and compare the order of magnitude of contributions arising from
the volume integrals in the inner and outer domains. Ho & Leal (1974) and Hood et al.
(2015), in the absence of electrophoresis, found that the contribution from inner integral
was O(κ) smaller than that from the outer integral. Ho & Leal (1974) hence neglected the
contribution from the inner integral. In this section, we show that such a simplification
is not justified for the electrophoretic case.

4.1. Inner integral

The order of magnitude of the velocity fields in terms of size ratio κ and radial distance
r, at the leading order are:

v
(0)
1 ∼ O(1/r3)HaZp +O(κ/r2), v

(0)
2 ∼ O(κ3) +O(κ3)Ha (Zp − Zw), (4.3)

u
(t)
1 ∼ O(1/r) +O(1/r3), u

(t)
2 ∼ O(κ) +O(κ3). (4.4)

Substituting the translational velocity (3.24) into the undisturbed background flow

(V (0)
∞ =

(

α+ βz + γz2
)

ex + HaZw∇φ∞ − U (0)
s ), we obtain the order of magnitude

of V (0)
∞ as:

V (0)
∞ ∼ O (κr) +O

(

κ2r2
)

+ O (1)HaZp + · · · . (4.5)

Using (4.3)-(4.5) in (4.1), we obtain the integrand as:

ut · f ∼ O

(

(HaZp)
2

r5
+

(HaZp)
2

r7
+ · · ·

)

+ κO

(

HaZp
r4

+
HaZp
r6

+ · · ·

)

+κ2O

(

1

r3
+
HaZp
r5

+ · · ·

)

+ κ3O

(

1

r2
+

1

r4
+ · · ·

)

+ · · · . (4.6)
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The volume integral of the first term is identically zero. The leading order contribution
arises from the second O(κ) term:

lim
δ→∞

FV 1 = −Rep

(

0 +

(

47π

20
HaZp

)

β + 0 +O
(

κ3
)

+ · · ·

)

. (4.7)

In the above expression, the proportionality of HaZp suggests that the O(κ) contribution
(implicit in background shear β) arises due to electrophoresis. The contribution due to
stresslet disturbances and wall reflections is O(κ3). For electric field in the same direction
as the flow (Ha > 0), a positive Zp corresponds to a leading particle. Below centerline,
the shear (β) is positive and the overall expression in (4.7) is therefore negative. This
corresponds to a lift in negative z-direction which pushes the leading particle towards
the wall. A similar explanation can be used to show that a lagging particle (Zp < 0)
experiences a lift (4.7) towards the center. These effects were also experimentally observed
by Kim & Yoo (2009a,b); Cevheri & Yoda (2014); Yuan et al. (2016); Li & Xuan (2018);
Yee & Yoda (2018). Expression (4.7) also reveals that the wall zeta potential does not
affect the lift because its contribution to the disturbance is O(κ3) (see (4.3)).
In the absence of electrophoresis, the inner integral lift contributes at O(κ3), as also

previously reported by Ho & Leal (1974) and Hood et al. (2015). Next we estimate the
contribution arising from the outer integral.

4.2. Outer integral

Since the walls lie at distances O(1/κ), the velocity field expressions are rescaled with
respect to R(= κr) (similar to (3.5)). The inertial lift force expression in the outer
coordinates is:

FV 2 = −Rep

∫

V2

(

ũt1 + ũt2
)

·





(

ṽ
(0)
1 + ṽ

(0)
2

)

· κ∇̃
(

ṽ
(0)
1 + ṽ

(0)
2

)

+

Ṽ
(0)

∞ · κ∇̃
(

ṽ
(0)
1 + ṽ

(0)
2

)

+
(

ṽ
(0)
1 + ṽ

(0)
2

)

· κ∇̃Ṽ
(0)

∞



κ−3dṼ

= −Rep κ
−2

∫

V2

ũt · f̃ dṼ . (4.8)

In the outer coordinate representation, the order of magnitude of the velocity fields in
terms of size ratio κ, at the leading order are:

ṽ
(0)
1 ∼ O(κ3) +O(κ3)HaZp, ṽ

(0)
2 ∼ O(κ3) +O(κ3)Ha (Zp − Zw), (4.9)

ũ
(t)
1 ∼ O(κ) +O(κ3), ũ

(t)
2 ∼ O(κ) +O(κ3). (4.10)

The order of magnitude of the undisturbed background velocity is:

Ṽ ∞ ∼ O (1) +O (1)HaZp +O
(

κ2
)

+ · · · . (4.11)

Substituting (4.9), (4.10) and (4.11) in (4.8), we find that the integrand is O(κ2). Since
the contribution from the inner and outer integrals are comparable, it is important that
the integration must be carried out from the particle surface to the walls.

4.3. Evaluation of volume integral

The region of integration extends from the surface of the spherical particle to the
rectangular walls, which extend to infinity in the x and y directions. A direct numerical
approach would be computationally intensive as the evaluation of the lift force involves
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numerous nested Fourier integrals, apart from integrals in x, y and z coordinates †.
For computational convenience, we resort to a splitting of the region over which the
integral is evaluated. We perform the integration in two sub-regions, where the region of
integration extends from: (i) the spherical surface to a circumscribing cylinder and (ii)
the cylindrical surface to the walls (z-direction) and infinity (x and y directions). This
simplifies the calculation as; in sub-region-(i) we employ a spherical coordinate system
and evaluate the integral with the help of trigonometric identities; in sub-region-(ii) a
cylindrical coordinate system is employed to perform the integration. We evaluate the
integral in both the sub-regions and include it in our results, which ensures no loss of
accuracy.
We choose to evaluate the volume integral in the outer coordinates, over the entire

volume (Vf ). For sub-region-(ii), the region of integration can be visualized as a cylinder
(ZC ∈ [−s, 1 − s] and RC ∈ [0,∞)) excluding an asymptotically small cylindrical
cavity (radius ∈ [0, κ], height ∈ [−κ, κ]). The velocities are transformed into cylindrical
coordinates (RC , θC , ZC). The lift force volume integral corresponding to sub-region-(ii)
is:

FI = −Rep

2π
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

dθC (4.12)

The integration in the above equation is carried out analytically in θC , RC and ZC
directions. The integration over the Fourier parameters is performed numerically
using Gauss-Kronrod quadrature inbuilt in Mathematica 11.0. The contribution from
sub-region-(i) is evaluated analytically (see Appendix C) and incorporated in our results.

5. Summary of the procedure

Here we summarize the solution procedure followed in this work for the evaluation of
inertial lift volume integral (2.36).

(i)First, the electrostatic potential (ψ) is evaluated using the method of reflections
(ψ1 + ψ2) in §3.1. ψ1 is found in terms of spherical harmonics, whereas the second
reflection is obtained via Faxen transformations (Faxén 1922).

(ii)The velocity disturbance field is obtained using the method of reflections in §3.2.

The first reflection (v
(0)
1 ) is found using Lamb’s general solution (Lamb 1975). The

second reflection is found using Faxen transformations. The third reflection is found
by again making use of Lamb’s solution.

(iii)The unknown translational (U (0)
s ) and rotational (Ω(0)

s ) velocities are found by
imposing force-free and torque-free conditions on the particle in §3.3.

(iv)The test field is evaluated in Appendix A5, following the methodology in (ii).

(v)The evaluated fields are substituted into the inertial lift force integral (2.36).
In the following sections, we discuss the results for the inertial lift (FI) experienced by
the particle.

† Faxen transformation provides the wall reflected fields in terms of Fourier integrals, which
makes it cumbersome to evaluate the lift force volume integral (as it consists 7 nested integrals).
Using certain transformations we reduce this number to 5 (see supplementary information).
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(a) (b)

Figure 3: Comparison with the previous theoretical studies (Ho & Leal 1974; Vasseur & Cox
1976) for the inertial lift force experienced by a particle, as a function of distance from the
bottom wall for: (a) Couette flow and (b) Poiseuille flow.

6. Inertial migration of an inert particle

The inertial migration of a neutrally buoyant inert particle is discussed in this sec-
tion. We consider pure hydrodynamic flows (such as: Couette and Poiseuille flow) and
understand the mechanisms which contribute to the lift by using an order-of-magnitude
analysis.

6.1. Validation with earlier theoretical studies

We first compare the results obtained in our work with those in the literature
(Ho & Leal 1974; Vasseur & Cox 1976). Figure 3(a) shows the lift force experienced
by a neutrally buoyant sphere freely suspended in Couette flow. There exists a single
equilibrium position at the center where the particle experiences no lift. Below the
centerline (s < 0.5) the force acting on the particle is positive, resulting in a lift in the
positive z-direction (i.e. towards the centerline). Above the centerline (s > 0.5) the lift
force is in the negative z-direction (i.e. again towards the centerline). Hence, a neutrally
buoyant particle in a Couette flow always migrates to the center of the channel (a stable
equilibrium) as depicted by the arrows on the axis.
For Poiseuille flow (figure 3(b)), three equilibrium positions a, b and c exist (s ≈

0.19, 0.5, and 0.81). Points a and c are characterized by a negative slope of the lift force
curve and are therefore stable equilibrium positions, while point b is unstable (arrows on
the axis depict the direction of migration).
Our results (for both Couette and Poiseuille flow) obtained by using Ho and Leals

formulation are in good agreement with Vasseur & Cox (1976) who used a Greens
function technique to approximate the particle as a point force. Near the walls, lift
force deviates significantly from Ho & Leal (1974). This may have been due to a failure
in their numerical convergence near the walls, as pointed out by Vasseur & Cox (1976).

6.2. Insights on the origins of the inertial lift

The approach adopted in this work allows us to find different contributions to the
lift force on a particle suspended in a Poiseuille flow. These constituents are interpreted
using an order-of-magnitude analysis.
In the outer coordinates, the order of magnitude of background velocity is :

Ṽ
(0)

∞ ∼ O (1/κ)β +O
(

1
/

κ2
)

γ +O (1) γ, (6.1)

the disturbance velocity (stresslet) is:

ṽ(0) ∼ O
(

κ2
)

β (1 +WD) , (6.2)
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Figure 4: Variation of leading constituents of inertial lift force as a function of distance from
the bottom wall for Poiseuille flow. Here, stresslet-wall force (SWF) is the wall lift force and
stresslet-curvature force (SCF) is the shear-gradient lift force.

and the test velocity field is:

ũt ∼ O (κ)
(

1 +W t
A

)

. (6.3)

Here, WD and W t
A are the wall correction factors for stresslet and stokeslet (test field)

disturbances, respectively.

Upon substitution of (6.1)-(6.3) into the lift force expression (4.12), we obtain:

O

(

FI
Rep

)

∼

∫

Vf

[O (1)ββ (1 +WD) +O (1/κ) γβ (1 +WD)] dṼ . (6.4)

The first term in the above equation is the stresslet-wall force (known in the literature as
the wall lift force). It originates from the interaction of the stresslet disturbance with the
wall. This results in a pressure asymmetry around the particle. The pressure is larger on
the side facing the closer wall (Feng et al. 1994). This force always acts away from the
wall, even if the shear direction (the sign of β) is reversed, as it is proportional to β2.
The second term is the stresslet-curvature force (known in the literature as the shear-
gradient lift force), arising from the interaction of the stresslet disturbance (β(1 +WD))
with curvature in the background flow (γ). Owing to the proportionality to βγ, this force
always acts towards the walls.

Figure 4 shows the variation of the above two components with the lateral position.
The stresslet-wall force (SWF) acts to push the particle towards the centerline. Since
SWF depends on the background shear (β2), it vanishes at the center and increases near
the walls. On the other hand, the stresslet-curvature force (SCF) has a destabilizing effect
at the centerline i.e. a slight perturbation to the particle would push it away from the
center. SCF increases (in magnitude) away from the centerline, and decreases near the
stationary walls due to increased viscous resistance.

From (6.4) it can be observed that the direction of SCF is proportional to sgn(βγ). If
either the shear or the curvature direction is changed, the direction of SCF can reverse.
This can be exploited to control the positions at which the particle gets focused. Lee et al.
(2018) recently showed that the curvature of the background flow profile can be controlled
by using stratified flows with different viscosities. By varying the viscosity ratio, an
external control over the focusing position was experimentally demonstrated.
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7. Electrophoresis combined inertial lift

We now focus on the effect that electrophoresis has on the inertial lift. This effect is
captured in the absence of walls by the analytical expression derived in §4.1 (see (4.7)).
Here, we discuss the results which incorporate the wall effects to first order. In figure
5(a), the variation of the lift force with position is shown for three different systems in
which the electric field is applied in the same direction as the flow. A particle with Zp = 0
corresponds to an inert particle and has three equilibrium positions as discussed in §6.1.
A particle with (Zp > 0), leads the background flow, and the stable equilibrium position
shifts towards the walls. For a particle with Zp < 0, the stable equilibrium positions shift
inwards towards the center. This shift in equilibrium positions based on zeta potential
is predicted by equation (4.7). These trends are consistent with those observed in the
experiments performed by Kim & Yoo (2009a,b); Cevheri & Yoda (2014); Yuan et al.
(2016); Li & Xuan (2018); Yee & Yoda (2018).
It is of interest to determine the underlying interactions which cause the shift in

the equilibrium positions. When a rigid particle is suspended in shear flow, it gives
rise to a stresslet disturbance. Upon the application of an external electric field, an
additional source-dipole disturbance emerges due to the electrokinetic slip. These dis-
turbance fields (stresslet and slip-originated source-dipole) upon mutual interaction
among themselves; upon interaction with the background flow (shear β and curvature
γ) and walls, contribute to the electrophoresis combined inertial lift. To interpret the
underlying mechanisms which cause the shift in migration, we dissect the forces into
various constituents via an order-of-magnitude analysis. We then evaluate and explain
these constituents separately (as in §6.2).
The order of background velocity in terms of outer coordinates is given by:

Ṽ
(0)

∞ ∼ O (1/κ) β +O
(

1
/

κ2
)

γ +O (1) γ +O(1)HaZp, (7.1)

the order of disturbance velocity (stresslet and source-dipole) field is:

ṽ(0) ∼ O
(

κ2
)

β (1 +WD) + O
(

κ3
)

HaZp (1 +WB) , (7.2)

and the order of test velocity field is:

ũt ∼ O(κ)(1 +W t
A). (7.3)

Substituting the above expressions in the lift force (4.12), we obtain seven components
which contribute to the inertial force experienced by an electrophoretic particle. These
arise from various interactions in the system (see table 2). The first two components (SWF
and SCF) belong to the lift associated with an inert particle suspended in Poiseuille flow
and were discussed in §6.2. The remaining five components (table 2: #3-7), arising from
the introduction of electrophoresis, can be lumped into what we term as phoretic lift (as
this lift is general for any phoretic transport such as thermophoresis or diffusiophoresis).
Figure 5(b) compares the phoretic lift on a positive Zp particle with the stresslet-wall
force (SWF) and stresslet-curvature force (SCF). A positive slope at the centerline depicts
that the phoretic lift acts in the direction of SCF and contributes to pushing the leading
particle towards the walls. This results in an outward shift of equilibrium positions i.e. a
leading particle finds equilibrium nearer to the walls.
The analytical expression derived in §4.1 (−47πβHaZpRep/20) is plotted as a dashed

line in figure 5(b). Since it is proportional to the background shear, the trend remains
linear throughout the channel width. It can also be seen from figure 5(b) that the phoretic
lift (which incorporates the wall correction) agrees with the analytical expression away
from the walls. The increased viscous resistance near the walls reduces the phoretic
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(a) (b)

Figure 5: Variation of the inertial lift force on the electrophoretic particle with distance from the
bottom wall: (a) Effect of Zeta potential for Ha =1.25 (E′

∞ =70 V/cm); (b) Comparison of the
phoretic-lift with SCF (stresslet-curvature force) and SWF (stresslet-wall force) for Zp = 0.67.
The dashed line shows the analytical expression, expressed in (4.7) (which does not account for
the wall effects). Parameters: ζ′p = 47 mV, U ′

max = 2.25 mm/s, a′ = 10 µm, l′ = 1 mm, ε′ =

80 ε′0, µ
′ = 10−3 Pa s.

# Component Integrand Migration towards

1 Stresslet-Wall
(SWF)

O(1)ββ(1 +WD) Center

2 Stresslet-Curvature
(SCF)

O(1/κ)γβ(1 +WD) Walls

3 Stresslet-Phoretic
(SPFE)

O(κ5)βHaZp(1 +WB)(1 +WD) for HaZp > 0, walls
for HaZp < 0, center

4 Phoretic-Shear
(PSFE)

O(κ)βHaZp(1 +WB) for HaZp > 0, walls
for HaZp < 0, center

5 Stresslet-Lag/Lead
(SLFE)

O(κ)HaZpβ(1 +WD) for HaZp > 0, walls
for HaZp < 0, center

6 Phoretic-Curvature
(PCFE)

O(1)γHaZp(1 +WB) for HaZp > 0, center
for HaZp < 0, walls

7 Phoretic-Wall
(PWFE)

O(κ2)(HaZp)
2(1 +WB) Center

Table 2: Components which constitute the electrophoresis combined inertial lift force. The forces
arising due to electrophoresis are subscripted by E’ because the external agency is electric field.
The first two components are the same as described in figure 4.

lift, and causes a deviation from the linear analytical expression. The effect of wall on
the phoretic lift is weak because it is short-ranged, as it is caused by rapidly decaying
source-dipole field (O(1/r3)). On the other hand, the stresslet-wall force (SWF) and
stresslet-curvature force (SCF) are characterized by a less rapidly decaying stresslet field
(O(1/r2)). Therefore, SWF and SCF are influenced sufficiently far away from the walls.
The phoretic lift force is composed of five components listed in table 2 (#3-7). Figure 6

illustrates their variation with respect to lateral position. Major components which govern
the phoretic-lift are plotted in figure 6(a). The disturbance-disturbance interaction term
(v(0)

·∇v(0)) (#3 in table2) contributes primarily to the phoretic-lift. The proportionality
to βHaZp suggests that this must arise from the interaction between stresslet and source-



22 A. Choudhary, T. Renganathan and S. Pushpavanam

(a) (b)

Figure 6: Variation of (a) major and (b) minor components of the phoretic-lift, for a leading
particle. See table 2 for the details of abbreviations. Parameters: ζ′p = 47 mV, U ′

max =

2.25 mm/s, a′ = 10 µm, l′ = 1mm, ε′ = 80 ε′0, µ
′ = 10−3 Pa s, E′

∞ =70 V/cm.

dipole disturbance, and is therefore classified as stresslet-phoretic force (SPFE). This
SPFE acts to push the leading particle towards the walls. These interactions are short
ranged, and therefore the associated force decays (due to viscous resistance) only when
the particle is close to the walls. The other two significant forces arise from the interaction
of disturbance field and the background flow ((V (0)

∞ · ∇v(0)) and (v(0)
· ∇V (0)

∞ )). The
interaction of phoretic disturbance with the background shear results in a phoretic-shear
force (PSFE). A stresslet-lead/lag force (SLFE) occurs when the quadrupolar symmetry
of pressure around the particle (characteristic of stresslet disturbance) is distorted due
to an externally imposed lead/lag. From figure 6(a) we conclude that when a particle
leads the flow (i.e. HaZp > 0), all the three components: SPFE, PSFE, and SLFE push
it towards the walls, while the reverse is true for a lagging particle.
Other minor components of the phoretic-lift are shown in figure 6(b) (compare the

y-axis scale). Contrary to the background shear, the curvature interacts with the source-
dipole disturbance to produce lift (phoretic-curvature force) in the opposite direction but
at a much lower magnitude. The phoretic-wall force (PWFE) occurs due to the interaction
of rapidly decaying phoretic disturbance with the walls (analogous to stresslet-wall force).
This weak PWFE would exist in isolation for inertial migration in a pure electrokinetic
flow (i.e. absence of external pressure drop). Moreover, PWFE always acts towards the
centerline irrespective of the sign of the electric field or zeta potential, as it is proportional
to (HaZp)

2.
From the results, we observe that, in Poiseuille flow, the effect of electrophoresis on the

inertial migration (phoretic-lift) is qualitatively similar to that of a non-neutrally buoyant
particle (Saffman 1965) i.e. a particle leading the flow, migrates towards the region of
high shear and vice-versa for a lagging particle. Therefore, it is of interest to find the
fundamental differences between the two systems. Towards this, in the next section,
we investigate the influence of a force driven phenomenon (buoyancy) on the inertial
migration. We then differentiate it from the slip-driven phenomenon (electrophoresis) in
terms of its influence on the inertial migration.

8. Comparisons with buoyancy combined inertial lift

In the previous section, we analyzed the influence on the inertial lift due to an external
field, which makes the particle lag or lead the flow via a force-free mechanism. We now
focus our attention on the inertial lift experienced by a non-neutrally buoyant inert
particle suspended in a Poiseuille flow. The gravitational field acts parallel to the flow
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Figure 7: Lift force on a non-neutrally buoyant particle in a Poiseuille flow and comparison with
Vasseur & Cox (1976). Parameters: a′=10 µm, l′=1 mm, U ′

max=2.25 mm/s, µ′=10-3 Pa s and
∆ρ′=100 kg/m3.

and makes the particle lag/lead via a forced mechanism. The associated disturbance
profile is fundamentally different from the force-free scenario (see figure 1). Therefore,
we focus on the influence of these differences on particle migration.
Following the procedure described in §3, the translational and rotational velocities are

found by balancing the hydrodynamic drag with buoyancy and rendering the particle
torque free. This results in:

U (0)
s x ≈

(α+ γ/3)(1 + κWA)− 10κ2βWD/9 + B

(1 + κWA)
, (8.1)

Ω(0)
s y ≈

β(1 + κWA)− (10XDκ
3β/3) + 3BXAκ

2

2(1 + κWA)
. (8.2)

Here, B is the buoyancy number defined as the ratio of buoyancy to viscous drag force:

B =
∆ρ′

(

4πa′3
/

3
)

g′

6πµ′a′U ′
maxκ

. (8.3)

Here, ∆ρ is the density difference between the particle and fluid medium and g is the
acceleration due to gravity.
In §7, we analyzed the effect of electrophoresis on the inertial migration for HaZp ∼

O (1). The corresponding electrophoretic velocity was of the order of characteristic
velocity i.e. O(U ′

E) ∼ O(κU ′
max). For an equitable comparison, we choose the buoyancy

number (B) to be such that the lag/lead produced by the density difference is of the same
order as that in the electrophoretic system. B ∼ O(1) corresponds to the settling velocity
of the sphere to be of the order of characteristic velocity: U ′

set ∼ κU ′
max. Here U

′
set is the

settling velocity corresponding to B. Figure 7 depicts the lift force corresponding to B = 1.
The curve shows that, for the flow aligned in the direction of gravity, a heavy particle
(B > 0) migrates towards the walls. Our result agrees well with that of Vasseur & Cox
(1976) who addressed a similar regime of buoyancy: κ2U ′

max ≪ U ′
set ≪ U ′

max. A slight
mismatch arises near the walls because their analysis assumes that the particle settles
with a constant velocity for all s while we take wall resistance into account which reduces
the settling velocity significantly near the walls.
As in §7, we analyze the order-of-magnitude of various components of the inertial lift

for a non-neutrally buoyant particle. We obtain four additional components apart from
stresslet-wall force (SWF) and stresslet-curvature force SCF (see §6.2). Table 3 illustrates
these additional components of buoyancy combined inertial lift, which arise from the
various interactions. Contrary to the electrophoretic case, the contribution emerging due
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# Component Integrand Migration towards

1 Stokeslet-Shear
(SSFG)

O(κ)βB(1 +WA) for B > 0, walls
for B < 0, center

2 Stresslet-Lag/Lead
(SLFG)

O(κ)Bβ(1 +WD) for B > 0, walls
for B < 0, center

3 Stokeslet-Curvature
(SCFG)

O(1)γB(1 +WA) for B > 0, center
for B < 0, walls

4 Stokeslet-Wall
(SWFG)

O(κ2)B2(1 +WA) Center

Table 3: Lift force components which comprise the additional lift force occurring due to a
non-neutrally buoyant particle. The subscript G’ denotes that the forces arise from external
gravitational field.

(a) (b)

Figure 8: Variation of (a) major components (SSFG and SCFG) and (b) minor components
(SWFG and SLFG) of buoyancy combined inertial force as a function of distance from the
bottom wall (see table 3). Parameters: a′=10 µm, l′=1 mm, U ′

max=2.25 mm/s, µ′=10-3 Pa s
and ∆ρ′=100 kg/m3.

to the disturbance-disturbance interactions is found to be negligible in this case and hence
are not discussed here. We also find that the expressions for the components contributing
to the lift, emerging due to buoyancy (table 3, #1-4), are analogous to those arising
from electrophoresis (c.f. table 2, #4-7). Also, the components of the two cases show
similar effects on migration. For instance, both phoretic-shear force and stokesletshear
force direct the leading particle to focus at walls, while phoretic-curvature and stokeslet-
curvature force direct the leading particle towards the center.
In figure 8(a), we show that stokeslet-shear (SSFG) and stokeslet-curvature forces

(SCFG) dominate over the SWF and SCF (emerging from stresslet, discussed in §6.2).
SSFG and SCFG primarily govern the migration for a non-neutrally buoyant particle;
unlike the electrophoretic case where the phoretic-lift was found to be comparable to
SWF and SCF (see figure 5(b)). We conclude, on the basis of equitable lead/lag, that
the modification to inertial lift arising due to density difference is much greater than that
caused due to electrophoresis. Furthermore, we observe that the components involving
interaction with the background curvature (PCFE and SCFG), oppose the interactions
involving the background shear (PSFE and SSFG), irrespective of the external driving
mechanism (such as gravity or electric field).
If the ratio of settling velocity to the background flow is asymptotically large (i.e.

U ′
set ≫ U ′

max), only the stokeslet-wall force (SWFG) exists. This corresponds to a



Inertial migration of an electrophoretic sphere in Poiseuille flow 25

(a) (b)

Figure 9: (a) Comparison of electrophoresis combined inertial lift (EIL) with the electric lift
(EL) (3.8) for ζ′p=47 mV and ζ′p=-47 mV. Parameters: Ha =+1.25; E′

∞=70 V/cm, U ′

max=2.25

mm/s, a′=10 µm, l′=1mm, ε′ = 80ε′0, µ
′=10-3 Pa s, ρ′ = 103 kg/m3. (b) Effect of Ha and size

ratio (κ = 0.01 and κ = 0.02) on the equilibrium positions (ζ′p=47 mV). A negative Ha implies
that the electric field and the flow are in the opposite directions.

sedimentation of a particle in a quiescent fluid (β ≡ 0 and γ ≡ 0). The particle would
focus at the centerline for both positive and negative density differences (as SWFG is
proportional to B2). In figure 8 (b), we find that the SWFG matches well with the inertial
lift reported by Vasseur and Cox (1976) for a sedimenting particle (in quiescent fluid).
The deviation near the walls is attributed to the inclusion of first order wall correction
in our approach (see 8.1). Whereas Vasseur & Cox (1976) assumed a constant settling
velocity irrespective of the particle position between the walls.

9. Comparisons with the decoupled electric lift

In §3.1, we showed that the electrical force FM (arising from the Maxwell stresses)
contributes to the lateral migration of the particle (see eq. 3.8). This force pushes the
particle away from the walls, irrespective of the particle zeta potential. On the other
hand, the inertial lift on an electrophoretic particle depends on the zeta potential (see
figure 5(a)). Therefore, the equilibrium positions of an electrophoretic particle will be
determined by the relative magnitudes of the electric lift (EL) and the electrophoresis
combined inertial lift (EIL). Here we compare the contributions arising from these two
effects.
In figure 9(a), we show the variation of the two lifts with lateral position between

the walls, where the electric field is applied in the direction of the flow (Ha > 0). For
κ≪ 1, we find that the wall-repulsive EL decays rapidly away from the wall and becomes
negligible in the bulk of the channel. The migration of an electrophoretic particle is
therefore determined by EIL in the bulk of the channel.
Figure 9(b) shows the variation of equilibrium positions (seq) with the strength of the

applied electric field (Ha). Here, the equilibrium positions are determined by the total
lateral lift on the particle (i.e EL+EIL). The solid lines depict stable equilibrium posi-
tions, whereas the dashed line represents an unstable equilibrium. The curves resemble
a classic supercritical pitchfork bifurcation (Strogatz 2018). As we increase the electric
field strength in the negative x−direction, for a fixed zeta potential (ζ′p=+47 mV) and
particle to channel size ratio (κ = 0.01), a critical Ha exists (≈ −1.8), below which
the particle focuses only at the centerline. At this point, the center equilibrium point
undergoes a transition from an unstable to stable equilibrium because the phoretic-lift
is sufficiently strong to overcome the stresslet-curvature force (SCF).
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As the electric field strength is increased in the positive x−direction, the equilibrium
positions shift towards the walls. We can also observe from figure 9(b) that a strong
electric lift prevents the particle from focusing near the walls. This effect is prominent for
a larger particle (κ=0.02). The analysis in this section helps establish that the separation
of particles can be carried out based on size, surface charge, and external electric field.

10. Conclusions

Motivated by the recent experimental observations (Kim & Yoo 2009a; Cevheri & Yoda
2014; Yuan et al. 2016; Li & Xuan 2018), we analyze the inertial lift on an electrophoretic
particle suspended in a combined electro-osmotic Poiseuille flow by using the framework
of Ho & Leal (1974) . We use the reciprocal theorem in conjunction with perturbation
expansion (in particle Reynolds number) to obtain the lift arising from weak inertia.
The Stokes velocity fields are found by using the method of reflections; odd reflections
are obtained using Lamb’s solution (Lamb 1975) and even reflections are obtained using
Faxen transform (Faxén 1922). By neglecting the wall effects, we obtain an analytical
expression for the ‘phoretic-lift’ which captures the influence of electrophoresis on
inertial migration. Later we include the wall effects at the leading order. We find that
our results agree qualitatively with the experimental observations; a leading particle
migrates towards the regions of low background velocity (i.e. walls) while the reverse
occurs for a lagging particle.
The chosen framework allows us to perform an order-of-magnitude analysis and obtain

various components which contribute to the inertial lift. We classify these components
on the basis of the interactions which cause them. Our results reveal that the phoretic-
lift arises primarily due to short-ranged interactions between electrokinetic slip-driven
source-dipole field and the stresslet field (generated due to particle resistance to strain
in the background Poiseuille flow). We observe that, the effect of electrophoresis on
the inertial migration (phoretic-lift) is qualitatively similar to that of non-neutrally
buoyant particle (Saffman 1965). Therefore, to differentiate the slip-driven phenomenon
(electrophoresis) from a force-driven phenomenon (buoyancy) in terms of their influence
on the inertial migration, we further study the migration of a non-neutrally buoyant
particle in Poiseuille flow. The buoyancy driven motion of the particle generates a
Stokeslet field at the leading order. We find that the interaction of this field with the
background shear primarily influences the inertial migration. Contrary to electrophoresis,
this interaction is long-ranged and the corresponding lift is much stronger than the
phoretic-lift.
Finally, we show that the particles can be focused near the center (or at the walls) if a

sufficiently high electric field is applied in a suitable direction. A decoupled wall-repulsive
electric lift (derived in this work as an extension to Yariv (2006)) may prevent the particle
from focusing near the walls and hinder the particle separation. For asymptotically small
particles (κ ≪ 1), this electric lift decays sharply away from the walls, and does not
affect the equilibrium positions in the bulk of the channel.
Although this work is limited to weak inertia, we believe that these findings provide

a first step towards understanding the influence of electric fields on inertial migration
of particles, which provides a good starting point for further research. For instance, the
problem becomes challenging for higher Reynolds numbers as the streaming potential
(arising from the convection of ions in the double layer) might contribute significantly to
the inertial lift (Schnitzer et al. 2012b). Furthermore, for high particle zeta potentials,
surface conduction effects might significantly alter the electrokinetic-slip and cause
substantial deviation from the inertial lift. These questions may constitute the objective
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for future studies.
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Appendix A.

A.1. Justification of neglect of translational and angular acceleration

In this appendix, we justify the force-free and torque-free assumption in (2.24) and
(2.25). We choose the time scale to be t′conv, and obtain the dimensionless force and
torque balance as:

F =
∫

Sp

n · σHdS + 4πHa
∫

Sp

n · σMdS = 4π
3 Rep

∂Us

∂t

L =
∫

Sp

n× (n · σH) dS + 4πHa
∫

Sp

n× (n · σM ) dS = 4π
3 Rep

∂Ωs

∂t . (A 1)

The substitution of perturbation expansion (2.27) in the above equation provides us the
force balance at O(1):

F (0) =
∫

Sp

n · σ
(0)
H dS + 4πHa

∫

Sp

n · σMdS = 0

L(0) =
∫

Sp

n×
(

n · σ
(0)
H

)

dS + 4πHa
∫

Sp

n× (n · σM ) dS = 0, (A 2)

and at O(Rep):

F (1) =
∫

Sp

n · σ
(1)
H dS = 4π

3
∂U(0)

s

∂t = 0

L(1) =
∫

Sp

n×
(

n · σ
(1)
H

)

dS = 4π
3
∂Ω(0)

s

∂t = 0. (A 3)

Since U (0)
s and Ω(0)

s are constant, the problems at O(1) and O(Rep) are force-free and
torque free. The translational and angular acceleration of the particle only affect the
system at O(Re2p).

A.2. Illustration of Faxen transformation

Since ψ2 depends on ψ1 through the wall boundary condition in (3.3), both reflections
must be represented in the coordinates of same scale. The first reflection of potential
disturbance in the outer coordinates (ψ̃1) is:

ψ̃1 = −
1

2

X

R3
κ2. (A 4)

Faxén (1922) represented the fundamental solution of Laplaces equation (in Cartesian
space) in the form of Fourier integrals. Following Faxen, we write:

1

R
=

1

2π

+∞
∫

−∞

+∞
∫

−∞

e(iΘ−
λ|Z|

2 ) dξdη

2λ
, and (A 5)
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R =
1

2π

+∞
∫

−∞

+∞
∫

−∞

(

1− e(iΘ−
λ|Z|

2 )
)

(

1 +
λ |Z|

2

)

dξdη

λ3
/

2
. (A 6)

Here, Θ = (ξX + ηY )/2 and λ = (ξ2 + η2)1/2. ξ and η are the variables in Fourier space.
Using (A 5) and (A 6), we transform the disturbance field (A 4) by taking derivatives of
the above equations. For example: (A 4) contains X/R3, which is expressed using the
above transformations as:

X

R3
= −

∂

∂X

(

1

R

)

=
1

2π

+∞
∫

−∞

+∞
∫

−∞

e(iΘ−
λ|Z|

2 )
(

−
iξ

2

)

dξdη

2λ
. (A 7)

This yields an integral representation for the first reflection:

ψ̃1 =
κ2

2π

+∞
∫

−∞

+∞
∫

−∞

e(iΘ−
λ|Z|

2 )b1

(

iξ

λ

)

dξdη. (A 8)

Here, b1 = 1/8. The boundary condition expressed in (3.3) suggests a form of solution
for ψ̃2 similar to the above equation:

ψ̃2 =
κ2

2π

+∞
∫

−∞

+∞
∫

−∞

eiΘ
(

e(−
λZ
2 )b2 + e(+

λZ
2 )b3

)

(

iξ

λ

)

dξdη. (A 9)

Substituting (A 8) and (A9) in the boundary condition (3.3), yields b2 and b3 in terms
of b1:

b2 =
b1
(

1 + e(1−s)λ
)

−1 + eλ
, b3 =

b1
(

1 + esλ
)

−1 + eλ
. (A 10)

A.3. Evaluation of Maxwell stress induced force and torque

The electric force and torque are expressed as a function of reflections as:

FM = 4πHa

∫

Sp

n ·

(

∇ (ψ1 + ψ2)∇ (ψ1 + ψ2)
− 1

2 (∇ (ψ1 + ψ2) · ∇ (ψ1 + ψ2)) I

)

dS, (A 11)

LM = 4πHa

∫

Sp

n×

(

n ·

(

∇ (ψ1 + ψ2)∇ (ψ1 + ψ2)
− 1

2 (∇ (ψ1 + ψ2) · ∇ (ψ1 + ψ2)) I

))

dS. (A 12)

The gradient of first reflection (∇ψ1) at the particle surface is:

∇ψ1|r=1 =
1

2

{

−1 + 3 sin2 θ cos2 ϕ, 3 sin2 θ sinϕ cosϕ, 3 sin θ cos θ cosϕ
}

. (A 13)

Here, ϕ and θ denote the azimuthal and polar angle, respectively. Since the wall reflected
potential (ψ̃2) has been expressed in the outer coordinates (R,X, Y, Z) in (3.6), ∇ψ2 at
the particle surface (r = 1) is expressed as a Taylor series expansion of κ∇̃ψ̃2 about the
origin (R → 0). Here ∇̃ is the spatial gradient in outer scaled coordinates:

{

∂
∂X ,

∂
∂Y ,

∂
∂Z

}

.
Since the particle is small with respect to the wall-particle gap (κ/s≪ 1), we retain only
the zeroth and first order terms:

∇ψ2|r=1 =

∞
∫

0

[

κ3
(

−(b2 + b3)λ
2
/

4
)

{1, 0, 0}
+κ4

(

(b2 − b3)λ
3
/

8
)

{1, 0, 1}

]

dλ+O(κ5). (A 14)
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Substituting (3.4) & (3.6) in both (2.24) & (2.25) and using (A 13) & (A14), we obtain:

FM = 4πHa

(

3π

16
κ4 (Z(4, s)− Z (4, 1− s))

)

ez +O
(

κ7
)

and LM = 0. (A 15)

The leading order electrical force on the particle arises only due to the interaction of
O(1) source-dipole term (∇ψ1) and O(κ4) term in (∇ψ2). This was also reported by
Yariv (2006) for the case of a particle remotely adjacent to a single wall (i.e. κ≪ s).

A.4. Solution to v
(0)
3

Here, we provide the details of the evaluation of v
(0)
3 (see §3.3). The particle boundary

condition in (3.13) requires us to calculate ṽ
(0)
2 in the vicinity of the particle. Since, ṽ

(0)
2

is represented in outer scaled coordinates, the particle surface is equivalent to R → 0.

Upon expanding ṽ
(0)
2 about the origin, we obtain:

v
(0)
2

∣

∣

∣

r=1
=

∞
∫

0













(2ℓ4 + ℓ5 + 2ℓ7 + ℓ8)λ/2 − (2ℓ4 + ℓ5 − ℓ6 − 2ℓ7 − ℓ8 + ℓ9) λ
2κz/4

+ κ3HaZw sx(ψ̃2) + · · ·

0 + · · ·

(−ℓ4 − ℓ5 − ℓ6 + ℓ7 + ℓ8 + ℓ9)λ
2κx/4 + · · ·













dθC

(A 16)

The derivation of ṽ
(0)
2 along with the evaluation ℓ4, ℓ5, · · · ℓ9 are described in supplemen-

tary material. Having obtained the boundary condition for v
(0)
3 at the particle surface,

we use Lamb’s method to obtain the third reflection. The resulting solution has a form
similar to (3.14) with coefficients A3, B3, C3 and D3. These coefficients are in the integral
form, owing to the integral form of (A 16). Since the force-free and torque free arguments
require only the coefficients of stokeslet and rotlet field (Kim & Karrila 2013, p. 88), here
we only report the coefficients A3 and C3 for brevity:

A3 = −3
4

∞
∫

0

(

1
2 (2ℓ4 + ℓ5 + 2ℓ7 + ℓ8)λ+ κ3HaZwxsx(ψ̃2)

)

dλ

C3 = 1
4

∞
∫

0

(

1
2 (ℓ4 − 2ℓ6 − ℓ7 + 2ℓ9) λ

2κ
)

dλ
(A 17)

Substitution of ℓ4, ℓ5, · · · ℓ9 into the above equations results in (3.22)-(3.23).

A.5. Test field (ut)

Using the method of reflections we seek:

ut = ut1 + ut2 + ut3 + · · · pt = pt1 + pt2 + pt3 + · · · (A 18)

Following Ho & Leal (1974), we obtain the first reflection ut1:

ut1 =
3

4

(

ez +
zr

r2

) 1

r
+

1

4

(

ez −
3zr

r2

)

1

r3
(A 19)

and the second reflection ũt1 = {ũt1, ṽ
t
1, w̃

t
1}:

ũt2 =
1

2π

∫ +∞

−∞

∫ +∞

−∞

eiΘ
t

(

e

(

−λtZ
2

)
(

h3Z

2
+
h4
λt

)

+ e

(

+λtZ
2

)
(

h5Z

2
−
h6
λt

))

iξtdξtdηt

(A 20)
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Figure 10: Variation of the electrophoretic rotational velocity with respect to wall separation for
a=10 µm.

ṽt2 =
1

2π

∫ +∞

−∞

∫ +∞

−∞

eiΘ
t

(

e

(

−λtZ
2

)
(

h3Z

2
+
h4
λt

)

+ e

(

+λtZ
2

)
(

h5Z

2
−
h6
λt

))

iηtdξtdηt

(A 21)

w̃t2 =
1

2π

∫ +∞

−∞

∫ +∞

−∞

eiΘ
t





−e

(

−λtZ
2

)

(h3 (1 + λtZ/2) + h4)

−e

(

+λtZ
2

)

(h5 (1− λtZ/2) + h6)



 dξtdηt (A 22)

Here, Θ = (Xξt + Y ηt)/2 and λt = (ξt
2

+ ηt
2

)1/2. The expressions for the terms
h3, h4, · · ·h6 are evaluated and are found to be identical to that reported by Ho & Leal
(1974). The disturbance velocities can be reduced to single integral by the use of
simple transformation techniques, which makes the evaluation inertial lift convenient.
An interested reader can refer the supplementary material.

Appendix B. Validation of U s and Ωs with the literature

In the absence of electric fields, the expressions for U
(0)
s x (3.24) and Ω

(0)
s y (3.25) are

identical to that obtained by Ho & Leal (1974).
For the pure electrokinetic flow (i.e. electrophoretic particle in electro-osmotic flow:

α = 0, β = 0, and γ = 0), the dimensional electrophoretic translational velocity (U
′ E
s )

at the centerline (s = 0.5) is:

U
′E
s

E′
∞(ε′/4πµ′)

= [ (ζ′p − ζ′w)− (0.259478ζ′p − 0.262433ζ′w)(a
′/d′)3 ]ex. (B 1)

For a particle fixed at the centerline the expression derived by Keh & Anderson (1985)
in bounded electrokinetic flow is:

U
′E
s

E′
∞(ε′/4πµ′)

= [ 1− 0.267699(a′/d′)3 +O(a′/d′)5 ](ζ′p − ζ′w)ex. (B 2)

This difference arises as Keh & Anderson (1985) use an alternative method of reflections
whereas, we follow Brenners parallel method of reflections (see (Luke 1989) for more
details on the two methods). When the resistance due to stokeslet (WA) is neglected
in (3.24), for pure electrokinetic flow at s = 0.5, (B 2) is obtained. Since (3.24)—for
pure electrokinetic flow—is valid for any arbitrary position between the walls, it is a
generalization of results obtained by Keh & Anderson (1985) upto O(κ3).
For the pure electrokinetic flow, the weak particle rotation (ΩE

s ∼ O(κ4)) near the
walls is negative as depicted by figure 10. This is interestingly opposite to that observed in
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Figure 11: (a) Cylinder circumscribing the spherical particle of radius κ, (b) front 2D projection
showing the splitting of polar angle into 4 identical sections. The integral is evaluated in the
blank space. Here, rout is the outer limit of radius.

Couette, Poiseuille flow and sedimentation flows. Near the wall, the potential distribution
around the particle exerts a hydrodynamic torque (through slip at the particle surface, see
(3.16)) in the negative y-direction, and is sufficiently strong to overcome torque generated
due to wall induced viscous resistance (Keh & Chen 1988). We compare the rotational
velocity expressed in (3.25) with that obtained exactly by Keh & Chen (1988) (in the
presence of a single wall) and find a good agreement (see figure 10).

Appendix C.

In this appendix, we analytically find the contribution from the sub-region which
extends from the spherical surface to the circumscribing cylinder (see §4.3). The spherical
coordinate system is employed to find the volume integral as shown in figure 11(a). The
azimuthal angle φs spans from 0 to 2π. The polar angle ψs (spanning from 0 to π) is
divided into 4 sections. This splitting results in four right angled triangles and allows us

to exploit trigonometric identities to specify limits in the radial direction

(

rout
∫

κ

dr

)

. For

instance, in the section-I (0 to π/4), we obtain the following relation using trigonometry:
cosψs = κ/rout. Therefore, the radius of integration spans from κ→ κ secψs. Extending
the procedure to all the four sections, transforms the volume integral as:

ǫ =

∫ 2π

0













(

π/4

∫
0

κ secψs

∫
κ

H
(

r2 sinψs
)

drdψs

)

+

(

π/2

∫
π/4

κ cscψs

∫
κ

H
(

r2 sinψs
)

drdψs

)

+

(

3π/4

∫
π/2

κ cscψs

∫
κ

H
(

r2 sinψs
)

drdψs

)

+

(

π

∫
3π/4

−κ secψs

∫
κ

H
(

r2 sinψs
)

drdψs

)













dφs

(C 1)

Here, H is the integrand in spherical coordinates. The contribution from the four sections
is found to be:

ǫ = −Repβ
(

1.7HaZp + 1.603κ+O(κ2)
)

, (C 2)

and is accounted in the results discussed in §7. For the case of neutrally and non-neutrally
buoyant (inert) particle, we find that the contribution from this sub-region is negligible.
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