arXiv:1310.2814v1 [cs.DC] 10 Oct 2013

IMSuite: A Benchmark Suite for Simulating
Distributed Algorithms

Suyash Gupta, V. Krishna Nandivada*

PACE Lab, Department of Computer Science and Engineering, IIT Madras, India 600036
phone/fax: +91-44-22574380

*Corresponding author
Email addresses: suyash@cse.iitm.ac.in (Suyash Gupta), nvk@cse.iitm.ac.in (V.
Krishna Nandivada)

Preprint submitted to Elsevier October 31, 2018

Abstract

Considering the diverse nature of real-world distributed applications that makes it hard

to identify a representative subset of distributed benchmarks, we focus on their under-
lying distributed algorithms. We present and characterize a new kernel benchmark
suite (named IMSuite) that simulates some of the classical distributed algorithms in
task parallel languages. We present multiple variations of our kernels, broadly cat-
egorized under two heads: (a) varying synchronization primitives (with and without
fine grain synchronization primitives); and (b) varying forms of parallelization (data
parallel and recursive task parallel). Our characterization covers interesting aspects of
distributed applications such as distribution of remote communication requests, num-
ber of synchronization, task creation, task termination and atomic operations. We study
the behavior (execution time) of our kernels by varying the problem size, the number
of compute threads, and the input configurations. We also present an involved set of
input generators and output validators.

Keywords: benchmarks, distributed algorithms, performance evaluation, task parallel,
data parallel, recursive task parallel

1. Introduction

Large distributed applications find their use in a variety of diverse domains: bank-
ing, telecommunication, scientific computing, network on chips, and so on. The di-
verse and complex nature of these distributed applications makes it hard to identify a
representative subset of distributed benchmarks. The absence of such a benchmark set
hinders the design of new optimizations and program analysis techniques that can be
applied uniformly across many distributed applications.

The common denominators of most of the distributed applications are the under-
lying distributed algorithms. Both the distributed applications and the underlying dis-
tributed algorithms display common traits such as communication, timing and failure.
We argue that compared to the complex distributed applications, reasoning about these
underlying algorithms can be easier and can also help in analyzing the diverse appli-
cations that use them. Thus, we believe that a kernel benchmark suite implementing
popular distributed algorithms is in order.

We now lay down a set of seven key requirements necessary for such a kernel bench-

mark suite. These requirements are categorized under the following three heads.
(A) Requirements based on characteristics of kernel benchmarks implementing dis-
tributed algorithms: Our study of popular text books [1} 2] and lecture notes [3]] on dis-
tributed algorithms helped us derive the important characteristics of typical distributed
algorithms; these characteristics form the basis of our first three key requirements.

1. The algorithms implemented by the kernel benchmarks must solve common
challenges in distributed systems.

2. The kernels should cover important characteristics of distributed systems such
as communication (broadcast, unicast, or multicast), timing (synchronous, asyn-
chronous or partially synchronous) and failure.

3. The benchmark kernels should simulate the behavior of distributed systems con-
sisting of (partially) independent nodes and the interconnect thereof.

(B) Requirements based on the target hardware:

4. The execution of the kernels implementing distributed algorithms should not
necessarily require a complex hardware setup; these should be usable in the
presence of a shared memory multicore / distributed memory multicore or even
a sequential system.

(C) Requirements based on best practices in existing benchmark suites: The final two
requirements are derived from the best practices followed in well known benchmark
suites, such as PBBS [4], NPB [5], BOTS [6], PARSEC [7].

5. The kernels should be small in size and easy to debug.

6. The benchmark suite should provide a variety of inputs (with varying configura-
tions and sizes) and convenient means to verify the generated output.

7. The benchmark suite should provide means to analyze static and dynamic char-
acteristics specific to the domain under consideration (distributed systems in our
case).

Problem Applications and/or domains of interest.
Breadth first search | semantic graphs and community analysis.

Consensus checking reliability of a system; grid computing; peer-to-peer net-
works; sensor networks.

Routing table internet routing tables; OSPF protocol.

Dominating set mobile adhoc network routing; mobile wireless adhoc networks.

Maximal indepen- | symmetry breaking in networks; clustering in wireless ad hoc and
dent set sensor networks.
Committee creation | dynamic networks; token dissemination protocol.

Leader election selecting a coordinating node for a network.
Spanning tree in IEEE 1394.1 standard for interconnecting LANS using bridges.
Graph coloring color growth bounded graphs such as unit disk graphs; for resolving

resource conflicts.

Figure 1: Core distributed computing problems and their applications.

Our study of existing benchmark suites [4} 15,16} 7,8, 9L 10, 11,12} [13L 14} 15,1161 [17}
18] has found that none of them meet majority of the aforementioned key requirements.
Our goal is to design a benchmark suite that meets all our stated requirements. As a
first step, we shortlist a set of important problems in the context of distributed systems.

Figure [T] shows some of the core problems in the area of distributed computing
and lists a few of their diverse applications. The centrality of these problems can also
be seen from the importance given to them in popular textbooks and lecture notes
on distributed algorithms [1} [2, [3]. In this paper, we present and characterize a new
kernel benchmark suite named IMSuite: IIT Madras benchmark suite for simulating
distributed algorithms that implements some of the classical algorithms to solve these
core problems; we refer to these algorithms as the core algorithms.

IMSuite implements the core algorithms in two task parallel languages X10 [[19]
and HJ [20]. X10 and HJ languages with their APGAS-model to easily simulate the
distributed systems, light weight tasks to represent the computation in the distributed
nodes, and clocks/phasers to model lock step synchrony in irregular and recursive ap-
plications, give a convenient way to program distributed kernels. One of the main
advantages of using these languages is that they can easily simulate a large set of dis-
tributed nodes even in the absence of complex distributed hardware.

Our contributions

e We present a study of a large set of existing benchmark suites and discuss their limi-
tations with respect to our stated key requirements (Section [2).

e We give a methodical approach to implement distributed algorithms in task parallel
languages to run on hybrid systems[] (Section .

e Considering the different popular parallel programming styles, we present multiple
variations of our kernels in both X10 and HJ. These variations (totaling 31 per lan-

A hybrid system may consist of one or more distributed nodes (with a capability to communicate with
each other), each node may consist of one or more cores, and each core in turn may have one or more
hardware threads.

guage) can be broadly categorized under two heads: (a) Varying synchronization prim-
itives: Our benchmark kernels can use fine grain synchronization primitives (such as
phasers in HJ and clocks in X10), or can realize synchronization by joining/terminating
each task and recreating them later. (b) Varying forms of parallelization: IMSuite
contains a data parallel implementation for each core algorithm. Further, IMSuite
also includes recursive task parallel versions for some of the core algorithms. Besides
these parallel versions IMSuite also includes the corresponding serial implementa-
tions (Section[3).

e We provide an algorithm specific input generator that can generate a variety of inputs
with varying configurations. Each benchmark also includes an output validator.

e We characterize IMSuite on a hybrid system. Our characterization covers interest-
ing aspects of distributed applications such as distribution of remote communication
requests, number of synchronization, task creation, task termination and atomic oper-
ations. We study the behavior (execution time) of our kernels by varying the problem
size, the number of compute threads, and the input configurations. (Section [6).

2. Related Work

In this section we categorize some of the popular benchmark suites catering to
parallel and distributed systems and discuss their limitations with respect to our stated
key requirements.

Applications vs. Kkernels vs. micro-kernels - Many of the well-known benchmarks
consist of a set of representative applications. Examples include NPB [5], BOTS [6],
PARSEC [7] (including its two prior avatars SPLASH [17] and SPLASH-2 [18]),
BenchERL [9], SPEC-OMP [10]], JGF [12], NGB [13]], SPEC-MPI [16] and HPCC [15].
While PARSEC, JGF, NPB and BenchERL also contain a few kernels, benchmark
suites like PBBS [4]] focus only on kernel benchmarks. Similarly, JGF contains a few
micro-kernels as well, while EPCC [11} 8] and InteIMPI [14] contain only micro ker-
nels. Compared to the application-oriented benchmarks, the kernel benchmarks are
small in size, simpler to understand, easier to debug and provide insights on how a cer-
tain algorithm behaves. Micro-kernels on the other hand are helpful to study a specific
feature of a language, runtime or architecture.

Scientific vs. non-scientific - Most of the parallel benchmark suites target scientific
or mathematical computations. Examples include BOTS, JGF, HPCC, NPB, SPEC-
OMP, SPEC-MPI and PARSEC. The PBBS benchmark suite consists of a mixed bag
of scientific and graph computations. Benchmark suites like BenchERL, EPCC, and
InteIMPI consist of mainly synthetic benchmarks.

Task parallel vs. loop parallel vs. recursive - BOTS and PBBS admit both task par-
allel and recursive task parallel computation. In contrast, JGF, HPCC, SPEC-OMP,
SPEC-MPI, InteIMPI, PARSEC, NPB, NGB, and EPCC suites include computations
chiefly depicting loop level parallelism.

Parallel vs. hybrid systems - Benchmark suites like NPB, JGF, NGB, BenchERL,
SPEC-MPI, EPCC, and InteIMPI contain benchmarks that can run over hybrid sys-
tems, while rest of the benchmark suites can run only on a parallel system.

Of the seven key requirements discussed earlier in the section, the first four are spe-
cific to the distributed applications and hence are not satisfied by any of the discussed

Problem Category (Abbr) NW type | Time Complexity | Message Complexity
Breadth First Search (BF) General O(D) O(nm)
Breadth First Search (DST) General O(D?) O(m +nD)
Consensus(Byzantine) (BY) General O(D) O(n?)
Routing Table Creation (DR) General O(n?) O(nm)
Dominating Set (DS) General O(log? A O(n x A?
x logn) x log® A x logn)
Maximal Independent Set (MIS) | General O(logn) O(mlogn)
Committee Creation (KC) General O(K?) O(K?m)
Leader election (DP) General O(D) O(Dm)
Leader election (HS) Ring (bi) O(n) O(nlogn)
Leader election (LCR) Ring (uni) O(n) O(n?)
Spanning Tree (MST) General O(nlogn) O(mlogn)
Vertex Coloring (VC) Tree O(log™ n) O(nlog* n)

Figure 2: Core algorithms and their characteristics. Notation: n denotes the number
nodes, m denotes the number of edges, and D denotes the diameter, K denotes the
maximum committee size and A denotes the maximum degree of the graph.

benchmark suites. The PBBS benchmark suite satisfies Req#5 and Req#6. On the
other hand, PARSEC, JGF, NPB and BenchERL have a mix of small kernels and large
applications, and satisfy Req#5 partially. Similarly, benchmark suites such as BOTS,
BenchERL, HPCC and SPEC include an output verifier for a pre-defined input, and
satisfy Req#6 partially. Req#7 is partially satisfied by PBBS, PARSEC, SPLASH and
BOTS - they allow the user to measure some dynamic characteristics that are pertinent
to parallel programs (such as, number of tasks, barriers, joins, and so on).

Compared to these benchmark suites, TMSuite satisfies all the key requirements.
It consists of kernels that implement popular distributed algorithms (mostly graph
based) that are mainly irregular and non-scientific in nature. The kernels in IMSuite
exhibit both loop and recursive task parallelism. While the current implementation of
IMSuite is in X10 and HJ, these kernels can easily be ported to other languages that
support appropriate runtime models (such as APGAS or global address space).

3. Background

3.1. Core algorithms

We now briefly describe some of the popular algorithms that solve the problems
discussed in Figure[T] Figure 2] presents some characteristics of these algorithms.
Breadth First Search (BFS): We use two different BFS algorithms BF [3]] and DST [3]].
While BF outputs the distance of every node from the root, DST outputs the BFS tree.
Byzantine Agreement: The byzantine agreement (BY) algorithm [21]] builds a consen-
sus among the “good” nodes of a network that may also contain “faulty” nodes.
Routing: In the Dijkstra routing (DR) algorithm [22]] each node in the network works
independently and computes a routing table in parallel.

Dominating Set: The dominating set (DS) algorithm [3]] creates a dominating set using

Syntax Explanation

[clocked] async spawns a new asynchronous task to execute the state-
{s1} ment S1. The clocked option registers the task on
the set of clocks held by the current task.
[clocked] finish waits for all the tasks created within S1 to terminate.
{s1} The clocked option introduces a new clock that the
task executing S1 gets registered to.
atomic {S1} updates the shared data in S1 in an atomic fashion,

provided other possible accesses to that shared data
also happens inside an atomic.

Clock.advanceAll a blocking call that advances all the clocks the current
task is registered with. It acts as a barrier.
x = at (p) {si} executes the expression S1 at place p and x stores the

return value.

var R: Region; creates a region R containing n elements: 0. . .n-1.
R =0..(n-1)

Figure 3: X10 command cheat sheet.

a probabilistic method that depends on the first and second level neighbors of a node.
k-Committee: For a given integer value of k, the k-committee (KC) algorithm [3]] par-
titions the input nodes into committees of size at most k.

Maximal Independent Set: MIS [3]] uses a randomized algorithm to compute the max-
imal independent set for a given input graph.

Leader Election: We consider three different leader election algorithms. The LCR
and HS algorithms [[1] work on a set of nodes organized in a ring network, where the
data flow is unidirectional and bidirectional, respectively. Compared to that, the DP
algorithm [23]] works on a set of nodes organized in any general network.

Minimum Spanning Tree: The MST algorithm [3] works on a weighted graph. It
starts by marking every node as an independent fragment, and proceeds by joining
fragments along the minimum weighted edge, till a lone fragment is left.

Vertex Coloring: The vertex coloring (VC) algorithm [3] colors the nodes of a tree
with three colors. It first colors the tree using six colors using a fast algorithm O (log™ n)
and then uses a shift down operation (constant time) to color the tree using three colors.

3.2. X10 and HJ background

Figure [3| presents some constructs of X10 relevant to this manuscript (see the lan-
guage manual [19]] for details).

We use async to spawn a new task, £inish to join tasks, and at omic to provide
mutual exclusion. X10 provides an abstraction of a Clock that helps tasks make
progress in lock step synchrony. A task may be registered on one or more clocks and
all the tasks registered on a clock make progress in lock step by advancing the clocks.
A clock is considered to have advanced to the next “clock tick”™ if all the tasks registered
on that clock have requested the advancement of the clock.

In X10, a place abstracts the notion of computation (multiple tasks) and data
(local to the place). The set of places available to a program are fixed at the time the

program is launched. The at construct can be used to access remote data.

A region is used to represent the iteration space of loops and the domain of arrays.
A distribution maps the elements of a region to the set of runtime places.
Comparison with HJ: The parallelism related constructs of Habanero Java [20] are
similar to that of X10 with minor differences in syntax and semantics. For example,
HIJ constructs i solated, next, and phaser map to corresponding X10 constructs
atomic, Clock.advanceAll and clock (refer to the HJ manual [24] for details).

4. Transformation Scheme

We now present an overview of our scheme for implementing distributed algo-
rithms in a task parallel language, to be executed on a hybrid system. We list some of
the main abstractions pertinent to distributed algorithms and lay down a procedure for
their implementation.

Node: A node in a distributed algorithm requires some data (such as a unique identifier,
a mailbox, information about neighbors and so on) and performs some computations.

The computation of a node can be abstracted by one or more parallel tasks, in task
parallel languages. A distributed node (including both computation and data) can be
abstracted by an X10 place running only the task(s) corresponding to that node; we
refer to it as the Unique-Place (UP) model. However, such an abstraction can pose
a challenge in languages such as Java and OpenMP that neither support a notion like
places nor can run on distributed memory systems. Programs in these languages can
be seen as running all the tasks (corresponding to all the nodes) at a single place. This
simulates a particular type of distributed system where all the data is “local” and the
inter-node communication cost is minimal. X10 and HJ can mimic this behavior when
they are restricted to run on a single place; we term it as the Single-Place (SP) model.
We can also consider a more general scenario, where the runtime consists of multiple
places and each place may simulate the tasks corresponding to more than one node; we
term it as the Multi-Place (MP) model.

Communication: A set of distributed nodes communicate with each other through
message transfer. These messages are transferred, from one node to another, along the
links of the underlying network.

Our simulation of the transfer of data between two connected nodes of a network

depends on the runtime model (MP, UP or SP model). In the context of an SP model,
the data transfer is done using the shared memory. On the other hand, in the context of
MP and UP model, the data transfer may involve message passing.
Timing: In a distributed system, nodes can work asynchronously or synchronously.
In a synchronous setting there is an assumption of existence of a global clock and the
nodes proceed in a lock-step fashion, synchronized over the global clock. Contrast to
that, in an asynchronous setting there is no concept of a global clock and each node
works independently.

We achieve lock step synchrony by using fine grain synchronization primitives
(such as phasers in HJ and clocks in X10) or by repeated task-join and task-creation
operations (See Section[d.I]for an example).

Phases and Rounds: Distributed algorithms are organized around the notion of phases

Input n nodes each having a unique uid; Output Leader
for round < 1 to n do

for j < 1 to n nodes in parallel do
transmit send; to its clockwise neighbor ;

x < incoming message;

if z > uid; then send; <z ;

else if z = uid; then status; < leader;
else do nothing ;

Figure 4: Distributed Leader Election LCR Algorithm.

class Node {
var uid:Int;

var mbox:Int; // mail box

var nextIndex:int; // neighbor index
var status:boolean; // true => leader
var send:Int; // outgoing message

var leader:Int; }

Figure 5: Structure of the abstract node for LCR

and rounds; each phase consists of one or more rounds. Phases and rounds can be im-
plemented using serial loops.

Messages and Mailbox: Nodes in a distributed system communicate by exchanging
messages. The size and structure of a message depend on the underlying algorithm.
Each message is delivered to the receiver’s mailbox (a FIFO queue). The design of the
mailbox must ensure that it can hold all the messages required at any point of time.

4.1. Sample transformation

In this section we illustrate our transformation scheme using an example. Figure 4]
presents the core of the LCR algorithm (see Section [3.I). Each node j contains three
fields: wuid; (the unique identifier of the node), send; (identifier of the leader as per
node j — initialized to uid;), and status; (if it is a leader or a common node). The LCR
algorithm runs for n rounds. In each round every node j sends send; to its neighbor
(successor) and receives the incoming message from its predecessor. Since LCR algo-
rithm works on a uni-directional ring network, a node can at most receive one message
per round. This allows us to set the size of the mailbox of each node to one.

We now briefly explain how we derive a benchmark kernel for the LCR algorithm.
For illustration purposes we use X10-FAC as the target language and later state the
differences between a code written in X10-FAC and in X10-FA. The structure
of the Node class for our implementation of the LCR algorithm is shown in Figure [5]
We note two interesting points: a) the mbox field can hold at most one message, b)
the next Index field can be eliminated by some smart design decisions (e.g. in a
unidirectional ring network the next Index of the 5 node can be set to j + 1).

leader_elect_lcr(val n:Int){
var R: Region = 0.. (n-1) ;
var D: Dist = Dist.makeBlock (R) ;
var ndSet: DistArray = DistArray.make [Node] (D) ;
for (var round:Int=0; round<n; round++) {
clocked finish {
for(j in D){ // run each node
clocked asyncat (D (j)){ // in parallel
Transmit (ndSet (j) .send, nextIndex);
Clock.advanceAll () ;
if (ndSet (j) .mbox > ndSet (j).leader) {
ndSet (j) .send = ndSet (Jj) .mbox;
ndSet (j) .leader = ndSet (Jj) .mbox; }
elseif (ndSet (Jj) .mbox==ndSet (j) .uid) {
ndSet (j) .status = true;
ndSet (j) .leader = ndSet (j) .uid;

Frrrrd

Trasmit (val receiver:Point, val msg:Int){
at (D (receiver)) ndSet (receiver) .mboxzmsg;}
(a)

leader_elect_lcr(val n:Int){

for (var round:Int=0; round<n; round++){
finish{
for(j in D){ // run each node
asyncat (D (j)){ // in parallel
Transmit (ndSet (j) .send, nextIndex);

Prt
finish{
for(j in D){ // run each node
asyncat(D (J)){ // in parallel
if (ndSet (3j) .mbox > ndSet (j) .leader){

}

elseif (ndSet (j) .mbox==ndSet (j) .uid){

NSRS
(b)

Figure 6: (a) Core of the LCR algorithm in X1 0-FAC; (b) core of the LCR algorithm
in X10-FA; only differences with respect to the X10-FAC version are shown. The
X10 specific constructs are shown in bold. See Section@for X10 syntax.

Figure[6fa) shows the core of the LCR algorithm in X10-FAC. It creates a block-
ing distribution D over a region R (of n points, where n = number of nodes) and al-
locates the array ndSet (of n elements), distributed over D. The number of blocks
in the distribution D is set to the number of places at runtime. In each round, the

10

parallel task corresponding to each node transmits its message and waits (by using
Clock.advanceAll) for the message from its neighbor. After that, each task re-
computes the leader related information based on the received message and proceeds
to the next round.

Figure [6[b) sketches the X10-FA kernel for LCR, showing only the differences
with respect to the X1 0-FAC kernel shown in Figure[6a). This X10-FA version uses
repeated task-join and task-creation operations to synchronize the tasks corresponding
to the nodes. X1 0-FAC implementation can be considered lightweight as it uses fewer
number of task creation (async) and join (finish) operations and utilizes the lightweight
synchronization operations offered by Clocks.

Compared to LCR, where the X10-FA and X10-FAC implementation are not
much different, there are other kernels (such as DS) where the differences are sig-
nificant. This is especially true when the clock based synchronization operations are
nested deep inside conditional or looping constructs.

5. Internals of IMSuite

In this section, we briefly explain the internal details of IMSuite. This benchmark
suite implements the twelve core algorithms described in Section[3.1] Considering the
different popular parallel programming styles, we have implemented multiple varia-
tions of these algorithms:

Varying the synchronization primitives: We implement all our variations in two
subsets of X10: (a) X10-FA — uses the finish, async and atomic constructs
for task creation, join and mutual exclusion, respectively. Synchronization is achieved
by joining/terminating all the tasks and recreating them later. (b) X10-FAC — uses
the abstraction of clocks in addition to the constructs of X10-FA. Clocks provide
efficient synchronization primitives that can be used to yield arguably more compact
and efficient programs. All the core algorithms (except DR) have been implemented
in both X10-FA and X10-FAC. In case of DR, we found no scope of using low level
synchronization primitives like clocks. And hence we have this algorithm implemented
only in X10-FA.

Varying forms of parallelization: For each of the core algorithms implemented in
X10-FA and X10-FAC we present a data parallel implementation. For five of the
core algorithms (BE, DST, BY, DR and MST) implemented in X10-FA, we also provide
variations that exploit recursive task parallelism. Further, for three of these algorithms
(BE, DST and MST) we have efficient implementations that use clocks (implemented in
X10-FAC).

Along with the above discussed variations, we can also vary the runtime model
(MP, UP, or SP model) by setting the number of places to be a divisor of the input (for
MP model), or to the input size (for UP model), or to one (for SP model).

For each of the core distributed algorithms we also present a serial implementation
in X10. The serial implementations do not create any parallel tasks — they simulate
the behavior of the parallel nodes by serializing their execution in a predefined order.
Similar to their parallel counterparts, the runtime behavior of the serial programs can
be controlled by varying the underlying runtime model (MP, UP or SP). An interesting

11

point to note is that a serial program whose data is distributed over partitioned global
address space mimics a distributed system partly — where accessing remote data is more
expensive than accessing the local data.

In summary, we provide a set of 35 (12in X10-FA, 11 in X10-FAC, and 12 serial)
iterative kernels and 13 (5 in X10-FA, 3 in X1 0-FAC, and 5 serial) recursive kernels;
48 kernels in total.

Considering the growing popularity of HJ, we have also implemented these 48
kernels in HJ-FA and HJ-FAP subsets of HJ (similar to the variations provided by
X10-FA and X10-FAC). Owing to the current limitations of the HJ runtime, these
kernels can only be simulated at a single place. Thus, we can only realize the SP
model of distribution here.

Considering the possibility that in practice these core algorithms may do some more
computation in addition to that specified by the algorithm, all our kernel benchmarks
take an additional option to introduce a user specified workload in each asynchronous
task. Currently, we present a naive workload function that injects a series of arithmetic
computations (quantity specified by the user at runtime) to each asynchronous task in
the kernel. We can foresee a workload function with additional characteristics, such
as one that pollutes the L1 / L2 cache, or one that introduces additional packets in the
network and so on. The design of such sophisticated workload functions are left as
future work.

5.1. Input generator

The input to all the IMSuite kernels is an abstraction of a distributed system
consisting of the details about its configuration (for example, nodes, edges, weights
and so on). IMSuite comes with a set of input generators that generate inputs specific
to each kernel benchmark. Depending on the core algorithm under consideration each
input generator admits a set of options that can be used to tune the generated input.
Some of the common options are the number of nodes in the distributed graph (referred
as the size of the input), the type of the graph (complete, sparse and so on), weights of
the edges and so on. Our input generators use a random number generator to generate
the details (such as weights, adjacency information, unique identifiers of the nodes, and
so on) of the distributed graph. To make the input generation process deterministic, our
input generators optionally take a seed (default value set to the prime numberE] 101).
The users of IMSuite are required to specify the seed used to generate their input;
this can help users to communicate their findings in a more meaningful manner. Each
input generator is serial in nature and is written in Java.

The different types of graphs generated by our input generators depend on the target
algorithm: ring for LCR and HS, tree for VC, and any arbitrary graphs for others. Con-
sidering the typical configurations of trees and arbitrary graphs, our input generators
admit additional options (described below).

Trees: We allow three topologies for trees: Star, Chain and Random. The last one
takes an additional input that specifies the maximum degree for any node. The choice

2A set of interesting anecdotes about the number 101 can be found here:
http://primes.utm.edu/curios/page.php?short=101

12

of Star and Chain as two predefined topologies stems from the behavior of the VC
algorithm. For a fixed input size, VC takes the maximum time for a Star topology and
minimum for a Chain.

Arbitrary graphs: Our input generators can generate three types of arbitrary graphs:
(i) complete graphs, (ii) sparse graphs and (iii) random graphs (the edges are chosen at
random). The limiting cases of the sparse graphs (with edges n-1 and n log n, where n
is the number of nodes) are present as two special options named SP-Min and SP-Max.
To enable the comparison between these two limiting cases, our input generator ensures
that the edge set of SP-Max variation is a superset of the edge set of SP-Min.

5.2. Output validators

Each kernel also consists of an output validator to validate its output. The output
validator assumes that it has access to the complete input and output and may reuse
some internal data structures of the main program, for efficiency reasons. The output
validators are serial in nature and are not timed.

5.3. Conformance to the key requirements

We now discuss how the IMSuite kernels conform to the key requirements spe-
cific to distributed systems (Req#1 - #3). These kernels are derived from the algorithms
that solve some of the core problems discussed in Figure [I| - Reg#1. The IMSuite
kernels cover the important aspects of distributed systems, such as communication
(unicast: LCR, broadcast: BY and DR, multicast: rest all); timing (synchronous: DP,
HS, LCR and VC, asynchronous: DR and the recursive kernels of BY, and partially
synchronous: rest all); and failure: the BY kernels admit “nodes” that may fail (faulty
nodes) — Req#2. Our kernels take as input an abstraction of a set of (partially) inde-
pendent nodes and their interconnect. By varying the input type we can realize varied
interconnects — Reg#3.

6. Evaluation

We present the characterization of IMSuite on an IBM cluster consisting of two
hardware nodes’l Each hardware node of the cluster has two Intel E5-2670 2.6GHz
processors, each processor has eight cores and each core can make use of (up to) two
hardware threads. Thus, we can have up to 64 dedicated hardware threads for our
simulations. Each core has its own local L1 cache that is shared by the two hardware
threads. The two hardware nodes are connected by an FDR10 Infiniband interconnect.
For our simulations we use x10-2.3.0-linux x86 version of X10, jdk1.7.0_09 version of
Java and hj-1.3.1 version of HJ.

Our characterization involves, among other things, analyzing the behavior of the
IMSuite kernels with varying number of available hardware threads (HWTs). Our
hardware configuration directs the way we increase the HWTs for our experiments:

3To avoid the confusion between the hardware nodes and the abstraction of nodes in the input, we explic-
itly qualify the nodes in the hardware as “hardware nodes”. We use the generic term “nodes” to denote the
input nodes.

13

1/2/4/8 HWTs correspond to one/two/four/eight independent cores on a processor; 16
HWTs correspond to all the cores present in a hardware node; 32 HWTs correspond
to all the cores in a hardware node running two hardware threads each; 64 HWTs
correspond to 32 HWTs on each of the two hardware nodes.

We use the results of the insightful paper of George et al [25] and compute the
average running time for our kernels after executing each of them for 30 times. This
helps in reducing the noise in the results arising due to many non-deterministic factors
common in a Java based runtime (for example, thread scheduling, garbage collection
and so on).

Considering the fact that many real life network / distributed systems are sparsely
connected, we restrict our evaluation to sparse networks. Specifically, we focus on the
limiting cases of sparse inputs: SP-Max and SP-Min. Similarly for VC, we use the
two corresponding limiting case inputs (Star and Chain). We believe these limiting
cases will give us a good understanding of how the benchmarks may behave for other
intermediate inputs. We refer to these limiting case inputs as Mx-In and Mn-In, respec-
tively. However, HS and LCR work on ring networks and entertain no such variations
in the network configuration (that is, Mx-In = Mn-In).

6.1. Kernel characteristics

In this section, we discuss some of the static and dynamic characteristics of our
kernels. Figure[/(a)|and Figure present these characteristics for the iterative and
recursive kernels, respectively, written in X1 0-FA and HJ-FA. Similarly, Figure
and Figure present these characteristics for the recursive and iterative kernels, re-
spectively, written in X10-FAC and HJ-FAP. In these tables, Mut is used as a generic
name referring to mutex operations — atomic construct in X10 and i solated con-
struct in HJ. Similarly, Bar is used as a generic name referring to barrier operations —
Clock.advanceAll () constructin X10 and next in HJ. We use the following ab-
breviation: a) "#Static/Dynamic Fin” to represent number of static/dynamic £inish
operations, b) #Comm to represent the number of remote communications (excluding
the barrier operations).

It can be seen that all the kernels in IMSuite are relatively small in size; their sizes
vary approximately between 200 to 900 lines. Further the number of static finish,
mutex and barrier statements are quite small. We discuss the characteristics of the
iterative and recursive kernels separately.

6.1.1. Iterative kernels

The number of dynamic finish and barrier statements vary as a function of the
actual input. The number of static async statements matches the number of static
finish statements, while the number of dynamic asyncs is n times the number
of dynamic finish statements. Unlike the counts of the dynamic finish state-
ments, the counts of the dynamic mutex and remote communications may depend on
the structure of the input graph. Hence for these operations, we present the runtime
characteristics (of programs written in X10-FA and X10-FAC) by comparing them
for two specific inputs (Mx-In with 64 nodes and Mn-In with 64 nodes, both run on 64
runtime places), in Figure|[§]

14

Name #Lines of Code #Static #Dynamic Fin
X10-FA | HJ-FA | Fin | Mut
BF 330 320 2 1 2x D
DST 510 500 7 3 (3x D*+9x D)/2
BY 510 460 3 1 (n/8+4+1)(2x D+1)
DR 370 355 1 0 1
DS 650 600 9 2 9 x (log” A x logn)
KC 490 490 10 2 5x K?
DP 440 395 4 1 8 x D
HS 440 435 5 0 logn x (6 xn+1)+1
LCR 260 245 3 0 2xn+1
MIS 380 330 5 3 (3logy,sm+1) x4+1
MST 880 790 15 4 logn x (3 x D+ 11)
vC 420 395 5 0 2log*n+9
(a) X10-FA and HJ-FA iterative kernels.
Name #Lines of Code #Static #Lines of Code #Static
X10-FA | HJ-FA | Fin | Mut | X10-FAC | HJ-FAP |Fin | Bar |Mut
BF 275 275 2 1 270 270 1 1 1
DST 480 475 6 3 475 470 5 1 3
MST 705 630 11 3 675 590 4 7 3
BY 425 440 3 2 -
DR 375 360 3 0 -
(b) Recursive kernels.
Name #Lines of Code #Static #Dynamic
X10-FAC | HJ-FAP | Fin | Bar | Mut Fin Bar
BF 330 310 1 1 1 D D
DST 500 490 5 2 | 3 | D’+3xD | D3xD
BY 505 455 2 1 1 (D+1)x Dx
F+1 (§+1
DS 580 510 1 8 2 log? A 8 x logZ A
x logn x logn
KC 480 470 7 3 2 2 x K2+ 3x K24
3x K Ix K
DP 430 375 1 3 1 2x D 6 x D
HS 430 420 3 2 1+ logn 4 x nlogn
x(2xn+1)
LCR 250 240 2 1 0 n+1 n+1
MIS 365 310 2 3 3 1+ (14 3x (1+
3log, 3 m) 3log, 3 m)
MST 850 760 8 9 4 2xD+6) | 2xD+7)
x logn X logn
vc 410 390 3 2 0 log*n + 6 log*n + 3

Figure 7: Static characteristics of IMSuite kernels; D represents the diameter, n
represents the number of nodes, A represents the maximum degree, and K represents

(c) Iterative X1 0—-FAC and HJ-FAP kernels.

the required maximum committee size.

15

Name #Comm (FA) #Mut #Comm (FAC)
Mn-In | Mx-In | Mn-In | Mx-In | Mn-In | Mx-In
BF 1009 1145 126 766 568 956
DST 7500 3446 343 1348 5232 2816
BY 46386 | 97299 43K 95K 44874 | 96291

DR 20587 | 16204 0 0 - -
DS 8020 31118 124 327 6193 27401
KC 5082 12504 2243 9666 4125 11556
DP 9996 12703 2625 8472 5649 10624
HS 12223 | 12223 0 0 8255 8255
LCR 25373 | 25373 0 0 9229 9229
MIS 1463 3204 1894 3518 1274 2637
MST 8890 19154 497 469 6055 13547
vC 1008 1208 0 0 756 890

Figure 8: X10-FA & X10-FAC dynamic communication and mutex operations; input
size = 64 nodes.

We avoid presenting the numbers for HI-FA and HJ-FAP separately as the number
of mutex operations match exactly that of X10-FA and X10-FAC, respectively, and
since HJ-FA and HJ-FAP kernels run in the context of SP model they do not involve
any remote communication.

Note that for a given input, the number of static (and dynamic) mutex operations is
same for both X1 0-FA and X1 0-FAC kernels. This is because these two mainly differ
in the synchronization primitives they use (see Section [3)). For the same reason, the
X10-FAC kernels have fewer number of static and dynamic £inish (and async)
operations compared to the X1 0-FA kernels.

Analysis of dynamic mutex operations and communication: As shown in Fig-
ure (8] the number of mutex operations for Mx-In is consistently higher than that of
Mn-In, except in case of MST. The MST kernel has an interesting property that the
number of mutex operations is guaranteed not to grow as we introduce some additional
edges and corresponding unique weights. Thus the number of dynamic mutex opera-
tions for the Mx-In is not higher than that for Mn-In. The kernels DR, HS, LCR, and
VC have no mutex operations and it is reflected in Figures[7(a)| and[§]

An interesting point about MIS is that the amount of dynamic communication is
less than the number of mutex operations. This is because in MIS, majority of remote
communication operations involve mutex operation, but the other way round is not true.

Note that, except for DST and DR kernels, rest all the kernels have higher amount of
communication for Mx-In compared to Mn-In. One characteristic difference between
Mx-In and Mn-In is that the latter increases the diameter of the graph and hence impacts
the algorithms where an increase in diameter causes an increase in rounds. For DST
and DR as the number of rounds increases, the number of messages (amount of remote
communication) also increases.

16

SP-Max

1SP-Min

Communication per round (averaged
over total communication) -->

Rounds >

(a) BF

WSp-Max SP-Min

Communication per round (averaged
over total communication) -->

Rounds -->

M SP-Max

L15P-Min

Communication per round (averaged
over total communication) -->

Rounds -->

(b) DST

WSP-Max SP-Min

s

over total communication) -->
°
. L

Communication per round (averaged

Rounds -->

M SP-Max

1ISP-Min

Communication per round (averaged
over total communication) >

(c) BY

- _ ESP-Max USP-Min

Communication per round (averaged
over total communication) -->

Rounds >

(d) DR

W SP-Max

SP-Min

over total communication) >
g

79 m g3 g

Communication per round (averaged

21 g

(g) DP

®Mx-In LMn-in

Communication per round (averaged
over total communication) >

Rounds —>

() MIS

(e) DS

Communication per round (averaged
over total communication) -->

Rounds >

(h) HS

WSP-Max ¥ SP-Min

°

over total communication)

Communication per round (averaged
-

Rounds -->

(k) MST

(H KC

over total communication) -->

Communication per round (averaged

Rounds >

(i) LCR

HSTAR LI CHAIN

22 02 e —
T% o2 /\
£s

25 o1

8§

5§ o1

£3

8Z oos

i

E2 o

E3 1

§ 2

Rounds >

M ve

Figure 9: X10-FAC plots for dynamic communication per round; input size = 64

nodes, # clusters = 64.

Communication distribution Figure [9] shows the amount of remote communica-
tion occurring in each round, for the X1 0-FAC kernelsﬂ; for the sake of illustration we
set the input size to 64 nodes and present the results for two types of inputs: Mx-In
and Mn-In. For LCR and HS we show only one curve as in the context of ring network

Mx-In = Mn-In.

The behavior of BY, KC and MST for Mx-In and Mn-In are quite similar. Note that
in BY for a specific input the amount of communication in each round is equal, but the
communication per round in Mn-In less than Mx-In. In case of BF, DST, DR, DS and

4Considering the case that we do not have a separate X10—~FAC version for DR, we use the plot of the
corresponding X10-FA version here.

17

Name #Async #Fin #Comm #Mut
Mn-In | Mx-In | Mn-In | Mx-In | Mn-In | Mx-In | Mn-In | Mx-In
BF 252 2824 128 240 317 2945 317 2945
DST 2201 1092 256 151 2721 2569 189 1279
BY 73K 435K 36K 36K 74K 442K 109K 478K
DR 3476 3699 375 279 12469 | 12373 0 0
MST 1872 1870 258 345 15341 16460 255 255

(a) X1 0-FA recursive kernel characteristics; input size = 64 nodes.

Name #Async #Fin
Mn-In | Mx-In | Mn-In | Mx-In
BF 126 1615 64 140

DST 1689 836 248 147
MST 528 526 237 324

Name #Comm #Bar #Mut
Mn-In | Mx-In | Mn-In | Mx-In | Mn-In | Mx-In
BF 317 3371 64 140 317 3371
DST 2217 2317 8 4 189 1279
MST | 14026 | 15159 21 21 255 255

(b) X10-FAC recursive kernel characteristics; input size = 64 nodes.

Figure 10: Recursive kernels - runtime characteristics.

DP, compared to Mn-In, the algorithm terminates in fewer rounds in case of Mx-In.
However MIS and VC exhibit a contrasting behavior. In MIS, compared to Mn-In where
each node has fewer neighbors than Mx-In, in each round fewer nodes are added to the
maximal-independent-set in case of Mx-In; thus increasing the number of rounds. In
VC, as compared to Mn-In where the algorithm requires exactly one round to make the
graph six colored, in Mx-In the number of rounds (> 1) depends on the input. The
shift-down operation (Section [3) on the other hand always takes three rounds to finish
(irrespective of the input). For lack of space, we omit the communication distribution
plots for the X10-FA and recursive kernels.

6.1.2. Recursive kernels

For our recursive kernels, Figure presents the static characteristics, and Fig-
ures [I0(a)| and [T0(b)| present the runtime characteristics, for inputs Mn-In and Mx-In.
For the most part, the comparative behavior (between Mn-In and Mx-In) displayed by
these recursive kernels is similar to their iterative counterparts. A few points of inter-
est: (i) the recursive BY kernel has more mutex operations than communication. This
is because in the recursive kernel, majority of remote communication operations in-
volve mutex operation, but the other way round is not true. (ii) in case of recursive
DST kernel, the reduction in the amount of communication between the X10—-FA and
X10-FAC versions is directly impacted by the number of remote task creation opera-
tions present in the program: X10-FAC has comparatively fewer remote task creation
operations than X10-FA. (iii) in case of MST the number of mutex operations (in
X10-FA and X10-FAC) and barriers (in X10-FAC) are equal for both Mx-In and

18

Mn-In input, as they are independent of the structure and type of input. However, the
number of async and finish operations depends on the exact structure of the graph and
the edge weights; thus making it hard to correlate the numbers for these two operations
with the input types.

6.2. Performance analysis

In this section we study the effect of three key parameters on the behavior of
IMSuite kernels. These key parameters are: (a) number of available hardware threads
(HWTs), (b) input size (denoting the number of nodes), and (c) number of node clus-
tersﬂ Variations in the number of node clusters are achieved by varying the number
of runtime places in the X10-FA and X1 0-FAC kernels. We study the effect of these
parameters both in isolation (by varying only one parameter and fixing the rest) and in
conjunction with each other (by varying two or three parameters at a time and fixing the
rest). Varying multiple parameters at the same time may lead to an overly large number
of experimental points. We handle this situation by varying these parameters in “sync”
(all the varying parameters get the same value, for a given evaluation point). For the
purpose of this study, we set the input type to Mx-In. Later (Section [6.2.8)), we also
analyze the effect of input type (Mx-In and Mn-In) on the behavior of the IMSuite
kernels.

Limits for the key parameters of our study: We vary the input size between 8 to 512
nodes. The execution times are too insignificant for inputs smaller than 8 nodes and it
takes too long (of the order of several days) to execute programs with inputs larger than
512 nodes. We vary the number of HWTs between 1 to 64 (limited by the experimental
system at hand) when using the X10 runtime. The absence of a distributed HJ runtime
limits the maximum number of HWTS, for running our HJ based kernels, to 32 on our
hardware. We vary the number of clusters between 1 to 64; our version of X10 runtime
throws a runtime error (ERRNO 104 - connection reset by peer) if we request more
than 64 places on our machine.

6.2.1. Effect of varying the number of HWTs (input size and number of clusters fixed)

Figure[TT(a)and[TT(b)|present the execution time (speedup) statistics of the X1 0-FA
and X1 0-FAC kernels, for varying number of hardware threads (1 to 64) in multiples
of two. For all these runs we set the input variation to Mx-In and input size to 64
nodes. We have also studied the behavior of these kernels for the Mn-In input variation
and have found it to be similar. We plot the execution time of the kernels with respect
to that of the serial implementation in the UP model. These plots show that the over-
all performance for all the kernels improves with increase in the number of available
HWTs. However, for any specific kernel the quantum of improvement varies with the
chosen input and the number of available HWTs and their configuration.

The performance improvement is more or less linear when we increase the number
of hardware cores from 1 to 8 (intra-processor communication only) — this improve-
ment is because of the increased sharing of workload among the HWTs.

SWe assume that the nodes are distributed equally among all the clusters.

19

Speedup in execution time with respect to
Serial -->

X10-FA kernels =~

(a) X10-FA plots; input size = 64 nodes, # clusters = 64.

9.00
2 8.00

]

g

2 7.00

S

£ 6.00
£ .

@

£ 1

£ 2500
s

2 3 a.00
£

3

=

=

E;

2

g

g

2

3

s -->

X10-FAC kernels

(b) X10-FAC plots; input size = 64 nodes, # clusters = 64.

Speedup in execution time with respect to
Serial -->
o
=]
o

T vc
Lck Mis MST

Lo
gu\NEA

s -->

HI-FA Kernel

(c) HJ-FA plot; input size = 64 nodes, # clusters = 1, workload = 10 million instructions.

Figure 11: Effect of varying HWTs on X10-FA, X10-FAC, and HJ-FA kernels.

20

On moving to 16 HWTs there is a slight dip in performance improvement (com-
pared to 8 HWTs), owing to the inter-processor communication that comes into picture.
The performance improvement on 32 HWTs, compared to 16 HWTs is much less. In
case of 32 HWTs, while it doubles the sharing of workload by HWTs, it does not dou-
ble other resources (for example, L1 cache). As a result it incurs additional overheads
due to increased conflicts in accessing shared resources such as cache, interconnect,
and so on. This behavior is quite pronounced in HS where it leads to a slight dip
in performance (compared to 16 HWTs). On going from 32 to 64 HWTs, the per-
formance improvement depends on a host of factors — increased communication cost
(inter-hardware-node communication is more expensive than intra-node), decreased
scheduling overheads (each place runs on a unique HWT), decreased resource con-
flicts. Depending on the specific kernel the effect varies. For example, in Figure [T1(b)]
HS shows 13% improvement and BF shows 96% improvement.

An interesting point to note is that in general for fewer hardware threads (1, 2, 4),
the serial versions in the UP model runs faster than the X10-FA and X10-FAC ver-
sions. This is due to the additional task creation, scheduling and termination overheads
present in these kernels. As we increase the number of hardware threads (8, 16, 32, 64),
the task scheduling overheads decrease, and the effect of increased workload sharing
starts dominating the above mentioned overheads.

As discussed in Section [5] our kernels admit an additional option to introduce a
user specified workload in each asynchronous task. We found that such an option is
especially useful when our HJ based kernels are simulated (on SP model), where the
time taken to execute these kernels is too small (of the order few tens of milliseconds)
to reason about the behavior of these benchmarks; we tested the benchmarks for input
size of 64 nodes. To overcome this issue, we set a moderate workload of 10 million
instructions; Figure shows a sample plot depicting the behavior the HJ-FA
kernels, for increasing HWTs, for the Mx-In input. For brevity, we omit the plots of
the HJ-FAP kernels as we found their behavior to be similar. Compared to the X10
based kernels, these HJ kernels admit increased computational workload. This leads to
a minor variation in their behavior compared to that of the plots shown in Figure
For example, Figure [I1(a)| shows a slight dip in in performance in HS in when we
increase the HWTs from 16 to 32; such a dip is not visible in Figure [TT(c)}

Recursive kernels: Figures[12(a)land[12(b)|depict the runtime characteristics of re-
cursive X10-FA and X10-FAC kernels, respectively, with varying number of HWTs.
It can be seen that the behavior displayed by these kernels is similar to their itera-
tive counterparts. Similarly Figures and depict the runtime characteristics
of our recursive HJ-FA and HJ-FAP kernels, respectively with varying number of
HWTs. Similar to their iterative counterparts, we use a workload of 10 million instruc-
tions for these recursive HJ kernels. It can be seen that performance for MST falls when
the number of HWTs are 32 as compared to 16 HWTs. This is due to the relatively low
value of workload in MST, which didn’t offset the increased contention among HWTs
(compared to the case where the number of HWTs is set to 16) for the shared resources.

For brevity, in the rest of the section, we restrict ourselves to a subset of our bench-
mark kernels. We focus on the iterative HJ—-FA and HJ-FAP kernels when the number
of clusters is set to 1 (Section and on the iterative X1 0-FA and X10-FAC ker-
nels otherwise.

21

2500 T

20.00

15.00
|
1000 |

to Serial ->

5.00

Speedup in execution time with respect
to Serial -->
Speedup in execution time with respect

DST
Recursive X30-FR

kernels —7 kernels >

(a) Recursive X1 0-FA plot. (b) Recursive X1 0-FAC plot.

Figure 12: Recursive kernels plots for varying # HWTs; input size = 64 nodes, # clusters = 64.

Speedup in execution time with respect
to Serial -->

Speedup in execution time with respect

mMsT -
AP wernels 7

o \s >
ecursive H)-FA kerne

] ¥
R Recursive wn

(a) Recursive HJ-FA plot. (b) Recursive HJ-FAP plot.

Figure 13: Recursive kernels plots for varying # HWTs; input size = 64 nodes, # clusters = 64.

6.2.2. Effect of varying the input size (number of HWTs and number of clusters fixed)

We vary the input size from 8 to 512 nodes, in multiples of two. For our simula-
tions we set both the number of clusters and HWTs to eight. We choose eight HWTs
for this study, as the communication between this set of HWTs does not involve any
inter-processor or inter-hardware-node communication. For this study, the number of
clusters could have been fixed at any one of 1, 2, 4, or 8 (if the number of clusters is
more than eight then, for smaller inputs, some clusters may not contain any nodes). We
broke the tie and set the number of clusters to 8; this leads to an interesting configura-
tion where each cluster of nodes is simulated on a unique HWT and all the nodes in a
cluster are simulated on a single HWT. We study the effect of varying the number of
clusters in Section [6.2.3] and the combined effect of varying input size and number of
clusters in Section [6.2.5

Figure [T4] presents the behavior of X10-FA and X10-FAC kernels when run on
the above-discussed configurations. It is evident from the plots that as the input size
increases, the execution time for the kernels also increases. This behavior can be at-
tributed to large inputs that lead to larger graphs (hence higher memory requirement),

22

122203.06
7

- 217430
32194 33564

19930.02
400.00 -

350.00

-200.47 19g,

300.00

250.00

Execution time with respect to input size 8 -->

Va"Ying Input Size ..y

X10-FA kernels --»

(a) XLO-FA

/ / -
500.00 843.1 1678.90

\ 3418 o
450.00

400.00 |

Va
350.00 |

w
B
N

-

1.00° o

VC MST s

Execution time with respect to input size 8 -->
Varyiy
ying Input size

LR Hs pp o

X10-FAC kernels -->

(b) X10-FAC

Figure 14: x10-FA and X10-FAC plots for varying input size; # HWTs = # clusters = 8. The
execution times are normalized with respect to the execution time when the input size is set to 8.

increased phases/rounds and communication. This effect is especially pronounced for
BY, where the algorithm requires a large number of rounds to execute and in each round
every node has to communicate with all the other nodes.

6.2.3. Effect of varying the number of clusters (input size and number of HWTs fixed)

To study the effect of the clustering of nodes on the IMSuite kernels, we vary
the number of runtime places from 1 to 64. We fix the HWTs to 8 (for the reasons
mentioned above), and input size to 64 nodes (to ensure that each cluster simulates
at least one input node). Figure [I3] presents the behavior of X10-FA and X10-FAC
kernels when run on the above-discussed configurations.

We note that (for the most part) as the number of places increases there is a pro-
portional increase in the execution time of the benchmark kernels; this is owing to the

23

I
w
=
5
n

0.00

Varyi,-,g
Usters ..y,

A4.00

. 1.00 1.00

Execution time with respect to 1 cluster

,1.00 1.00 100 .
T 100 100 400
DP k¢ t

VC MST s

#Cl

LR s
DS pr

X10-FA kernels -.>

(a) XLO-FA

g
rS -

100 100

Varyin
Cluste,

. 100 100 g9

MST mis 100 100 1.00
3 —
KC s

X10-FAc kernels -.>

Execution time with respect to 1 cluster -->
#

LR s

100 g

BY pst

(b) X10-FAC

Figure 15: X10-FA and X1 0-FAC plots for varying # clusters; input size = 64, # HWTs = 8.
The execution times are normalized with respect to the time taken when the # clusters is set to 1.

increase communication cost between the tasks running on different places. Note that
BY and DR in Figure[I5(a)land VC, MST, LCR, KC, BY and DST in Figure [I5(b)| show
a slight improvement in performance when the number of places is increased from 1
to 2. Based on our discussions with X10 developers, we conjecture that such curious
behavior could be attested to gains resulting from a combination of inter-related fac-
tors concerning the distribution of tasks, such as change in cache access patterns and
decreased contention in accessing the job queues (more places = more number of job
queues for a given set of jobs = less contention for job selection). When we further in-
crease the number of places the increased inter-place communication cost overshadows
any such gains.

24

693 ., 1253
5.00
7 aso
]
5 400 -
8 4
£ 350 7
g 3.00 -
a
g 250 152 N 19 2.40
;.g 2.00 1. 2/ 1oa 1 29 1 ‘
b 1 24
2 150 1.30
£ 1°° 100100100
= - 100 1.00 100 100
2 ooo 1.00 100 100 r &,
3 - 100 1.00 ,U3523 A
] vc : : uie 5 @
a wst wis. 1R HS pp . "us 25
K bs pr gy : [Z
DST gf £3
&
HJ-FA kernels --» =0
(a) HO-FA
8.97
9.00 -
4 4 6.85
o 800 6.29
?! 7.00 -
4
8 6.00 53
2 5.00
g > 3.48 308
£ 400 192 18529 216 i 3.15
5 | . |
g 30 o7l 1620 '1 27, 2.81 174
& 2.00 .73 .
g 1.00 - 100 ’ B
5 100 1.00 : @
§ 0.00 - 1.00 1.00 1.00 1.00 L u32 oA
3 ve 100 1.00 100 100 6 5o
MST MIS (R s ' us 25
DP k¢ pg ' : =T
BY psT g £x
HI-FAP kernels --> ii &

(b) HJ-FAP

Figure 16: HJ-FA and HJ-FAP plots for varying runtime configuration Un; n = # HWTs =
input size; # clusters = 1. The execution time numbers are normalized with respect to that of US.

6.2.4. Effect of varying the input size and number of HWTs (number of clusters fixed)
We fix the number of clusters (places) to 1, to avoid the costs incurred due to inter-
place communication. This setting also enables us to demonstrate the behavior of our
HIJ based kernels (HJ-FA and HJ-FAP); FigurelE shows the runtime characteristics
of these kernels. Considering the lower/upper limits on the input size and HWTs, we
vary these key parameters between 8 to 32, in sync. That is, when the input size is set
to k, the number of HWTs is also set to k; we represent this configuration as Uk.
Note: one may naively assume that increasing the input size (say from 16 nodes
to 32 nodes) will not lead to an increase in the execution time provided there is a
proportional increase in the number of HWTs (say from 16 to 32). The behavior of
our kernels show that such a hypothesis does not hold. The execution time for all the
kernel programs increases as we gradually move from U8 to U32. This is because of

25

the increased computation and communication at each node, owing to the increased
input. Further, the rate of increase in execution time is less when we move from U8 to
U16, compared to the case when we move from U16 to U32. This is because of the
increased resource conflicts between the hardware threads, in the later case. The exact
quantum of increase depends on the working of the particular algorithm (amount of

communication, computation and so on).

6.2.5. Effect of varying the input size and number of clusters (number of HWTs fixed)
Figure[T7]displays the characteristics of X1 0—~FA and X10-FAC kernels when the

number of HWTs is set to 8 and the input size and number of clusters are varied from 8

to 64 (in multiples of two) in sync. That is, when the input size is set to k, the number

of clusters is also set to k; we represent this configuration as Vk.
Note that the execution time of higher configurations (such as V64) is significantly

442.77
90.03
100.00
90.00 73.11
2 80.00 -
B
2 70:00 43.31
E 60.00 37.8 :
a ey 24.51 36.97
g 50.00 29.56 34.55
e 20.00 19.84
£ X
30.00 8.26' 16.21
2 AT 16.43
";’ 20.00 8.57 - .7 1
2.5 .9 .6 o -
£ 1000 1! 80 5o o 7185 M M vea o ,
g2 0.00 1% 1.001%86 |45 : Y = Lvs2 Fog
3 BY - 50100 1786 1166 , o vie F 2
VC MST pms ' 100 106 ,f .- L 25
LCR Hs pp KC bs i 1.00 vs =S
PR DsT gf =2
L5
X10-FA kernels -->
(a) X10-FA
517.80
98.70 110.04
120.00
~
= 100.00
= }
€ so0.00 - 55.98
2
14 A8.€4 30.95
£ 60.00 - f
§ 2321 . 34.84
52 28.02
£ 40.00 - 22.83
= 9.59 1 .
£ 2000 9 oy) 2
] ﬁz.m 93 2510 6 o 6.9z M “ves g
= 0.00 190 100 1700 : .!_6 Lv2 2 g
-) 1.00 186 1!) 2.6 vie 55
BY vC mst ' -00 4 a £F
MIS 1R s PR 100 [v wmS
DST g §~§
> ©
X10-FAC kernels —_»

(b) X10-FAC

Figure 17: x10-FA and X10-FAC plots for varying runtime configuration Vn; n = # clusters
=input size, #HWTs = 8. The execution time numbers are normalized with respect to that of V8.

26

more than the lower ones (such as V8). This is because of three factors: a) increase
in input size leads to increased amount of work, b) increase in number of nodes leads
to increase in overheads due to conflicts in accessing shared resources (such as hard-
ware threads, memory and so on) by the tasks created, ¢) increased number of clusters

(places) leads to increased (inter-place) communication cost.

6.2.6. Effect of varying the number of clusters and number of HWTs (input size fixed)
This analysis helps understand how the clustering and increased hardware threads
affect the benchmarks. These characteristics have already been studied in Sections[6.2.1]

[6:23]and [6.2:4 We avoid further analysis of the same, for brevity.

6.2.7. Effect of varying the input size, number of clusters and number of HWTs
Figure [T8] shows the effect of varying all the three key parameters in sync: for
running a kernel for input consisting of k£ nodes, we consider each node to be present

97.37
40.00 -
28.95
35.00 -
A 30.00
- 20.03 21.34
£ 25.00
] 14.38
% 20.00
g 10.93 12.44
2 1s5.00 - E 5.89
= 3.75
=
£ ~4.02, 2.9 2
£ 10.00 oh. s 52 5a F
@ R 4.3] 3
£ = 13# ﬂ] > 23 wea T 4
5 0.0 190100 ;50 -0 of E Fwae =4
2 - 1.00 100100 2. F gE
3 BY vC st 1.00 1. ‘00 ,1.00. wie 5=
< MIS 1cR us : 1.0 ws I =
3 op bs 3
DR psT g¢ w5
&
X10-FA kernel --> 5
(a) X10-FA
103.74
s0.00 39.67
45.00 -
40.00 s 30.43
1 35.00 - 23.33
o
= 30.00 -
5 25.00 -+ 15.99 12 o
§ 20.00 - 10.18 10.11
8
= 15.00 473 6.87 2
£ 3.44 &
= 10.00 .1 w0 s = z
H . _ 3
£ so0 L 93.15 Twea £ 7
1.00 1! T2
-?:’ 0.00 . 1.0 ‘1‘0,100 100 100 160 *“v’vl"': 55
E BY vc st 100 1.00 1.0 5=
2 MIS 1cR s P ke 100 | ws _g-.g
BF i
=
X10-FAC kernels --> =

(b) X10-FAC

Figure 18: x10-FA and X10-FAC plots for varying runtime configuration Wn; n = # HWTs
= # clusters = input size. The execution time numbers are normalized with respect to W8.

27

H X10-FA HJ-FA

1.011.00

Ratio of execution time taken by Mx-In to Mn-In -->

BF DST BY DR DS KC DP Mis MsT vc

Kernels -->

Figure 19: Mx-In Vs Mn-In for X1 0-FA and HJ-FA; input size = 64, # HWTs = 32; # clusters
=1 (HJ-FA) and # clusters = 64 (X1 0-F2)

in a unique cluster (thus, leading to k clusters), and the created tasks are run on k
HWTs; we represent this runtime configuration as Wk.

In addition to the cost factors discussed in Section [6.2.4] we now incur an addi-
tional cost (resulting from inter-hardware-node communication) when we go from 32
to 64 HWTs. These cost factors explain the increase in program execution time as we
go from W8 to W32 and a sharper increase as we go from W32 to W64. The exact
quantum of increase depends on the working of the particular algorithm (amount of
communication, computation and so on).

6.2.8. Effect of varying the input type

For the X1 0-FA and HJ-FA kernels, Figure[T9|plots the ratio of the execution time
of these kernels for the input types Mx-In and Mn-In. We set the input size to 64 nodes
and set the number of HWTs to 32 (the max number of HWTs that can be used by the
HJ runtime on our hardware). The number of clusters (runtime places) is set to 64 for
X10-FA kernels and 1 for the HJ-FA kernels.

It can be seen that besides the time taken for performing the underlying compu-
tation, the execution time of a benchmark is also dependent on (i) the number of task
creation and termination operations, and (ii) the amount and cost of communication and
mutex operations. For example, as shown in Figure[7(a)} in the BY kernel, the numbers
of dynamic finish and async operations for Mn-In input (longer diameter D) are
more than that of Mx-In (shorter diameter D); this increases the execution time for the
HJ-FA version. However, in the context of X10—-FA, the cost of decreased finish
and async operations (in Mx-In) gets shadowed by the increased cost of communica-
tion, which is significantly higher than Mn-In; this leads to a reversal of behavior.

28

7. Scope of the Benchmarks

We now briefly discuss the scope of the IMSuite kernels. We organize our dis-
cussion under four heads.
1. Compiler optimizations and program analysis: An optimizing compiler can use
the IMSuite kernels to estimate its effectiveness in optimizing distributed applica-
tions (involving remote communication, barriers, load balancing and so on). The met-
rics advocated by the IMSuite kernels (such as number of task creation, join, mutex,
barrier operations) and our kernel behavior evaluation schemes (distribution of commu-
nication; behavior with increase in the number of hardware threads, number of clusters
and input size) can give meaningful insights for designing new optimizations. Fur-
ther, the compiler writers can use these metrics and evaluation schemes to evaluate the
overall effectiveness of their proposed optimizations. Developers of new parallel and
distributed program analysis techniques can use the IMSuite kernels as the basis to
test the effectiveness (scalability, precision and so on) of their proposed schemes.
2. Runtime: Developers of hypervisors, virtual machines and other managed runtimes
can use the IMSuite to study and optimize the remote communications between dif-
ferent applications.
3. Simulators: Architecture and network simulators can use the communication trace
generated by the IMSuite kernels, for varied inputs, to reason about the network traf-
fic in the context of varied distributed systems.
4. Study of distributed systems: Though our analysis is shown in the context of a
tightly coupled system, the IMSuite kernels can be run on both tightly and loosely
coupled systems. This enables us to reason about different important aspects of dis-
tributed systems, even in the absence of expensive distributed hardware.

8. Conclusion

In this paper, we first identify a set of key requirements necessary for a kernel
benchmark suite implementing distributed algorithms. We then present and character-
ize a new kernel benchmark suite (named IMSuite) that simulates twelve classical
distributed algorithms (for varying input and runtime configurations) and meets all
the key requirements. Currently, the kernels in IMSuite are available in two task
parallel languages: X10 and HJ. Considering the different popular parallel program-
ming styles, we present multiple variations of our kernels — 31 parallel programs per
language. To conveniently simulate varied configurations of distributed systems, we
present an input generator and an output validator for each algorithm under consid-
eration. IMSuite can be freely downloaded from http://www.cse.iitm.ac.
in/~krishna/imsuite.

Our proposed benchmarks can be ported to other languages that support distributed
memory (such as MPI) and shared memory (such as OpenMP). We believe that our
evaluation of IMSuite in the context UP and SP models of distribution, gives us
some indication of how the future MPI and OpenMP ports of IMSuite may behave.

29

http://www.cse.iitm.ac.in/~krishna/imsuite
http://www.cse.iitm.ac.in/~krishna/imsuite

Acknowledgment

We thank the anonymous reviewers for their insightful comments and suggestions
on an earlier version of this paper. We thank T V Kalyan, Tripti Warrier and John
Jose for their comments on an earlier version of this paper. We thank the X10 de-
velopers community, especially Igor Peshanksy and Vijay Saraswat, for their help in
analysing some of the obtained results (chiefly for the results in Section[6.2.3). This
research is partially supported by the New Faculty Seed Grant, funded by IIT Madras
CSE/11-12/567/NFSC/NANYV, DAE research grant CSE/13-14/139/BRNS/NANYV and
DST Fasttrack grant CSE/13-14/140/DSTX/NANV.

References
[1] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers Inc., 1996.

[2] D. Peleg, Distributed computing: A Locality-Sensitive Approach, Society for In-
dustrial and Applied Mathematics, 2000.

[3] R. Wattenhofer, Lecture notes on Principles of Distributed Computing, Swiss
Federal Institute of Technology Zurich, 2011.

[4] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri,
K. Tangwongsan, Brief Announcement: The Problem Based Benchmark Suite,
in: Proceedinbgs of the 24th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 12, ACM, New York, NY, USA, 2012, pp. 68-70.

[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, S. K. Weeratunga, The NAS Parallel Benchmarks-Summary
and Preliminary Results, in: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, Supercomputing '91, ACM, New York, NY, USA, 1991, pp.
158-165.

[6] A. Duran, X. Teruel, R. Ferrer, X. Martorell, E. Ayguade, Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in OpenMP, in: Proceedings of the International Conference on Parallel Process-
ing, IEEE Computer Society, Washington, DC, USA, 2009, pp. 124-131.

[7] C. Bienia, S. Kumar, J. P. Singh, K. Li, The PARSEC benchmark suite: charac-
terization and architectural implications, in: Proceedings of the international con-
ference on Parallel architectures and compilation techniques, ACM, New York,
NY, USA, 2008, pp. 72-81.

[8] J. M. Bull, J. Enright, X. Guo, C. Maynard, F. Reid, Performance Evaluation
of Mixed-Mode OpenMP/MPI Implementations, International journal of parallel
programming 38 (2010) 396-417.

30

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, Y. Tsiouris, I. E. Venetis,
A Scalability Benchmark Suite for Erlang/OTP, in: Proceedings of the ACM SIG-
PLAN Workshop on Erlang, ACM, New York, NY, USA, 2012, pp. 33-42.

V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, B. Parady,
SPEComp: A New Benchmark Suite for Measuring Parallel Computer Perfor-
mance, in: Proceedings of the International Workshop on OpenMP Applications
and Tools: OpenMP Shared Memory Parallel Programming, Springer-Verlag,
London, UK, 2001, pp. 1-10.

J. M. Bull, F. Reid, N. McDonnell, A Microbenchmark Suite for OpenMP Tasks,
in: Proceedings of the 8th international conference on OpenMP in a Heteroge-
neous World, IWOMP’ 12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 271-
274.

C. Daly, J. Horgan, J. Power, J. Waldron, Platform Independent Dynamic Java
Virtual Machine Analysis: the Java Grande Forum Benchmark suite, in: Proceed-
ings of the joint ACM-ISCOPE Conference on Java Grande, ACM, New York,
NY, USA, 2001, pp. 106-115.

R. V. Der Wijngaart, M. A. Frumkin, NAS Grid Benchmarks Version 1.0, Nasa
technical report nas-02-005, NASA Ames Research Center, Morfett Field, CA,
USA (2002).

Intel MPI Benchmarks: User Guide and Methodology Description (October
2012).

P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas, R. Raben-
seifner, D. Takahashi, The HPC Challenge (HPCC) Benchmark Suite, in: Pro-
ceedings of the ACM/IEEE Conference on Supercomputing, ACM, New York,
NY, USA, 2006.

M. S. Miiller, M. Van Waveren, R. Lieberman, B. Whitney, H. Saito, K. Ku-
maran, J. Baron, W. C. Brantley, C. Parrott, T. Elken, H. Feng, C. Ponder, SPEC
MPI2007-An Application Benchmark Suite for Parallel Systems using MPI, Con-
curr. Comput. : Pract. Exper. 22 (2010) 191-205.

J. P. Singh, W. Weber, A. Gupta, SPLASH: Stanford Parallel Applications for
Shared-Memory, SIGARCH Comput. Archit. News 20 (1992) 5-44.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta, The SPLASH-2 programs:
characterization and methodological considerations, SIGARCH Comput. Archit.
News 23 (1995) 24-36.

V. Saraswat, B. Bard, P. Igor, O. Tardieu, D. Grove, X10 Language Specification
Version 2.3, Tech. rep., IBM (2012).

V. Cavé, J. Zhao, J. Shirako, V. Sarkar, Habanero-Java: The New Adventures
of Old X10, in: Proceedings of the International Conference on Principles and
Practice of Programming in Java, ACM, New York, NY, USA, 2011, pp. 51-61.

31

[21] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press,
1995.

[22] A.S. Tanenbaum, Computer Networks, Pearson Education India, 1985.

[23] D. Peleg, Time-Optimal Leader Election in General Networks, J. Parallel Distrib.
Comput. 8 (1990) 96-99.

[24] Habanero Multicore Software Research Project web page,
https://wiki.rice.edu/confluence/display/HABANERO/HIJ.

[25] A. Georges, D. Buytaert, L. Eeckhout, Statistically Rigorous Java Performance
Evaluation, in: Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems Languages and Applications, ACM, New York,
NY, USA, 2007, pp. 57-76.

32

	1 Introduction
	2 Related Work
	3 Background
	3.1 Core algorithms
	3.2 X10 and HJ background

	4 Transformation Scheme
	4.1 Sample transformation

	5 Internals of IMSuite
	5.1 Input generator
	5.2 Output validators
	5.3 Conformance to the key requirements

	6 Evaluation
	6.1 Kernel characteristics
	6.1.1 Iterative kernels
	6.1.2 Recursive kernels

	6.2 Performance analysis
	6.2.1 Effect of varying the number of HWTs (input size and number of clusters fixed)
	6.2.2 Effect of varying the input size (number of HWTs and number of clusters fixed)
	6.2.3 Effect of varying the number of clusters (input size and number of HWTs fixed)
	6.2.4 Effect of varying the input size and number of HWTs (number of clusters fixed)
	6.2.5 Effect of varying the input size and number of clusters (number of HWTs fixed)
	6.2.6 Effect of varying the number of clusters and number of HWTs (input size fixed)
	6.2.7 Effect of varying the input size, number of clusters and number of HWTs
	6.2.8 Effect of varying the input type

	7 Scope of the Benchmarks
	8 Conclusion

