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Grad’s method of moments is employed to develop higher-order Grad moment
equations—up to first 26-moments—for dilute granular gases within the framework
of the (inelastic) Boltzmann equation. The homogeneous cooling state of a freely cooling
granular gas is investigated with the Grad 26-moment equations in a semi-linearized
setting and it is shown that the granular temperature in the homogeneous cooling state
still decays according to Haff’s law while the other higher-order moments decay on
a faster time scale. The nonlinear terms of fully contracted fourth moment are also
considered and, by exploiting the stability analysis of fixed points, it is shown that these
nonlinear terms have negligible effect on Haff’s law. Furthermore, an even larger Grad
moment system which includes the fully contracted sixth moment is also scrutinized and
the stability analysis of fixed points is again exploited to conclude that even the inclusion
of scalar sixth order moment into the Grad moment system has negligible effect on
Haff’s law. The constitutive relations for the stress and heat flux (i.e., the Navier–Stokes
and Fourier relations) are derived through the Grad 26-moment equations and compared
with those obtained via CE expansion and via computer simulations. The linear stability
of the homogeneous cooling state is analyzed through the Grad 26-moment system and
various sub-systems by decomposing them into longitudinal and transverse systems. It
is found that one eigenmode in both longitudinal and transverse systems in the case
of inelastic gases is unstable. By comparing the eigenmodes from various theories, it
is established that the 13-moment eigenmode theory predicts that the unstable heat
mode of the longitudinal system remains unstable for all wavenumbers below a certain
coefficient of restitution while any other higher-order moment theory shows that this
mode becomes stable above some critical wavenumber for all values of the coefficient
of restitution. In particular, the Grad 26-moment theory leads to a smooth profile for
the critical wavenumber in contrast to the other considered theories. Furthermore, the
critical system size obtained through the Grad 26-moment and existing theories are also
in excellent agreement.

1. Introduction

A conglomeration of discrete macroscopic particles characterized by dissipative col-
lisions is termed as a granular material. Granular materials are prevalent in various
industries—for instance, in chemical, agriculture and food industries—as well as in
nature—for instance, in asteroid belt, sand dunes, debris, etc. Under substantially strong
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driving forces (e.g., vibration, shearing, etc.), granular materials are in rapid flow regime,
in which they exhibit fluid-like behavior and often referred to as granular gases (Campbell
1990; Goldhirsch 2003). In the rapid flow regime, the particles of a granular material
move randomly and, similar to a monatomic gas, it can be assumed that the collisions
among them are binary and instantaneous. However, in contrast to a monatomic gas,
the collisions between any two particles of a granular material are inherently inelastic,
and thereby energy is dissipated during each collision. The inelastic collisions in granular
materials lead to many interesting phenomena—for instance, standing wave patterns
(Melo et al. 1995; Umbanhowar et al. 1996), clustering (Kudrolli et al. 1997), fingering
(Pouliquen et al. 1997), mixing and segregation (Ottino & Khakhar 2000; Mullin 2000;
Breu et al. 2003), shear banding (Mueth et al. 2000; Shukla & Alam 2009), jamming
(Corwin et al. 2005), density waves (Liss et al. 2002; Alam et al. 2009), etc. Nevertheless,
the mechanics of granular material is still not well-understood, although there have been
significant developments in the last couple of decades.
The analogy between granular and molecular fluids has motivated several researchers

to devise theoretical methods—for studying granular fluids—based on kinetic theory
within the framework of the Boltzmann equation, see e.g., Jenkins & Richman (1985a,b);
Goldshtein & Shapiro (1995); Brey et al. (1996); Sela & Goldhirsch (1998); Brey et al.
(1998a); Garzó & Santos (2003); Brilliantov & Pöschel (2004); Bisi et al. (2004);
Kremer et al. (2014). Kinetic theory for granular flows was first introduced in the
two seminal papers by Jenkins & Savage (1983) and Lun et al. (1984) where the former
deals with the theory for nearly elastic granular flows while the latter with arbitrary
inelasticity. The reported works on the kinetic theory for granular fluids also attempted
to extend the two well-known approximation methods in kinetic theory for monatomic
gases, namely the Chapman–Enskog (CE) expansion (Chapman & Cowling 1970) and
Grad’s method of moments (Grad 1949b). Despite the fact that the higher-order
approximations (Burnett and beyond) resulting from the CE expansion lead to unstable
equations while the Grad’s method of moments always yields linearly stable sets of
equations in the case of monatomic gases (Bobylev 1982), the former has extensively
been studied even for granular gases. Goldshtein & Shapiro (1995) applied the CE
expansion to obtain Euler-like hydrodynamic equations for rough granular flows. The
papers by Brey et al. (1998a) and Garzó & Dufty (1999) apply the CE expansion to
dilute and dense granular gases, respectively, to derive the first order (Navier–Stokes
and Fourier) constitutive relations for the system of mass, momentum and energy
balance equations. Both the works assume that the space and time dependence of the
distribution function can be expressed completely in terms of the hydrodynamic fields
and represent the distribution function in a formal series of a uniformity parameter
which measures the strength of spatial gradients of the hydrodynamic fields. Sela et al.
(1996) performed a generalized expansion on the distribution function in powers of two
small parameters, namely the Knudsen number and the degree of inelasticity ǫ = 1− e2

with e being the coefficient of (normal) restitution and determined the constitutive
relations up to Burnett order for the system of mass, momentum and energy balance
equations specialized to a simply sheared two-dimensional hard-sphere granular gas
via the CE expansion. Subsequently, with the same method, Sela & Goldhirsch (1998)
(see also Gupta 2011) determined the constitutive relations up to Burnett order for a
smooth hard-sphere granular gas in three dimensions. However, both these works restrict
the coefficient of restitution for being very close to 1 in order to get the zeroth order
solution in the expansion as Maxwellian, similar to a monatomic gas. Lutsko (2005)
employed the CE expansion to obtain the constitutive relations for dense granular gases
with arbitrary energy loss models. His model produced the homogeneous cooling state
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(HCS) solution at the zeroth order in the expansion while Navier–Stokes and Fourier
constitutive relations at first order. Following the approach of expanding the distribution
function in powers of uniformity parameter, Khalil et al. (2014) recently obtained the
Burnett order constitutive relations for a smooth granular gas described with (inelastic)
Maxwell interaction potential via the CE expansion. It is worth to point out that, unlike
Sela & Goldhirsch (1998), their approach does not restrict the coefficient of restitution
for being close to 1. Recently, Kremer et al. (2014) employed the CE expansion to
obtain the transport coefficients up to Navier–Stokes order for a granular gas of rough
hard-spheres.
Despite the success of the Grad’s method of moments over the CE expansion in the

case of monatomic gases (see e.g., Torrilhon 2016, and references therein), the former
in the case of granular flows has received much less attention than the latter which
has been investigated extensively. Nevertheless, over the last few years, researchers have
shown interest in exploring the former as well (see e.g., Kremer & Marques Jr. 2011;
Garzó 2013; Saha & Alam 2014). The pioneering work on Grad’s method of moments for
granular flows is due to Jenkins & Richman who extended the method to granular flows
and derived the Grad 13-moment (G13) equations for a dense and smooth granular gas
in Jenkins & Richman (1985a) and, subsequently, the Grad 16-moment equations for a
dense and rough two-dimensional granular gas in Jenkins & Richman (1985b)—the extra
field variables in the latter are due to rotational motion of rough particles on collision.
Bisi et al. (2004) further extended the Grad’s method of moments to weakly inelastic
granular flows with variable coefficient of restitution, in one-dimension though. As it is
well-established that the scalar fourth moment is necessary for the proper description
of a granular gas, Risso & Cordero (2002) included the scalar fourth moment and—
for a granular gas—obtained Grad moment equations for 9 hydrodynamic fields in two
dimensions (corresponding to 14 field variables in three dimensions), and applied them
to investigate two problems, namely the HCS and a granular system steadily heated
by two parallel walls. Kremer & Marques Jr. (2011) presented the Grad 14-moment
(G14) theory for dilute granular gases and by employing this theory, they investigated
the HCS, found the constitutive relations for five moment equations, and performed
eigenmode analysis on thirteen field theory, where they assumed a constant value for the
scalar fourth moment. Garzó (2013) demonstrated the G14 theory for moderately dense
granular flows, although the work aimed at finding the Navier–Stokes level constitutive
relations through the G14 equations. Recently, Saha & Alam (2014) developed the Grad’s
method of moments based on anisotropic Gaussian and employed it to investigate the
non-Newtonian stress, collisional dissipation and heat flux in a sheared two-dimensional
granular flow.
The main reasons—among others—that the Grad’s method of moments for granular

flows is receiving less attention could be that (i) the production terms, which emanate
through the Boltzmann collision integral, in the moment equations are very difficult to
evaluate for a general interaction potential, (ii) how many and which moments one should
consider for describing a process is not known a priori, and (iii) the boundary conditions
associated with the Grad moment equations are unclear, which is apparently also the
case for higher-order equations resulting from the CE expansion. Over the last couple of
years, the two of the present authors have developed a computational methodology, which
can compute the production terms associated with the Grad moment equations for (i)
a monatomic gas, (ii) a mixture of monatomic gases, and (iii) a dilute granular gas, all
interacting with a general interaction potential (Gupta & Torrilhon 2012, 2015a; Gupta
2015). The order of magnitude method developed by Struchtrup (2004, 2005)—which
regularizes the original G13 equations—identifies the required moments for describing a
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process in rarefied monatomic gases in a systematic way, although the method requires the
Grad 26-moment (G26) equations which at present are not available for granular gases.
The boundary conditions associated with the Grad moment equations for monatomic
gases are typically obtained using the Maxwell accommodation model (Maxwell 1879);
however, those for granular gases are yet to be explored.
Within moment approximations the number of moments is crucial and has a strong

influence on the results, especially when considering only few moments. It is known
form studies in monatomic gases that, while moment approximations do converge to
the solution of the Boltzmann equation for large number of moments, when using small
systems oscillatory convergence pattern makes it difficult to judge the approximation
quality, see Torrilhon (2015). Consequently, when using moment approximations, one
should always compare a set of successive approximations with different number of
moments. The result of a 14-moment theory alone is not conclusive and must be cross-
checked with larger systems. A similar argument applies to using linearized models,
where it is important to check the possible influence of non-linearity even if the outcome
confirms its negligibility. Another important reason to consider moment equations beyond
14 moments is the long-term perspective of establishing a complete set of predictive
moment equations for granular flows. For monatomic gases, the regularized 13-moment
(R13) equations provide such a model. The R13 system is derived from the G26 model
and only on that level relevant phenomena like Knudsen layers or non-gradient transport
can be predicted.
In this paper, we derive the G26 equations for dilute granular gases through the

Grad’s method of moments, although we neither consider the regularization of the
Grad moment equations nor the required boundary conditions—these problems will be
considered elsewhere in future. The fully nonlinear production terms associated with an
even larger Grad moment system—which includes the fully contracted sixth moment
as a field variable along with the 26 moments and is referred to as the system of
Grad 27-moment (G27) equations here—are computed with computer algebra software
Mathematica R© and presented in appendix A for hard-sphere interaction potential.
The production terms for the G26 equations can readily be found from those for the G27
equations by simply discarding the terms containing the fully contracted sixth moment.
Here, it is noteworthy to point out that the present work does not have any restriction on
the coefficient of restitution other than being a constant and is, consequently, expected
to be applicable not only for nearly elastic granular gases but also for those having large
inelasticity. With the semi-linearized G26 and G27 equations, we investigate the HCS—
which has also been studied a lot theoretically, numerically as well as experimentally—of
a freely cooling granular gas to show that the decay of granular temperature closely
follows Haff’s law (Haff 1983) while the other higher-order moments relax on a faster
time scale than the granular temperature. We further study the effects of nonlinear
terms of scalar fourth moment and that of linear terms of scalar sixth moment on Haff’s
law. Following the approach of Garzó (2013), we determine the constitutive relations
for the stress and heat flux for dilute granular gases through the G26 equations and
compare them with those obtained via CE expansion and via computer simulations.
We further investigate the linear stability of HCS by scrutinizing the eigenmodes of
longitudinal and transverse problems associated with the G26 system and other sub-
systems. Similar problems related to the stability of eigenmodes have been investigated
earlier by Brey et al. (1996) for five moment theory and by Kremer & Marques Jr. (2011)
for thirteen moment theory. We find that one eigenmode from each Grad moment theory
considered in this paper is unstable for inelastic gases while others are stable, while
all the eigenmodes are stable for monatomic (elastic) gases. Moreover, the thirteen
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moment theory of Kremer & Marques Jr. (2011) shows that the unstable heat mode
of the longitudinal system remains unstable below a certain value of the coefficient of
restitution for all wavenumbers while the present work reveals that the unstable heat
mode of the longitudinal system associated with all moment theories expect for the G13
theory becomes stable above a critical wavenumber for all values of the coefficient of
restitution. By investigating the critical wavenumbers of the longitudinal and transverse
systems from the G26 theory, we also study the critical system size, beyond which
the system becomes unstable, and compare the results with the existing theories and
simulations. The findings of the paper will be useful in better understanding of granular
gases, in developing new mathematical models—such as regularized moment equations—
and boundary conditions, and in capturing some intriguing features of granular gases
theoretically.
The rest of the paper is structured as follows. Kinetic theory for granular gases is

briefly reviewed in § 2. Grad’s method of moments is outlined and applied to derive the
Grad moment systems of various orders—in particular, the system of G26 equations—for
granular gases in § 3. The HCS of a freely cooling granular gas is investigated through the
G26 and G27 equations in § 4 in order to discern the effects of nonlinear terms of scalar
fourth moment and of linear terms of scalar sixth moment on HCS. The constitutive
relations for the stress and heat flux are computed through the G26 equations in § 5.
The linear stability of HCS is analyzed in § 6 through the G26 equations by decomposing
them into longitudinal and transverse systems. The conclusions of the paper are given in
§ 7.

2. Short review of kinetic theory

We consider a dilute granular gas composed of smooth-inelastic-identical hard-spheres
of mass m and diameter d. The binary collision between two such spheres having pre-
collisional velocities c and c1 leads to the following velocity transformation after the
collision (see e.g., Brilliantov & Pöschel 2004; Rao & Nott 2008):

c′ = c− 1 + e

2
(k̂ · g)k̂,

c′1 = c1 +
1 + e

2
(k̂ · g)k̂,







(2.1)

where c′ and c′1 are the post-collisional velocities of the respective spheres, g = c −
c1 is the relative velocity, k̂ is the unit vector directed from the center of one sphere
to that of other at the time of collision, and e is the coefficient of normal restitution
(also, referred to as the coefficient of restitution). The coefficient of restitution e, in
principle, is not a constant and usually depends on impact velocity (Bizon et al. 1999;
Brilliantov & Pöschel 2004). Nevertheless, for simplicity, we assume that e is constant
with 0 6 e 6 1 in this work. The two limiting cases of e = 0 and e = 1 correspond to
sticky and perfectly elastic collisions, respectively.
In kinetic theory, the state of a dilute granular gas can be described with single-particle

velocity distribution function f ≡ f(t,x, c) which obeys the (inelastic) Boltzmann equa-
tion (Goldshtein & Shapiro 1995; Sela & Goldhirsch 1998; Brilliantov & Pöschel 2004)

∂f

∂t
+ ci

∂f

∂xi
+ Fi

∂f

∂ci
= d2

∫

R3

∫

S2

(
1

e2
f ′′f ′′

1 − ff1

)

(k̂ · g)Θ(k̂ · g) dk̂ dc1, (2.2)

where Θ is the Heaviside step function, F is the external force per unit mass and usually
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do not depend on c, f1 ≡ f(t,x, c1), f
′′ ≡ f(t,x, c′′), f ′′

1 ≡ f(t,x, c′′1), the integration

limits of k̂ extend over the unit sphere S2 and Einstein summation convention is assumed
over repeated indices. The velocities c′′ and c′′1 are the pre-collisional velocities in an
inverse collision and are related to the c and c1 as follows (see e.g., Brilliantov & Pöschel
2004; Rao & Nott 2008).

c′′ = c− 1 + e

2e
(k̂ · g)k̂,

c′′1 = c1 +
1+ e

2e
(k̂ · g)k̂.







(2.3)

Owing to brevity, hereafter, we shall omit the limits of integrations. Nevertheless, the
integration over any velocity space will stand for the volume integral over R3 and that
over k̂ will stand for the volume integral over the unit sphere S2. The right-hand side
(RHS) of (2.2) is referred to as the (inelastic) Boltzmann collision operator.

The hydrodynamic variables—number density n ≡ n(t,x), macroscopic velocity v ≡
v(t,x), granular temperature T ≡ T (t,x)—are directly related to the velocity distribu-
tion function as follows.

n(t,x) =

∫

f(t,x, c) dc, (2.4)

n(t,x)v(t,x) =

∫

c f(t,x, c) dc, (2.5)

3

2
n(t,x)T (t,x) =

1

2
m

∫

C2 f(t,x, c) dc, (2.6)

where C(t,x, c) = c−v(t,x) is the peculiar velocity. Here, the definition of the granular
temperature—which is a measure of fluctuating kinetic energy—is adopted following
the references Brilliantov & Pöschel (2004); Garzó (2013), although some authors—for
instance, Lun et al. (1984); Campbell (1990); Saha & Alam (2014)—also refer θ = T/m
as granular temperature (defined as fluctuating kinetic energy per unit mass). It should
be noted that in the case of monatomic gases, T in (2.6) is replaced with kBTth, where
kB denotes the Boltzmann constant and Tth is the thermodynamic temperature.

The governing equations for the hydrodynamic variables can be derived from the
Boltzmann equation (2.2) as follows. Let us first introduce the moments. For a particle
property, ψ ≡ ψ(t,x, c), its average value 〈ψ〉 ≡ 〈ψ〉(t,x) is defined in terms of the
distribution function f as

〈ψ〉(t,x) = 1

n(t,x)

∫

ψ(t,x, c) f(t,x, c) dc. (2.7)

The integral
∫
ψf dc on the RHS of (2.7) is referred to as the moment of the velocity

distribution function with respect to ψ. Clearly,

1 = 〈1〉, v = 〈c〉 and T =

〈
1

3
mC2

〉

. (2.8)

The governing equation for the moment
∫
ψf dc—often, referred to as the moment

equation for n〈ψ〉 or the transfer equation for property ψ—is obtained by multiplying the
Boltzmann equation (2.2) with ψ and integrating over the velocity space c. The transfer
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equation for the quantity ψ reads

D

Dt

∫

ψf dc+
∂

∂xi

∫

ψCif dc+
∂vi
∂xi

∫

ψf dc −
∫ (

Dψ

Dt
+ Ci

∂ψ

∂xi
+ Fi

∂ψ

∂ci

)

f dc = P(ψ),

(2.9)

where D
Dt ≡ ∂

∂t + v · ∇ is the material derivative, the underline denotes the flux term,
and

P(ψ) =
d2

2

∫∫∫
(
ψ′ + ψ′

1 − ψ − ψ1

)
ff1(k̂ · g)Θ(k̂ · g) dk̂ dc dc1

= d2
∫∫∫

(
ψ′ − ψ

)
ff1(k̂ · g)Θ(k̂ · g) dk̂ dc dc1, (2.10)

with ψ′ ≡ ψ(t,x, c′) etc., is the rate of change of 〈ψ〉 per unit volume due to collisions
and referred to as the production term or the (inelastic) Boltzmann collision integral
corresponding to moment

∫
ψf dc. While writing (2.10), the symmetry properties of the

Boltzmann collision operator (Brilliantov & Pöschel 2004; Rao & Nott 2008) have been
employed. It should be noted from the transfer equation (2.9) that irrespective of the
value of ψ chosen for defining a moment by (2.7), the transfer equation (2.9) will always
contain an additional moment of one more order in the flux term. On substituting ψ in
(2.9) with 1, ci and

1
3mC2 successively, we get the mass, momentum and energy balance

equations, respectively, which read

Dn

Dt
+ n

∂vi
∂xi

= 0, (2.11)

Dvi
Dt

+
1

mn

[
∂σij
∂xj

+
∂(nT )

∂xi

]

− Fi = 0, (2.12)

DT

Dt
+

2

3n

[
∂qi
∂xi

+ σij
∂vi
∂xj

+ nT
∂vi
∂xi

]

= −ζ T. (2.13)

In (2.12) and (2.13), σij ≡ σij(t,x) and qi ≡ qi(t,x) are the component of stress tensor
and heat flux, respectively, and—following the notations of Struchtrup (2005)—these are
given by

σij = m

∫

C〈iCj〉f dc and qi =
1

2
m

∫

C2Cif dc, (2.14)

where the angle brackets around the indices denote the symmetric and traceless part of
the tensor (Struchtrup 2005), and ζ in (2.13) is the cooling rate due to inelastic collisions:

ζ = −md2

6nT

∫∫∫ (

(C′)2 + (C′
1)

2 − C2 − C2
1

)

ff1(k̂ · g)Θ(k̂ · g) dk̂ dc dc1. (2.15)

Note that the RHSs of (2.11) and (2.12) vanish due to conservation of mass and
momentum; however, the energy is not conserved due to dissipative collisions resulting
into non vanishing RHS in (2.13). It is worth pointing out that the stress and heat
flux appearing in (2.12) and (2.13)—in general—have non-vanishing collisional contri-
butions in addition to the usual kinetic contribution given by (2.14) (Brey et al. 1997;
Garzó & Dufty 1999; Rao & Nott 2008; Garzó 2013). However, for dilute granular gases,
the kinetic contributions to the stress and heat flux dominate over their respective
collisional transfer contributions, and therefore the collisional transfer contributions to
the stress and heat flux can be neglected for dilute granular gases (Brilliantov & Pöschel
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2004). In any case, since (2.12) and (2.13) are obtained here by taking the velocity
moments of the distribution function—which is essentially the idea of Grad’s method
of moments too, only kinetic contributions to the stress and heat flux will emerge in
the equations. The collisional contributions to stress and heat flux, in the case of dense
granular gases, must be computed separately (Garzó 2013).
Obviously, the system of equations (2.11)–(2.13) in hydrodynamic variable n, vi and

T is not closed, since it contains the unknowns σij , qi and ζ, and in order to deal with
this system further one must close it. Here, we employ Grad’s method of moments (Grad
1949b) in order to obtain a closed system of equations.

3. Grad’s method of moments

The function ψ in (2.7) can be chosen in infinitely many ways. Therefore, the transfer
equation (2.9) leads to an infinite hierarchy of moment equations. However, in practice,
only a finite number of moment equations—obtained by truncating the infinite hierarchy
of moment equations at a certain level—are used. Nonetheless, this truncated system of
equation is not closed due to the (underlined) flux term in (2.9). In order to obtain a closed
(finite) system of moment equations, Grad (1949b) expanded the velocity distribution
function f in a finite linear combination of the N -dimensional Hermite polynomials (Grad
1949a) in peculiar velocity and computed the unknown coefficients in the expansion in
terms of the considered moments by satisfying their definitions with the approximated
distribution function. This method of obtaining a closed set of moment equations is
referred to as Grad’s method of moments and its details can be found in Grad (1949b)
and in many standard textbooks, see e.g., Struchtrup (2005); Kremer (2010).
On including the governing equations for stress (σij) and heat flux (qi) into the system

of mass, momentum and energy balance equations (2.11)–(2.13), one obtains the well-
known 13-moment equations (in three dimensions). Here, we want to derive and explore
the G26 equations for dilute granular flows. To this end, let us first introduce the general
form of a moment. The typical form of ψ is mC2aC〈i1Ci2 . . . Cin〉, where a, n ∈ N0 and
the angle brackets around the indices again denote the symmetric and traceless part of
the corresponding quantity (Struchtrup 2005). Thus, a general moment is given by

uai1i2...in = m

∫

C2aC〈i1Ci2 . . . Cin〉 f dc, a, n ∈ N0. (3.1)

Clearly,

u0 = mn = ρ, u0i = 0, u1 = 3nT = 3 ρ θ, u0ij = σij , u1i = 2 qi, (3.2)

where ρ = mn is the mass density and θ = T/m.

3.1. 26-moment equations

In addition to the well-known 13 moments, the system of 26-moment equations include
full third rank tensor and one- and full-traces of the fourth moment (i.e., the 26-moment
equations include the moments n, vi, T , σij , qi, u

0
ijk, u

1
ij , u

2). The system of G26 equations

is obtained by substituting ψ in (2.9) with 1, ci,
1
3mC2,mC〈iCj〉,

1
2mC2Ci,mC〈iCjCk〉,

mC2C〈iCj〉 and mC4 successively. The system of 26-moment equations consists of the
mass, momentum and energy balance equations (2.11)–(2.13) and other higher-order
moment equations, which on using the abbreviations

mijk = u0ijk, Rij = u1ij − 7θσij , w = u2 − 15ρθ2, (3.3)
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read

Dσij
Dt

+
∂mijk

∂xk
+

4

5

∂q〈i

∂xj〉
+ σij

∂vk
∂xk

+ 2σk〈i
∂vj〉

∂xk
+ 2ρθ

∂v〈i

∂xj〉
= P0

ij , (3.4)

Dqi
Dt

+
1

2

∂Rij

∂xj
+

1

6

∂w

∂xi
+ θ

∂σij
∂xj

+
5

2
σij

∂θ

∂xj
+

5

2
ρθ

∂θ

∂xi
+mijk

∂vj
∂xk

−σij
1

ρ

(
∂σjk
∂xk

+ θ
∂ρ

∂xj

)

+
7

5
qi
∂vj
∂xj

+
7

5
qj
∂vi
∂xj

+
2

5
qj
∂vj
∂xi

=
1

2
P1
i , (3.5)

Dmijk

Dt
+
∂u0ijkl
∂xl

+
3

7

∂R〈ij

∂xk〉
+ 3θ

∂σ〈ij

∂xk〉
− 3

1

ρ
σ〈ij

(
∂σk〉l

∂xl
+ θ

∂ρ

∂xk〉

)

+mijk
∂vl
∂xl

+ 3ml〈ij

∂vk〉

∂xl
+

12

5
q〈i

∂vj
∂xk〉

= P0
ijk, (3.6)

DRij

Dt
+ 2u0ijkl

∂vk
∂xl

+
∂u1ijk
∂xk

+
2

5

∂u2〈i

∂xj〉
+Rij

∂vk
∂xk

− 28

5
θ
∂q〈i

∂xj〉
− 28

5
q〈i

∂θ

∂xj〉

+ 4θσk〈i
∂vk
∂xj〉

+ 4θσk〈i
∂vj〉

∂xk
− 8

3
θσij

∂vk
∂xk

− 14

3

1

ρ
σij

∂qk
∂xk

− 14

3

1

ρ
σijσkl

∂vk
∂xl

− 7θ
∂mijk

∂xk
+

6

7
R〈ij

∂vk〉

∂xk
+

4

5
Rk〈i

∂vk
∂xj〉

+ 2Rk〈i

∂vj〉

∂xk
+

14

15
w
∂v〈i

∂xj〉

− 2mijk
∂θ

∂xk
− 2

1

ρ
mijk

(
∂σkl
∂xl

+ θ
∂ρ

∂xk

)

− 28

5

1

ρ
q〈i

(
∂σj〉k
∂xk

+ θ
∂ρ

∂xj〉

)

= P1
ij − 7θP0

ij −
14

3

1

ρ
σij

(
1

2
P1

)

, (3.7)

Dw

Dt
+
∂u2i
∂xi

− 20θ
∂qi
∂xi

− 8qi
∂θ

∂xi
+

7

3
w
∂vi
∂xi

+ 4Rij
∂vi
∂xj

+ 8θσij
∂vi
∂xj

− 8
1

ρ
qi

(
∂σij
∂xj

+ θ
∂ρ

∂xi

)

= P2 − 20θ

(
1

2
P1

)

, (3.8)

where

Pa
i1i2...in = md2

∫∫∫ (

(C′)2aC′
〈i1
C′

i2 . . . C
′
in〉 − C2aC〈i1Ci2 . . . Cin〉

)

× ff1(k̂ · g)Θ(k̂ · g) dk̂ dc dc1 (3.9)

are the production terms. Notice that P0 = P0
i = 0 due to mass and momentum

conservation, and P1 = −3nT ζ.
In (3.3), w has been defined as the difference of the full trace of fourth moment to its

value computed with the Maxwellian distribution function

fM ≡ fM (t,x, c) = n

(
1

2 π θ

)3/2

exp

(

−C
2

2 θ

)

, (3.10)

and Rij is defined as the difference of the one trace of fourth moment to its value
computed with the Grad 13-moment (G13) distribution function so that the quantities
mijk, Rij and w vanish for the G13 theory. It may be noted that the value of the full
trace of fourth moment u2 when computed either with Maxwellian distribution function
or with the G13 distribution function is 15ρθ2.
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3.2. Grad 26-moment closure

Clearly, the system of 26-moment equations (eqs. (2.11)–(2.13) and (3.4)–(3.8)) is not
closed, since it contains the unknown higher-order moments u0ijkl, u

2
i and u1ijk, and on

top of that the production terms are also not known. The system is closed with the Grad
distribution function based on the 26 moments considered, which is referred to as the
G26 distribution function and reads

f|G26 = fM

[

1 +
1

2

σij
ρ θ2

CiCj +
1

5

qi
ρ θ2

Ci

(
C2

θ
− 5

)

+
1

6

mijk

ρ θ3
CiCjCk

+
1

28

Rij

ρ θ3
CiCj

(
C2

θ
− 7

)

+
1

8

w

ρ θ2

(

1− 2

3

C2

θ
+

1

15

C4

θ2

)]

. (3.11)

Insertion of the G26 distribution function (3.11) into the definitions of higher-order
moments u0ijkl, u

2
i and u1ijk, and into the production terms (3.9) expresses them in terms

of the considered 26 moments. The unknown higher-order moments u0ijkl, u
2
i and u1ijk

turn into

u0ijkl|G26 = 0, u2i|G26 = 28 θ qi, and u1ijk|G26 = 9 θmijk, (3.12)

where the subscript “|G26” just denotes that these moments are evaluated with the G26
distribution function (3.11). Unfortunately, the production terms (3.9) are still not easy
to evaluate by hand. The two authors of the present paper implemented the strategy
for computing the production terms into computer algebra software Mathematica R©

and obtained the fully nonlinear production terms associated with the G26 equations
for dilute granular gases of smooth hard-spheres. The details of the computation can be
found in Gupta & Torrilhon (2012) and the source code for the computation is provided
as supplementary material with the present paper. Interested readers are also referred
to Gupta & Torrilhon (2015b); Gupta (2015) for deriving the higher-order moment
equations for monatomic gas mixtures and to Gupta & Torrilhon (2015a); Gupta (2015)
for learning the computation of their associated production terms, which might be useful
in developing higher-order moment theories for granular gas mixtures. For the sake
of completeness, we provide the production terms associated with the G26 equations
(eqs. (2.11)–(2.13) and (3.4)–(3.8)) in appendix A; the production terms associated with
the G26 equations are (A 1)–(A 6) on taking Ξ = 0. Notice from (A1) that the cooling
rate computed via the G26 equations is given by

ζ =
5

12
(1 − e2) ν

[

1 +
1

80

w

ρ θ2
+

1

25600

w2

ρ2θ4
+

1

40

σijσij
ρ2θ2

+
1

200

qiqi
ρ2θ3

+
1

1680

mijkmijk

ρ2θ3
+

3

31360

RijRij

ρ2θ4
− 1

560

σijRij

ρ2θ3

]

, (3.13)

where

ν =
16

5

√
π n d2

√
θ (3.14)

is the collision frequency. From (3.13), one can see that the cooling rate computed
via the G26 equations is also proportional to (1 − e2) as obtained in previous studies,
e.g., Sela & Goldhirsch (1998); van Noije & Ernst (1998); Brilliantov & Pöschel (2004);
Kremer & Marques Jr. (2011), and it vanishes identically for monatomic gases (e = 1)
resulting into the conservation of energy. Furthermore, on dropping the underlined
nonlinear terms in (2.15), the expression for the dissipation matches with that in
Kremer & Marques Jr. (2011).
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3.3. Various Grad moment systems

Equations (2.11)–(2.13) and (3.4)–(3.8) along with (A 1)–(A 6) form the system of
G26 equations. Various Grad moment systems may be obtained from the system of G26
equations.

(i) The system of well-known G13 equations contains the balance equations for
variables n, vi, T, σij , qi, i.e., the system of G13 equations consists of equations (2.11)–
(2.13), (3.4) and (3.5) along with (A 1)–(A 3) and mijk = Rij = w = 0.

(ii) The system of G14 equations contains the balance equations for variables
n, vi, T, σij , qi, w, i.e., the system of G14 equations includes equations (2.11)–(2.13),
(3.4), (3.5) and (3.8) along with (A 1)–(A3), (A 6) and mijk = Rij = 0.

(iii) The system of G20 equations contains the balance equations for variables
n, vi, T, σij , qi,mijk, i.e., the system of G20 equations includes equations (2.11)–(2.13)
and (3.4), (3.5), (3.6) along with (A 1)–(A 4) and Rij = w = 0.

(iv) The system of G21 equations contains the balance equations for variables
n, vi, T, σij , qi,mijk, w, i.e., the system of G21 equations includes equations (2.11)–
(2.13), (3.4)–(3.6) and (3.8) along with (A 1)–(A 4), (A 6) and Rij = 0.

It is commonly accepted that the dependence of heat flux on the density gradient in
addition to the temperature gradient is akin to inclusion of the full trace of the fourth
moment into the moment system (Kremer & Marques Jr. 2011; Garzó 2013). In that
sense, the G13 and G20 theories for granular flows may not lead to meaningful results.
Nevertheless, we shall also include them in this study for comparison purposes.

4. Homogeneous cooling state of a freely cooling granular gas

The state of a granular gas when in the absence of any external forces its granular
temperature decays continuously but its spatial homogeneity is maintained is termed as
the homogeneous cooling state (Brilliantov & Pöschel 2004). In this section, we study the
HCS of a granular gas with Grad moment equations. We assume a spatially homogeneous

state (i.e., ∂(·)
∂xi

= 0) without any external force acting on the particles of the granular gas
(i.e., F = 0). Furthermore, following Kremer & Marques Jr. (2011), in the production
terms (eqs. (A 1)–(A6)), we shall retain only those nonlinear terms which are the product
of the scalar fourth moment (w) and a vectorial or tensorial moment, and all other
nonlinear terms are simply ignored. This means that we are focusing our attention on
the early evolution stage of homogeneously cooling granular gas.

Often, It is more convenient to use a dimensionless variable ∆ := w
ρ θ2 instead of the

field variable w in the Grad moment systems, where the governing equations for the
former can be obtained by (2.11), (2.13) and (3.8). Therefore, in the following, we shall
use this new variable ∆ while writing the Grad moment system. The G26 equations in
the zero external force case and with aforementioned simplification of the production
terms—in terms of ∆—read

Dn

Dt
+ n

∂vi
∂xi

= 0, (4.1)

Dvi
Dt

+
1

mn

[
∂σij
∂xj

+
∂(nT )

∂xi

]

= 0, (4.2)
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DT

Dt
+

2

3n

[
∂qi
∂xi

+ σij
∂vi
∂xj

+ nT
∂vi
∂xi

]

= −ζ T, (4.3)

Dσij
Dt

+
∂mijk

∂xk
+

4

5

∂q〈i

∂xj〉
+ σij

∂vk
∂xk

+ 2σk〈i
∂vj〉

∂xk
+ 2ρθ

∂v〈i

∂xj〉

= − (1 + e)(3− e)

4
ν

[(

1− 1

480
∆

)

σij +
1

28

(

1 +
1

160
∆

)
Rij

θ

]

, (4.4)

Dqi
Dt

+
1

2

∂Rij

∂xj
+

1

6
ρθ2

∂∆

∂xi
+

1

6
∆

(

θ2
∂ρ

∂xi
+ 2ρθ

∂θ

∂xi

)

+
5

2
ρθ

∂θ

∂xi
+

5

2
σij

∂θ

∂xj

+ θ
∂σij
∂xj

+mijk
∂vj
∂xk

− σij
1

ρ

(
∂σjk
∂xk

+ θ
∂ρ

∂xj

)

+
7

5
qi
∂vj
∂xj

+
7

5
qj
∂vi
∂xj

+
2

5
qj
∂vj
∂xi

= − (1 + e)

48
ν

[

(49− 33e) +
(19− 3e)

480
∆

]

qi, (4.5)

Dmijk

Dt
+

3

7

∂R〈ij

∂xk〉
+ 3θ

∂σ〈ij

∂xk〉
− 3

1

ρ
σ〈ij

(
∂σk〉l

∂xl
+ θ

∂ρ

∂xk〉

)

+mijk
∂vl
∂xl

+ 3ml〈ij

∂vk〉

∂xl
+

12

5
q〈i

∂vj
∂xk〉

= −3(1 + e)(3− e)

8
ν

(

1− 1

1120
∆

)

mijk, (4.6)

DRij

Dt
+Rij

∂vk
∂xk

+
28

5
θ
∂q〈i
∂xj〉

+
28

5
q〈i

∂θ

∂xj〉
+ 4θσk〈i

∂vk
∂xj〉

+ 4θσk〈i
∂vj〉

∂xk
− 8

3
θσij

∂vk
∂xk

− 14

3

1

ρ
σij

∂qk
∂xk

− 14

3

1

ρ
σijσkl

∂vk
∂xl

+ 2θ
∂mijk

∂xk
+

6

7
R〈ij

∂vk〉

∂xk
+

4

5
Rk〈i

∂vk
∂xj〉

+ 2Rk〈i

∂vj〉

∂xk
+

14

15
ρθ2∆

∂v〈i

∂xj〉

+ 7mijk
∂θ

∂xk
− 2

1

ρ
mijk

(
∂σkl
∂xl

+ θ
∂ρ

∂xk

)

− 28

5

1

ρ
q〈i

(
∂σj〉k

∂xk
+ θ

∂ρ

∂xj〉

)

= − (1 + e)

12
ν

[
1

28

{

(436− 267e+ 66e2 − 30e3)− (52− 27e+ 66e2 − 30e3)

480
∆

}

Rij

−
{

(11− 2e− 22e2 + 10e3) +
(202− 207e− 66e2 + 30e3)

480
∆

}

θ σij

]

, (4.7)

D∆

Dt
+ 8

(

1− 1

6
∆

)
1

ρ θ

(
∂qi
∂xi

+ σij
∂vi
∂xj

)

+
1

ρ θ2

[

20qi
∂θ

∂xi
+ 4Rij

∂vi
∂xj

− 8
1

ρ
qi

(
∂σij
∂xj

+ θ
∂ρ

∂xi

)]

=
5(1 + e)

4
ν

[

(1− e)(1 − 2e2)− (81− 17e+ 30e2 − 30e3)

240
∆+

(1− e)

120
∆2

]

(4.8)

with

ζ =
5

12
(1− e2) ν

(

1 +
1

80
∆

)

. (4.9)

Notice that (4.8) contains ∆2 term, even though we have dropped all the nonlinear terms
including ∆2 terms in the RHSs of (4.3) and (3.8) owing to aforementioned simplification.
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We now introduce the following scaling

n∗ =
n

n0
, v∗i =

vi√
θ0
, T∗ =

T

T0
, σ∗

ij =
σij
n0T0

, q∗i =
qi

n0T0
√
θ0
,

m∗
ijk =

mijk

n0T0
√
θ0
, R∗

ij =
Rij

n0T0θ0
, w∗ =

w

n0T0θ0
, t∗ = ν0t

with ν0 =
16

5

√
π n0 d

2
√

θ0 , θ0 =
T0
m
, n0 = n(0) and T0 = T (0).







(4.10)

With the scaling (4.10) and noting that ∆ = w∗/(n∗T
2
∗ ), the G26 equations in the HCS

(i.e., ∂(·)
∂xi

= 0, F = 0) reduce to

dn∗

dt∗
= 0, (4.11)

dv∗i
dt∗

= 0, (4.12)

dT∗
dt∗

= − 5

12
(1 − e2)n∗T

3/2
∗

(

1 +
1

80
∆

)

, (4.13)

dσ∗
ij

dt∗
= − (1 + e)(3− e)

4
n∗

√

T∗

[(

1− 1

480
∆

)

σ∗
ij +

1

28

(

1 +
1

160
∆

)
R∗

ij

T∗

]

, (4.14)

dq∗i
dt∗

= − (1 + e)

48
n∗

√

T∗

[

(49− 33e) +
(19− 3e)

480
∆

]

q∗i , (4.15)

dm∗
ijk

dt∗
= −3(1 + e)(3 − e)

8
n∗

√

T∗

(

1− 1

1120
∆

)

m∗
ijk, (4.16)

dR∗
ij

dt∗
=− (1 + e)

12
n∗

√

T∗

[
1

28

{

(436− 267e+ 66e2 − 30e3)

− (52− 27e+ 66e2 − 30e3)

480
∆

}

R∗
ij

−
{

(11− 2e− 22e2 + 10e3) +
(202− 207e− 66e2 + 30e3)

480
∆

}

T∗σ
∗
ij

]

, (4.17)

d∆

dt∗
=

5(1 + e)

4
n∗

√

T∗

[

(1 − e)(1− 2e2)− (81− 17e+ 30e2 − 30e3)

240
∆+

(1− e)

120
∆2

]

.

(4.18)

4.1. Haff’s law

By following heuristic approach, Haff (1983) discovered that in a freely cooling granular
gas (with constant coefficient of restitution), the decay rate of granular temperature is
given by

dT

dt
∝ −n̄ d2(1− e2)T 3/2, (4.19)
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where n̄ is the average number density. The solution of (4.19) is given by

T (t) =
T (0)

(1 + t/τ◦)2
, (4.20)

where τ−1
◦ ∝ n̄ d2(1 − e2)

√
T◦ is an inverse time scale, see e.g., Haff (1983);

Brilliantov & Pöschel (2004). Equation (4.20) is termed as Haff’s law for evolution
of the granular temperature of a freely cooling granular gas (with a constant coefficient
of restitution).
On comparing (4.13) and (4.19), one readily perceives that Haff’s law can be obtained

from (4.13), provided ∆ is constant or, in other words,

d∆

dt∗
= 0. (4.21)

With a constant value of ∆ (= α, let us say)—which is obtained from condition (4.21)—
equations (4.11) and (4.13) along with the initial conditions n∗(0) = T∗(0) = 1 yield
Haff’s law for evolution of the dimensionless granular temperature T∗:

T∗(t∗) =
1

(1 + t∗/τ0)2
, (4.22)

where

τ−1
0 =

5

24
(1− e2)

(

1 +
1

80
α

)

(4.23)

is the inverse of a (dimensionless) time scale τ0.
It is worthwhile to note that, in the light of condition (4.21), the constant α in (4.23) is

an equilibrium point (Strogatz 1994) of differential equation (4.18). Here, we shall discard
the underlined term (proportional to ∆2) in (4.18), although we shall analyze the effect
of this term in § 4.3. On discarding the underlined term in (4.18), one readily obtains the
equilibrium point—which is the constant α in (4.23)—as

α = 15 a2, where a2 :=
16 (1− e) (1− 2e2)

81− 17e+ 30e2 − 30e3
(4.24)

is same as the coefficient of second Sonine polynomial S2(v
2) while performing the

CE expansion on the inelastic Boltzmann equation, see e.g., van Noije & Ernst (1998);
Brilliantov & Pöschel (2004).

4.2. Relaxation of moments in the homogeneous cooling state

It is clear from (4.11) and (4.12) that the number density n∗ remains constant while
the macroscopic velocity v∗i remains zero (since there is no macroscopic velocity in the
initial state) during the homogeneous cooling. Furthermore, equations (4.14)–(4.18) are
coupled and, therefore need to be solved numerically for further analysis. It may also be
noticed from the structure of (4.15) and (4.16) that vanishing initial conditions on q∗i and
m∗

ijk will result into vanishing solution for these quantities. Similarly, vanishing initial
conditions on both σ∗

ij and R
∗
ij will also result into zero solution for them; however, owing

to the coupling on the RHSs of (4.14) and (4.17), a non-vanishing initial condition on any
one of them will trigger the non-vanishing solution for both of them. On the contrary,
vanishing initial condition on ∆ results into non-vanishing solution for it for all values
of the coefficient of restitution except for e = 1 and e = 1/

√
2. In the following analysis,

we take the initial conditions as n∗(0) = T∗(0) = σ∗
ij(0) = q∗i (0) = m∗

ijk(0) = R∗
ij(0) = 1,

v∗i (0) = 0 and ∆(0) = 15.
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(a) Relaxation of the granular temperature

t∗
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0

0.2

0.4

0.6

0.8

1
e = 0.75 σ∗

ij

q∗i
m∗

ijk

R∗

ij

∆/15

(b) Relaxation of the other moments

Figure 1. Relaxation of various moments in the HCS: (a) relaxation of the granular temperature
T∗; the lines depict solutions obtained by solving the system (4.11)–(4.18) (without the
underlined term in (4.18)) while the symbols delineate Haff’s law (4.22); the blue and red colors
correspond to coefficient of restitution e = 0.75 and e = 0.95, respectively, and (b) relaxation of
the other moments—σ∗

ij , q
∗

i , m
∗

ijk, R
∗

ij and (∆/15)—for coefficient of restitution e = 0.75. Initial
conditions are taken as n∗(0) = T∗(0) = σ∗

ij(0) = q∗i (0) = m∗

ijk(0) = R∗

ij(0) = 1, v∗i (0) = 0 and
∆(0) = 15.

Figure 1 illustrates the numerical solution for the (dimensionless) granular temperature
and other higher-order moments obtained by solving the system (4.11)–(4.18) (without
the underlined term in (4.18)) along with the aforementioned initial conditions. The
solutions for the number density and velocity are not shown since they are just con-
stants. Figure 1(a) exhibits the granular temperature for two values of the coefficient of
restitution e = 0.75 (in blue color) and e = 0.95 (in red color). The solid lines depict the
numerical solution for the granular temperature obtained by solving the system (4.11)–
(4.18) (without the underlined term in (4.18)) along with the aforementioned initial
conditions while the symbols denote the corresponding granular temperature computed
via Haff’s law (4.22). Clearly, the numerical results (denoted by solid lines) are in good
agreement with those obtained via Haff’s law (denoted by symbols). Moreover, it is
also clear that the granular temperature relaxes faster with decreasing the coefficient of
restitution. This is due to the fact that more inelastic particles dissipate more energy
during the collision in comparison to the less inelastic ones resulting into the faster decay
of the granular temperature for the former in comparison to the latter. The relaxation
of other moments—σ∗

ij , q
∗
i , m

∗
ijk, R

∗
ij and (∆/15)—with time t∗ for e = 0.75 is displayed

in figure 1(b). It turns out that all these moments decay with time much faster than
the granular temperature. Among themselves, m∗

ijk decays with time t∗ faster than any
other moment, followed by R∗

ij , σ
∗
ij , q

∗
i and ∆ (in the order of fast to slow). That

the stress (dashed red line) decays faster than the heat flux (dotted blue line) which
decays faster than ∆/15 (magenta line with symbols) is in agreement with the findings
of Kremer & Marques Jr. (2011).

4.3. Effect of nonlinear terms of dimensionless scalar moment (∆) on Haff’s law

In § 4.1, we obtained Haff’s law by dropping all the nonlinear terms of non-equilibrium
moments (σ∗

ij , q
∗
i , m

∗
ijk, R

∗
ij , ∆) in (4.13) and (4.18). In this subsection, we shall

investigate the effect of nonlinear terms of (dimensionless) scalar moment (∆) on Haff’s
law in detail.
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Figure 2. Stability of roots and the temperature decay: (a) phase portrait showing the
stable (black filled circle) and unstable (white filled circle) equilibrium points of (4.18); here,
ϕ = 5 (1 + e)n∗

√
T∗/4 > 0 (cf. (4.18)), thus does not play any role in analyzing the stability of

equilibrium points, and (b) temperature decay via Haff’s law (4.22) with the inverse time scale
(4.23) for e = 0.5, 0.75, 0.95 shown by green, blue and red colors respectively; the solid lines
represent Haff’s law when the constant α in (4.23) is taken as the stable equilibrium point of
(4.18) (marked by black filled circle in the phase portrait) while the symbols delineate that for
α given in (4.24)1; the inset shows the absolute difference between the temperature values in
these two cases.

4.3.1. Case 1: Effect of ∆2 term present in (4.18)

The constant α in characteristic time scale τ0 for the temperature decay via Haff’s law
(4.22) was obtained by discarding ∆2 term in (4.18). We now consider (4.18) without
dropping any term. Equation (4.18) has two equilibrium points for e 6= 1. Nevertheless,
a simple stability analysis of these equilibrium points (see Chapter 2 of Strogatz 1994)
shows that only one equilibrium point is stable whereas the other one is unstable. In
the limiting case of e→ 1, the stable equilibrium point tends to zero while the unstable
equilibrium point tends to infinity. This makes sense as (4.18) in the case of e = 1 has
only one equilibrium point (which is zero). Furthermore, in the limiting case of e → 1,
the stable equilibrium point leads to infinite relaxation time τ0 which is meaningful for
monatomic gases (i.e., for e = 1); however the unstable equilibrium point in this limit
leads to a finite relaxation time which is meaningless. Owing to these reasons, we shall
neglect the unstable equilibrium point.

Figure 2(a) portrays the stable (black filled circle) and unstable (white filled circle)
equilibrium points for e = 0.95 on a phase portrait. We consider only the stable
equilibrium point (black filled circle) and neglect the unstable equilibrium point (white
filled circle). The main panel of figure 2(b) illustrates the temperature decay via Haff’s
law (4.22) with the inverse time scale (4.23) for three values of the coefficient of restitution
e = 0.5, 0.75, 0.95, shown by green, blue and red colors, respectively. The solid lines depict
Haff’s law when the constant α in (4.23) is taken as the stable equilibrium point of (4.18)
while the symbols show that when α is taken as the single equilibrium point (4.24)1 (i.e.,
in the linear case). In the inset of figure 2(b), we also plot the corresponding absolute
difference between the temperature values obtained in both the cases. It turns out that
the difference is many order of magnitude smaller than the original temperature values.
Moreover, the difference is even smaller for large values of the coefficient of restitution.
Thus we conclude that the ∆2 term present in (4.18) do not play any significant role on
Haff’s law.
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4.3.2. Case 2: Effect of ∆2 terms present on the RHSs of (4.13) and (3.8)

To investigate the effect of nonlinear terms of scalar moment (i.e., ∆2 terms) on Haff’s
law one needs to include ∆2 terms in the production terms of the energy balance equation
(2.13) and w balance equation (3.8). On including ∆2 terms along with linear terms on
the RHSs of (2.13) and (3.8), and introducing the scaling (4.10), the new energy and ∆
balance equations in the HCS read

dT∗
dt∗

= − 5

12
(1 − e2)n∗T

3/2
∗

(

1 +
1

80
∆+

1

25600
∆2

)

, (4.25)

d∆

dt∗
=

5(1 + e)

4
n∗

√

T∗

[

(1− e)(1− 2e2)− (81− 17e+ 30e2 − 30e3)

240
∆

+
(1873− 2001e+ 30e2 − 30e3)

230400
∆2 +

(1 − e)

38400
∆3

]

. (4.26)

Notice again that although we included the nonlinear terms proportional to ∆2 on the
RHSs of (2.13) and (3.8), the RHS of (4.26) contains ∆3 terms as well. Similar to above,
for obtaining Haff’s law form (4.25), ∆ must be a constant or, in other words, condition
(4.21) must be fulfilled. With a constant value of ∆ (= β, let us say), equations (4.11)
and (4.25) along with the initial conditions n∗(0) = T∗(0) = 1 again yield Haff’s law
(4.22). However, the inverse of dimensionless characteristic time scale in this case reads

τ−1
0 =

5

24
(1− e2)

(

1 +
1

80
β +

1

25600
β2

)

. (4.27)

Again, in the light of condition (4.21), the constant β in (4.27) is an equilibrium point
of differential equation (4.26).
Equation (4.26) has three equilibrium points for e 6= 1. Again, a simple stability

analysis of these equilibrium points (see Chapter 2 of Strogatz 1994) shows that only
one equilibrium point is stable whereas the other two are unstable. Figure 3(a) displays
the stable (black filled circle) and unstable equilibrium points (white filled circles) for
e = 0.95 on a phase portrait. In the limiting case of e → 1, the stable equilibrium point
tends to zero, the left unstable point tends to −480 and the right unstable equilibrium
point tends to infinity. That one equilibrium point of (4.26) in the limiting case of e→ 1
tends to infinity makes sense as (4.26) in the case of e = 1 has only two equilibrium
points. Furthermore, in the limiting case of e → 1, the stable equilibrium point and the
left unstable equilibrium point lead to infinite relaxation time τ0 which is meaningful for
monatomic gases (i.e., for e = 1); however the right unstable equilibrium point in this
limit leads to a vanishing relaxation time which is meaningless, therefore we neglect the
right unstable equilibrium point. Although, the left unstable equilibrium point lead to
meaningful infinite relaxation time τ0 in the limit e → 1, its value in the limit e → 1
itself is not meaningful because the equilibrium points are the steady state solutions of
(4.26) and the distribution function for monatomic gases (i.e., for e = 1) in the steady
state is Maxwellian, and consequently, by definition, w (and hence ∆) must vanish in the
limit e→ 1 and in the steady state.
Therefore, we again consider only the stable equilibrium point (marked by black filled

circle) and neglect the unstable equilibrium points (marked by white filled circles). The
main panel of figure 3(b) illustrates the temperature decay via Haff’s law (4.22) for
three values of the coefficient of restitution e = 0.5, 0.75, 0.95, shown by green, blue
and red colors, respectively. The solid lines depict the results obtained with the inverse
time scale (4.27) and the constant β in (4.27) as the stable equilibrium point of (4.26)
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Figure 3. Stability of roots and the temperature decay: (a) phase portrait showing the
stable (black filled circle) and unstable (white filled circles) equilibrium points of (4.26); here,
ϕ = 5 (1 + e)n∗

√
T∗/4 > 0 (cf. (4.18)), thus does not play any role in analyzing the stability of

equilibrium points, and (b) temperature decay via Haff’s law (4.22) for e = 0.5, 0.75, 0.95 shown
by green, blue and red colors respectively; the solid lines represent Haff’s law (4.22) with the
inverse time scale (4.27) when the constant β in (4.27) is taken as the stable equilibrium point
of (4.26) (marked by black filled circle in the phase portrait) while the symbols delineate Haff’s
law (4.22) with the inverse time scale (4.23) and the constant α as given in (4.24)1; the inset
shows the absolute difference between the temperature values in these two cases.

(marked by black filled circle in the phase portrait) whereas the symbols delineate the
corresponding results obtained with the inverse time scale (4.23) and the constant α as
given in (4.24)1 (i.e., in the linear case). In the inset of figure 3(b), we also plot the
corresponding absolute difference between the temperature values obtained in both the
cases. There is practically no difference in both the results as the difference is again many
order of magnitude smaller than the original temperature values.
Thus, we conclude that the nonlinear terms of (dimensionless) scalar moment ∆ do

not play any significant role on Haff’s law.

4.4. Effect of higher-order scalar moment on Haff’s law

In this subsection, we shall analyze effect of the sixth order scalar moment u3, which
is the full trace of the sixth order moment, on Haff’s law. Nevertheless, for convenience,
we introduce a new dimensionless variable Ξ which is related to the sixth order scalar
moment u3 via

Ξ =
m

ρθ3

∫
(
f − fM

)(
C6 − 21 θ C4

)
dc =

u3

ρ θ3
− 21∆− 105 (4.28)

so that Ξ vanishes if it is computed with f as either Maxwellian or G13 or G26
distribution function.
We now include the governing equation for the moment Ξ to our existing 26-moment

system (eqs. (2.11)–(2.13) and (3.4)–(3.8)) and close this system with the Grad distribu-
tion function (which we shall name as the G27 distribution function)

f|G27 = fM

[

1 +
1

2

σij
ρ θ2

CiCj +
1

5

qi
ρ θ2

Ci

(
C2

θ
− 5

)

+
1

6

mijk

ρ θ3
CiCjCk

+
1

28

Rij

ρ θ3
CiCj

(
C2

θ
− 7

)

+
1

8
∆

(

1− 2

3

C2

θ
+

1

15

C4

θ2

)

− 1

48
Ξ

(

1− C2

θ
+

1

5

C4

θ2
− 1

105

C6

θ3

)]

. (4.29)
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We shall refer to the system of these 27-moment equations closed with the G27 distribu-
tion function as the system of G27 equations.
For our purposes, it is not necessary to derive the full G27 equations but we do need the

production terms for the energy, ∆ and Ξ balance equations. All the production terms
associated with the G27 equations are given in appendix A. Note that the production
terms for the ∆ and Ξ balance equations are given by

1

ρ θ2
P2 − 2

3

(∆+ 15)

ρ θ
P1 and

1

ρ θ3
P3 − 21

ρ θ2
P2 − (Ξ − 7∆− 105)

ρ θ
P1,

respectively. In the HCS, the dimensionless energy, ∆ and Ξ balance equations from
the system of G27 equations—on employing (4.10) and and discarding all the nonlinear
terms of non-equilibrium scalar, vector or tensor moments—read

dT∗
dt∗

= − 5

12
(1 − e2)n∗T

3/2
∗

(

1 +
1

80
∆− 1

6720
Ξ

)

, (4.30)

d∆

dt∗
=

5

4
(1 + e)n∗

√

T∗

[

(1 − e)(1− 2e2)− (81− 17e+ 30e2 − 30e3)

240
∆

− (191− 127e+ 10e2 − 10e3)

6720
Ξ

]

, (4.31)

dΞ

dt∗
= −15

16
(1 + e)n∗

√

T∗

[

(1 − e)(3− 12e2 + 8e4)

− (1111− 727e− 2012e2 + 1500e3 − 280e4 + 280e5)

240
∆

+
(2673− 241e+ 5196e2 − 3660e3 + 280e4 − 280e5)

6720
Ξ

]

. (4.32)

Clearly, for obtaining Haff’s law form (4.30), ∆ and Ξ must be constants or, in other
words, conditions

d∆

dt∗
=

dΞ

dt∗
= 0 (4.33)

must be fulfilled. With constant values of ∆ (= κ1, let us say) and Ξ (= κ2, let us say),
eqs. (4.11) and (4.30) along with the initial conditions n∗(0) = T∗(0) = 1 again yield
Haff’s law (4.22). However, the inverse of dimensionless characteristic time scale now
reads

τ−1
0 =

5

24
(1− e2)

(

1 +
1

80
κ1 −

1

6720
κ2

)

. (4.34)

In the light of conditions (4.33), the constants (κ1,κ2) in (4.34) are the equilibrium
points (∆eq, Ξeq) of the system of two first-order ordinary differential equations (4.31)
and (4.32) (Strogatz 1994). The system of equations (4.31) and (4.32) has a unique
equilibrium point. Figure 4 illustrates the temperature decay via Haff’s law (4.22) for
three values of the coefficient of restitution e = 0.5, 0.75, 0.95 shown by green, blue
and red colors, respectively. The solid lines depict the results obtained with the inverse
time scale (4.34) and the constants (κ1,κ2) in (4.34) as the unique equilibrium point
of (4.31) and (4.32) whereas the symbols delineate the corresponding results obtained
with the inverse time scale (4.23) and the constant α as given in (4.24)1. In the inset of
figure 4(b), we also plot the corresponding absolute difference between the temperature
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Figure 4. Temperature decay via Haff’s law (4.22) for e = 0.5, 0.75, 0.95 shown by green, blue
and red colors respectively; the solid lines depict the results obtained with the inverse time scale
(4.34) and the constants (κ1,κ2) in (4.34) as the unique equilibrium point of (4.31) and (4.32)
whereas the symbols show Haff’s law (4.22) with the inverse time scale (4.23) and the constant
α given in (4.24)1; the inset shows the absolute difference between the temperature values in
these two cases.

values obtained in both the cases. Again, there is practically no difference in the results
as the differences are many order of magnitude smaller than the original temperature
values.
Furthermore, in view of § 4.3, it is expected that the nonlinear terms of scalar moments

in (4.30)–(4.32) would also have only negligible effect on Haff’s law. Thus, it is concluded
empirically that the nonlinear terms of non-equilibrium scalar moments as well as higher-
order scalar moments do not have any significant effect on Haff’s law. Therefore, it suffices
to consider only those moment systems which consists of the fourth order scalar moment
(∆)—i.e., to consider 14- or 26-moment system. Moreover, in the production terms of
these moment systems, it is sufficient to retain only those nonlinear terms which are
products of ∆ and a vector or a tensor. Owing to this reason, equations (4.1)–(4.8)
without the underlined term in (4.8) will be referred to as the G26 equations henceforth.

5. Constitutive relations for the stress and heat flux: Navier–Stokes,

and Fourier laws

The mass, momentum and energy balance equations (2.11)–(2.13) are not closed since
they contain the stress (σij), heat flux (qi) and cooling rate (ζ) as additional unknowns.
One of the main goal in the kinetic theory for granular gases is to derive the constitutive
relations for these unknowns in order to close the system of mass, momentum and energy
balance equations. To the linear approximation in the spatial gradients, these constitutive
relations read (see e.g., Jenkins & Richman 1985a,b; Garzó & Dufty 1999; Garzó 2013)

σij = −2η
∂v〈i

∂xj〉
, qi = −κ ∂T

∂xi
− λ

∂n

∂xi
and ζ = ζ0 + ζ1

∂vi
∂xi

. (5.1)

Equations (5.1)1 and (5.1)2 are the Navier–Stokes law and Fourier law, respectively. The
coefficients ζ0 and ζ1 in (5.1)3 are the zeroth- and first-order contributions, respectively, to
the cooling rate. The transport coefficients η, κ are referred to as the shear viscosity and
thermal conductivity, respectively; and the transport coefficient λ is a special coefficient
for granular gases which vanishes identically for elastic gases. Typically, these transport
coefficients are obtained by a formal CE expansion on the Boltzmann equation (see e.g.,
Brey et al. 1998a; Sela & Goldhirsch 1998; Gupta 2011), nevertheless some authors have
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also computed them via computer-aided kinetic theory (Noskowicz et al. 2007) and via
Grad’s method of moment, (see e.g., Jenkins & Richman 1985a; Kremer & Marques Jr.
2011; Garzó 2013). Although Grad’s method of moments does not restrict the coefficient
of restitution to be close to 1, G13 theory of Jenkins & Richman (1985a) and the
Maxwellian iteration procedure on the G14 equations of Kremer & Marques Jr. (2011)
neglect the effect of cooling rate on the transport coefficients. On the other hand, the work
of Garzó (2013) incorporates the effect of cooling rate on the transport coefficients and,
consequently, the transport coefficients obtained in this work are in good agreement with
those obtained via the classical CE expansion. In this section, we shall determine these
transport coefficients through the G26 equations (eqs. (4.1)–(4.8) without the underlined
term in (4.8)). To this end, we shall follow the approach of Garzó (2013) so that the
effect of cooling rate on the transport coefficients is incorporated.
We are interested in the linear approximation in the spatial gradients. To this end, let

us first analyze the zeroth-order contributions in the spatial gradients.

5.1. Zeroth-order contributions in the spatial gradients

To zeroth-order in the spatial gradients, ∆ balance equation (4.8) yields

∆ = 15 a2. (5.2)

Consequently, to zeroth-order in the spatial gradients, the mass, momentum and energy
balance equations (4.1)–(4.3) reduce to

∂n

∂t
= 0,

∂vi
∂t

= 0 and
∂T

∂t
= −ζ0T, (5.3)

with

ζ0 = ν ζ∗0 and ζ∗0 =
5

12
(1− e2)

(

1 +
3 a2
16

)

, (5.4)

while the balance equations for the higher moments (eqs. (4.4)–(4.7)) simplify to

−ν∗σ σij − ν∗σR
Rij

θ
= 0, qi = 0, mijk = 0, −ν∗RRij + ν∗Rσ θσij = 0, (5.5)

respectively, with

ν∗σ =
(1 + e)(3− e)

4

(

1− a2
32

)

,

ν∗σR =
(1 + e)(3− e)

112

(

1 +
3 a2
32

)

,

ν∗R =
(1 + e)

336

[

(436− 267e+ 66e2 − 30e3)− (52− 27e+ 66e2 − 30e3) a2
32

]

,

ν∗Rσ =
(1 + e)

12

[

(11− 2e− 22e2 + 10e3) +
(202− 207e− 66e2 + 30e3) a2

32

]

.







(5.6)

Equations (5.5)1,4 imply that

σij = Rij = 0. (5.7)

Thus, to zeroth-order in the spatial gradients, σij , qi, mijk and Rij are zero while ∆ =
15 a2. This means that all the non-equilibrium vectorial and tensorial moments are at
least of linear order in the spatial gradients.
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5.2. First-order contributions in the spatial gradients

We now investigate the moments up to first-order in the spatial gradients, which will
lead to the desired Navier–Stokes and Fourier laws.
To first-order in the spatial gradients, the mass, momentum and energy balance

equations (4.1)–(4.3) yield

∂n

∂t
= −vi

∂n

∂xi
− n

∂vi
∂xi

, (5.8)

∂vi
∂t

= −vj
∂vi
∂xj

− 1

mn

∂(nT )

∂xi
, (5.9)

∂T

∂t
= −vi

∂T

∂xi
− 2

3
T
∂vi
∂xi

− ζ T, (5.10)

where ζ needs to be considered up to linear order in the spatial gradients. Furthermore,
the stress and heat flux balance equations (eqs. (4.4) and (4.5)), to first-order in the
spatial gradients, reduce to

∂σij
∂t

+ 2ρθ
∂v〈i

∂xj〉
= −ν

[

ν∗σ σij + ν∗σR
Rij

θ

]

, (5.11)

∂qi
∂t

+
5

2
a2

(

θ2
∂ρ

∂xi
+ 2ρθ

∂θ

∂xi

)

+
5

2
ρθ

∂θ

∂xi
= −ν ν∗q qi (5.12)

with

ν∗q =
(1 + e)

48

[

(49− 33e) +
(19− 3e) a2

32

]

. (5.13)

Notice that we do not need the balance equations for other moments except (4.7), the
one for Rij , for first-order approximation. Equation (4.7) is only needed because the
contribution of Rij is required in (5.11). To first-order in the spatial gradients, the Rij

balance equation (4.7) reduces to

∂Rij

∂t
+ 14a2ρθ

2 ∂v〈i

∂xj〉
= −ν

[
ν∗RRij − ν∗Rσ θσij

]
. (5.14)

Here, we ignore the time derivative of Rij by assuming that it decreases with time faster
than stress and heat flux. With this assumption, equation (5.14) yields

Rij

θ
=
ν∗Rσ

ν∗R
σij −

14a2ρθ

ν ν∗R

∂v〈i

∂xj〉
. (5.15)

With (5.15), equation (5.11) turns to

∂σij
∂t

+ ν

(

ν∗σ +
ν∗σR ν

∗
Rσ

ν∗R

)

σij = −2

(

1− 7a2
ν∗σR
ν∗R

)

ρθ
∂v〈i

∂xj〉
. (5.16)

The time derivatives of the stress and heat flux in (5.16) and (5.12) are now calculated
as follows. From (5.1)1,2, we have

∂σij
∂t

= −2
∂v〈i

∂xj〉

∂η

∂t
− 2η

∂

∂xj〉

∂v〈i

∂t
,

∂qi
∂t

= − ∂T

∂xi

∂κ

∂t
− κ

∂

∂xi

∂T

∂t
︸ ︷︷ ︸

− ∂n

∂xi

∂λ

∂t
− λ

∂

∂xi

∂n

∂t
.







(5.17)

For first-order approximation in the spatial gradients, the time derivatives on the RHSs of
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(5.17) are required only up to zeroth-order in spatial gradients. Hence, by virtue of (5.3),
the underlined terms in (5.17) vanish while the underbraced term in (5.17)2 becomes

∂

∂xi

∂T

∂t
= −ζ0

∂T

∂xi
− Tζ∗0

∂ν

∂xi
= −3

2
ζ0
∂T

∂xi
− ζ0

T

n

∂n

∂xi
. (5.18)

By dimensional analysis, it turns out that η ∝
√
T , κ ∝

√
T and λ ∝ T 3/2. Therefore, to

zeroth-order in spatial gradients—on using (5.3)3—the time derivatives of the transport
coefficients read

∂η

∂t
= −1

2
η ζ0,

∂κ

∂t
= −1

2
κ ζ0 and

∂λ

∂t
= −3

2
λ ζ0. (5.19)

The time derivatives of the stress and heat flux (5.17) on using (5.18) and (5.19) become

∂σij
∂t

= η ζ0
∂v〈i

∂xj〉
and

∂qi
∂t

= 2κ ζ0
∂T

∂xi
+

(

κ
T

n
+

3

2
λ

)

ζ0
∂n

∂xi
. (5.20)

Inserting the time derivatives of the stress and heat flux from (5.20) into (5.16) and (5.12),
and comparing the coefficients of the spatial gradient of each hydrodynamic variable, one
obtains the transport coefficients in the Navier–Stokes and Fourier laws (5.1)1,2 as

η = η0 η
∗, κ = κ0 κ

∗, and λ =
κ0 T

n
λ∗ (5.21)

where

η0 =
nT

ν
=

5

16
√
π

√
mT

d2
and κ0 =

15

4m
η0 =

75

64
√
π

1

d2

√

T

m
(5.22)

are the elastic values—in first Sonine approximation—of the shear viscosity and thermal
conductivity, respectively. They are also referred to as the Enskog viscosity and Enskog
thermal conductivity, respectively (Brilliantov & Pöschel 2004). Moreover, η∗, κ∗ and
λ∗ in (5.21) are the reduced shear viscosity, reduced thermal conductivity and reduced
coefficient corresponding to λ. These reduced transport coefficients are given by

η∗ =
1− 7a2

ν∗

σR

ν∗

R

ν∗σ +
ν∗

σR
ν∗

Rσ

ν∗

R

− 1
2ζ

∗
0

, κ∗ =
2

3

[
1 + 2 a2
ν∗q − 2ζ∗0

]

, λ∗ =
κ∗ζ∗0 + 2

3a2

ν∗q − 3
2ζ

∗
0

. (5.23)

Note that if we take ν∗σR = 0, i.e., if we ignore the contribution of Rij , the reduced
transport coefficients (5.23) obtained here agree with those obtained via Grad’s method
of moments in Garzó (2013) for dilute granular gases and also with those obtained by first-
Sonine approximation via the CE expansion in Brey et al. (1998a). If we further neglect
the cooling effect (i.e., ζ∗0 = 0) as well, the reduced transport coefficients obtained here
concur with those derived in Kremer & Marques Jr. (2011).
In the elastic case (e = 1), the reported (exact) value of the reduced shear viscosity η∗ is

1.016034 which was obtained by Pekeris & Alterman (1957) by reducing the Boltzmann
equation to an ordinary differential equation of order 4 and subsequently integrating it
numerically. Reinecke & Kremer (1990) obtained almost the same value η∗ ≈ 1.016028
for the reduced shear viscosity by employing Maxwell iteration procedure on Grad
moment equations—at fifth order of approximation. The reduced shear viscosity for
e = 1 obtained from (5.23)1 is η∗ = 205/202 (≈ 1.014851), which is exactly same as
that obtained at second order approximation in Reinecke & Kremer (1990), thanks to
the coupling between σij and Rij in their balance equations. Note that the first Sonine
approximation (Brey et al. 1998a), modified Sonine approximation (Garzó et al. 2007),
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the G14 theory of Kremer & Marques Jr. (2011) and Grad moment theory of Garzó
(2013), they all in the elastic case lead to η∗ = 1, which is the value obtained at first
order approximation in Reinecke & Kremer (1990). Furthermore, the reported value of
the reduced thermal conductivity κ∗ in the elastic case is 1.025218 (Pekeris & Alterman
1957). Reinecke & Kremer (1990) again obtained almost the same value κ∗ ≈ 1.025197
at fifth order approximation. However, the reduced thermal conductivity obtained here
as well as that obtained by all the four aforementioned approaches is κ∗ = 1, which is the
value obtained at first order approximation in Reinecke & Kremer (1990). The reason for
not obtaining an improved value of the reduced thermal conductivity here is that, unlike
the RHS of the stress balance equation which is coupled with the one trace of the fourth
moment (Rij), the RHS of the heat flux balance equation does not have coupling with
other vectorial or tensorial moments in its considered form.

5.3. Comparison with existing theories and computer simulations

In this subsection, we shall compare the reduced transport coefficients derived here
with those obtained by CE expansion as well as with those obtained through computer
simulations.
Figure 5 illustrates the reduced shear viscosity η∗ while figure 6 illustrates the reduced

thermal conductivity κ∗ and reduced coefficient λ∗ for different values of the coefficient
of restitution. The solid (black) lines in both the figures represent the results obtained
with expressions (5.23) in the present work. The dashed (green) lines are the plots for
the reduced transport coefficients derived at first Sonine approximation through CE
expansion on the Boltzmann equation in Brey et al. (1998a). As the reduced transport
coefficients obtained via Grad’s method of moments in Garzó (2013) coincide with
those in Brey et al. (1998a), the dashed (green) lines also display the reduced transport
coefficients obtained in Garzó (2013). The dash-dotted (magenta) lines display the results
obtained with the theoretical expressions for the reduced transport coefficients deduced
through the modified version of the first Sonine approximation in Garzó et al. (2007). The
squares are the results obtained with the theoretical expressions derived via the so-called
computer-aided method devised by Noskowicz et al. (2007) while the triangles denote
the numerical solution of the Boltzmann equation obtained through Green–Kubo (GK)
relations by means of the direct-simulation Monte Carlo (DSMC) method (Bird 1994) in
Brey et al. (2005). The circles in figure 5 also denote the DSMC simulation results from
Montanero et al. (2005) obtained with another method—by the implementation of an
external force which compensates for the collisional cooling. The DSMC simulation data
from this method for e = {0.6, 0.7, 0.8, 0.9, 1} were obtained by Montanero et al. (2005)
while those for e = {0.2, 0.3, 0.4, 0.5} were obtained by Garzó et al. (2007).
In general, the reduced shear viscosity from the first Sonine approximation (dashed

green line) agrees with that from the DSMC simulations using GK relations (triangles).
Nevertheless, the results from the DSMC simulations with the implementation of external
force (shown by circles) differ from those obtained with the GK relations (shown by
triangles), especially for e . 0.7. The difference between the results from the two
simulations could be due to velocity correlations in the correlation function present in the
GK relation for the shear viscosity (Garzó et al. 2007). In comparison to the results from
the modified version of the first Sonine approximation (dash-dotted magenta line), the
present results for the reduced shear viscosity (solid black line) are in better agreement
with the DSMC simulations of Garzó et al. (2007) even for small coefficient of restitution.
Furthermore, the present results for the reduced shear viscosity (solid black line) coincide
with those obtained from the computer-aided method devised by Noskowicz et al. (2007)
(shown by squares) for almost all values of the coefficient of restitution. Nevertheless,
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Figure 5. Variation of the reduced shear viscosity η∗ with the coefficient of restitution e. The
solid (black) line represents the results obtained in the present work. The dashed (green) and
dash-dotted (magenta) lines delineate the first Sonine approximation (Brey et al. 1998a) and
modified version of the first Sonine approximation (Garzó et al. 2007), respectively. The squares
are the results from the theoretical expressions obtained via the computer-aided method devised
by Noskowicz et al. (2007). The other symbols are the DSMC simulation results of Brey et al.
(2005) obtained using GK relations (triangles) and of Montanero et al. (2005) obtained with the
implementation of an external force (circles).

in the elastic (e = 1) case, the theoretical expressions of Noskowicz et al. (2007) lead to
η∗ = 1.01205 while the DSMC simulations of Garzó et al. (2007) give η∗ ≈ 1.016. Thus,
in the elastic (e = 1) case, η∗ ≈ 1.014851 from the expression (5.23)1 obtained here is
much closer to its true value in comparison to that from the theoretical expressions of
Noskowicz et al. (2007).
The expressions for the reduced transport coefficients corresponding to the heat flux,

(i.e., for κ∗ and λ∗) derived here are the same as those obtained via the first Sonine
approximation (Brey et al. 1998a) and via Grad moment method of Garzó (2013) because
in the considered linearized form, the RHS of heat flux balance equation (4.5) does
not couple with any other vectorial or tensorial moments. Therefore, the curves of the
reduced thermal conductivity κ∗ and the reduced coefficient λ∗ in figure 6 from (5.23)2,3
(solid black lines) coincide with those from the first Sonine approximation (Brey et al.
1998a) or from Grad moment method of Garzó (2013) (dashed green lines). It is clear
from figure 6 that the results for κ∗ and λ∗ from the present work, from first Sonine
approximation and from Garzó (2013) agree with the DSMC simulations as well as with
those from the computer-aided method of Noskowicz et al. (2007) only for large coefficient
of restitution (e & 0.7). For e . 0.7, similar to the first Sonine approximation and Grad
moment method of Garzó (2013), the present work also overestimates both the transport
coefficients.
Motivated from the satisfactory result for the reduced shear viscosity through the G26

equations, it is expected that a suitable coupling on the RHS of the heat flux balance
equation (4.5) would improve the reduced transport coefficients κ∗ and λ∗ significantly.
The first such coupling of RHS of the heat flux balance equation in the semi-linearized
setting as considered here will be introduced on including the full trace of fifth order
moment into the moment system, i.e., one would need to consider the system of 29
moment equations. This is beyond the scope of the present paper and will be considered
elsewhere in future.
Although, the modified Sonine approach (Garzó et al. 2007) is an excellent theoretical
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Figure 6. Variation of (a) the reduced thermal conductivity κ∗ and (b) the reduced coefficient
λ∗ with the coefficient of restitution e. The lines and symbols are same as described in figure 5.

approach whose predictions for all the transport coefficients (η∗, κ∗ and λ∗) are in very
good agreement with the simulation results, the G26 theory slightly improves the results
for the reduced shear viscosity coefficient η∗. However, the latter could not yield the other
two transport coefficients related to the heat flux (κ∗ and λ∗) correctly for e . 0.7, exactly
in the same way as the first Sonine approach (Brey et al. 1998a). Here, it is worthwhile
to note that while it is an important validity test for moment equations to compute the
precise form of the transport coefficients, it is well-known that these coefficients have
only a little relevance in non-equilibrium situations when a linear relation between fluxes
and gradients does not hold anymore. Instead, it has been shown (for elastic gases) that
moment equations allow for cross effects like thermal stresses and non-gradient heat fluxes
(Torrilhon 2016) that are expected to also have a systematic influence in granular flows.
The actual goal of moment equations is not only to match the transport coefficients but
also to go beyond these classical theories and provide an enhanced fluid dynamic theory
for granular gases. Moreover, our long-term perspective is to establish a complete set
of predictive moment equations—somewhat similar to the R13 equations for monatomic
gases—for granular flows, which certainly requires the G26 equations or beyond. Thus
this work is the first step towards this long-term goal.

6. Linear stability analysis

In this section, we investigate the stability of the HCS due to small perturbations
through various moment theories—particularly, with the G26 theory (equations (4.1)–
(4.8) without the underlined term in (4.8))—developed in the earlier sections. We assume
that the amplitudes of these perturbations are sufficiently small so that the linear analysis
remains valid.

For the linear stability analysis, we decompose all the field variables into their reference
values—i.e., their respective solutions in the HCS—and into perturbations from their
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respective solutions in the HCS, i.e., we define

n(t,x) = n0

[
1 + ñ(t,x)

]
,

T (t,x) = TH(t)
[
1 + T̃ (t,x)

]
,

vi(t,x) = vH(t) ṽi(t,x),

σij(t,x) = σ
(H)
ij (t) + n0 TH(t) σ̃ij(t,x),

qi(t,x) = q
(H)
i (t) + n0 TH(t) vH(t) q̃i(t,x),

mijk(t,x) = m
(H)
ijk (t) + n0 TH(t) vH(t) m̃ijk(t,x),

Rij(t,x) = R
(H)
ij (t) + n0 TH(t) vH(t)2 R̃ij(t,x),

∆(t,x) = ∆H + ∆̃(t,x),







(6.1)

where n0 is the constant number density and TH(t) is the granular temperature in the
HCS; ∆H is the constant solution for ∆ in the HCS; vH(t) =

√

TH(t)/m is a reference
speed in the HCS and is proportional to the adiabatic sound speed in the HCS; the
reference values (HCS solutions) for all other field variables are denoted by the superscript
‘(H)’; the quantities with tilde denote the dimensionless perturbations in the field variables
from their respective solutions in the HCS. Note that as the underlined term in (4.8) is
discarded, the HCS solution for ∆ is ∆H = 15 a2.

Inserting the field variables from (6.1) into the G26 equations, and neglecting all the
nonlinear terms of the perturbed field variables (denoted with tilde in (6.1)), one obtains
the system of linear partial differential equations in (dimensionless) perturbed field
variables with time-dependent coefficients, which is given in appendix B. These equations
are further simplified by exploiting the fact—concluded in § 4.2—that in the HCS, the

non-equilibrium vectorial and tensorial moments—σ
(H)
ij (t), q

(H)
i (t), m

(H)
ijk (t), R

(H)
ij (t)—

decay faster than the granular temperature TH(t); therefore, we drop the terms containing

σ
(H)
ij (t), q

(H)
i (t),m

(H)
ijk (t), R

(H)
ij (t) in (B 1)–(B8). Now, it is possible to convert this system

of partial differential equations to a new system of partial differential equations having
constant coefficients as follows. We introduce a length scale

ℓ =
vH(t)

νH(t)
, where νH(t) =

16

5

√
πn0d

2

√

TH(t)

m
, (6.2)

to make the space variables dimensionless (i.e., x̃i = xi/ℓ, where tilde again denotes the
dimensionless space variable), and a dimensionless time t̃ (see McNamara 1993) such that

1

νH(t)

∂

∂t
(·) = ∂

∂t̃
(·). (6.3)

This leads to

t̃ = νH(t) τ1

(

1 +
t

τ1

)

ln

(

1 +
t

τ1

)

≈ νH(t) t+O(t2), (6.4)

where

τ−1
1 =

1

2
ζ∗0 ν0 with ν0 =

16

5

√
π n0d

2

√

T0
m
.

With these definitions of dimensionless space and time, system (B 1)–(B8) now simplifies
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to

∂ñ

∂t̃
+
∂ṽi
∂x̃i

= 0, (6.5)

∂ṽi

∂t̃
+
∂σ̃ij
∂x̃j

+
∂ñ

∂x̃i
+
∂T̃

∂x̃i
− 1

2
ξ0ṽi = 0, (6.6)

∂T̃

∂t̃
+

2

3

(
∂q̃i
∂x̃i

+
∂ṽi
∂x̃i

)

+ ξ0

(

ñ+
1

2
T̃

)

+ ξ1∆̃ = 0, (6.7)

∂σ̃ij

∂t̃
+
∂m̃ijk

∂x̃k
+

4

5

∂q̃〈i

∂x̃j〉
+ 2

∂ṽ〈i

∂x̃j〉
− ξ2σ̃ij + ξ3R̃ij = 0, (6.8)

∂q̃i

∂t̃
+

1

2

∂R̃ij

∂x̃j
+

1

6

∂∆̃

∂x̃i
+

5

2
a2
∂ñ

∂x̃i
+ ξ4

∂T̃

∂x̃i
+
∂σ̃ij
∂x̃j

− ξ5q̃i = 0, (6.9)

∂m̃ijk

∂t̃
+

3

7

∂R̃〈ij

∂x̃k〉
+ 3

∂σ̃〈ij

∂x̃k〉
− ξ6m̃ijk = 0, (6.10)

∂R̃ij

∂t̃
+

28

5

∂q̃〈i

∂x̃j〉
+ 2

∂m̃ijk

∂x̃k
+ 14 a2

∂ṽ〈i

∂x̃j〉
− ξ7R̃ij − ξ8σ̃ij = 0, (6.11)

∂∆̃

∂t̃
+ ξ9

∂q̃i
∂x̃i

+ ξ10∆̃ = 0, (6.12)

where the coefficients

ξ0 = ζ∗0 , ξ1 =
1− e2

192
, ξ2 = ξ0 − ν∗σ, ξ3 = ν∗σR,

ξ4 =
5

2
(1 + 2 a2), ξ5 =

3

2
ξ0 − ν∗q , ξ6 =

3

2
ξ0 − ν∗m, ξ7 = 2 ξ0 − ν∗R,

ξ8 = ν∗Rσ, ξ9 = 8− 20 a2, ξ10 = ν∗∆







(6.13)

with

ν∗m =
3

8
(1 + e)(3 − e)

(

1− 3 a2
224

)

,

ν∗∆ =
1

192
(1 + e)(81− 17e+ 30e2 − 30e3)







(6.14)

depend only on the parameter e, the coefficient of restitution.
Now, we assume a normal mode solution of the form

(ñ, ṽi, T̃ , σ̃ij , q̃i, m̃ijk, R̃ij , ∆̃)⊤ = (n̂, v̂i, T̂ , σ̂ij , q̂i, m̂ijk, R̂ij , ∆̂)⊤ exp
[
i(k · x̃− ω t̃)

]

(6.15)

for system (6.5)–(6.12). Here, quantities with hats denote the complex amplitudes of
the perturbed field variables; i is the imaginary unit; k and ω are the (dimensionless)
wavevector and (dimensionless) frequency, respectively, of the disturbance. For the tem-
poral stability analysis—to be analyzed here—the wavevector k is assumed to be real
and the frequency ω is assumed to be complex. The real part of the complex frequency,
Re(ω), determines the phase velocity vph = Re(ω)/k of the corresponding wave whereas
the imaginary part of the complex frequency, Im(ω), determines whether the amplitude
of the disturbance grows or decays in time. The imaginary part of the complex frequency,
Im(ω), is referred to as the growth rate. From the normal mode solution (6.15), it is clear
that the solution will decay (or grow) in time if the growth rate is negative (or positive).
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Consequently, stability of the system requires the growth rate to be non-positive, i.e.,
Im(ω) 6 0.
If we assume that the wavevector of the disturbance is parallel to the x-axis, i.e.,

k = k x̂ where the wavenumber k is the magnitude of the wavevector k and x̂ is the
unit vector in x-direction, we get two independent eigenvalue problems—namely, the
longitudinal problem and the transverse problem—for the amplitude of the disturbance
in two dimensions. These problems read

A















n̂
v̂x
T̂
σ̂xx
q̂x

m̂xxx

R̂xx

∆̂















=















0
0
0
0
0
0
0
0















and B









v̂y
σ̂xy
q̂y

m̂xxy

R̂xy









=









0
0
0
0
0









(6.16)

respectively, where

A =















ω −k 0 0 0 0 0 0

−k ω − i

ξ0
2 −k −k 0 0 0 0

iξ0 − 2k
3 ω + i

ξ0
2 0 − 2k

3 0 0 iξ1
0 − 4k

3 0 ω − iξ2 − 8k
15 −k iξ3 0

− 5ka2

2 0 −kξ4 −k ω − iξ5 0 −k
2 −k

6

0 0 0 − 9k
5 0 ω − iξ6 − 9k

35 0

0 − 28ka2

3 0 −iξ8 − 56k
15 −2k ω − iξ7 0

0 0 0 0 −kξ9 0 0 ω + iξ10















,

(6.17)

and

B =









ω − i

ξ0
2 −k 0 0 0

−k ω − iξ2 − 2k
5 −k iξ3

0 −k ω − iξ5 0 −k
2

0 − 3k
5 0 ω − iξ6 − 3k

35

−7ka2 −iξ8 − 14k
5 −2k ω − iξ7









. (6.18)

For nontrivial solution of each eigenvalue problem in (6.16), the determinant of each of the
two matrices A and B must vanish, i.e., det(A) = 0 and det(B) = 0. These two conditions
on the determinant of matrices A and B lead to the following dispersion relations

ω8 + a1 ω
7 + a2 ω

6 + a3 ω
5 + a4 ω

4 + a5 ω
3 + a6 ω

2 + a7 ω + a8 = 0, (6.19)

ω5 + b1 ω
4 + b2 ω

3 + b3 ω
2 + b4 ω + b5 = 0 (6.20)

for the longitudinal and transverse problems (6.16), respectively. The coefficients
a1,a2, . . . ,a8 and b1,b2, . . . ,b5 in (6.19) and (6.20) are functions of the wavenumber k
and the coefficient of restitution e; although the explicit values of these coefficients are
not given here for brevity.

6.1. Eigenmodes

Condition (6.19) results into eight eigenmodes for the longitudinal system (6.16)1.
These eigenmodes for the coefficient of restitution e = 0.75 and e = 1 are shown
in figures 7 and 8, respectively. The left panels in each of figures 7 and 8 depict the
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Figure 7. Eigenmodes from the longitudinal system (6.16)1 for the coefficient of restitution
e = 0.75: (a) the real part of frequency ω and (b) the imaginary part of frequency ω representing
the growth rate.

real part of frequency, Re(ω), while the right panels display the growth rate, Im(ω),
all plotted over the wavenumber k. For very small wavenumbers (k . 0.02), all the
eigenmodes of the longitudinal system (6.16)1 are stationary in the case of e = 0.75
(see the left panel of figure 7); however, as the wavenumber starts increasing, a pair
of traveling modes commences at k ≈ 0.02, another pair of slow traveling modes
commences at k ≈ 0.043 and a third pair of even slower traveling modes starts at
k ≈ 0.057. These six eigenmodes (which are traveling for large k) are referred to as
the sound modes (Brilliantov & Pöschel 2004; Garzó 2005). Each pair of sound modes
propagates in the opposite directions (for large k) since the corresponding eigenvalues are
in complex conjugate pairs. The remaining two eigenmodes continue to be stationary for
all wavenumbers since the frequencies associated with them are purely imaginary. These
eigenmodes (which remain stationary for all wavenumbers) are referred to as the heat
modes (Brilliantov & Pöschel 2004; Garzó 2005). The left panel of figure 8 illustrates
that there are two (heat) eigenmodes which remain stationary for all wavenumbers and
three pairs of traveling (sound) eigenmodes in the elastic case (i.e., for e = 1) as well.
Nevertheless, two pairs of sound modes commence propagating in the opposite directions
at k = 0 itself in this case. These two pairs of sound modes travel almost with the same
speeds for 0 6 k . 0.18 whereas for k & 0.18 one pair of sound modes travels faster than
the other. It may also be interesting to note that out of these two pairs of sound modes,
the speed of the one pair traveling with slower speed coincides with that of a third pair
of sound modes—which starts propagating at k ≈ 0.095 in the opposite directions with
even slower speed—for 0.28 . k . 0.45. It can also be noticed by comparing the left
panels of figures 7 and 8 that the speeds of sound modes in the case of e = 0.75 (figure 7)
are almost same as those of corresponding sound modes in the elastic case (figure 8) for
wavenumbers k & 0.7.

Since the complex eigenvalues of a matrix occur in pairs, the growth rates, Im(ω), of a
pair of sound modes coincide beyond the wavenumber at which they start propagating.
This is clearly reflected in right panels of figures 7 and 8: the imaginary parts of
frequencies, Im(ω), of the three pairs of traveling waves—in the left panels (i) starting
at k ≈ 0.02, k ≈ 0.043 and k ≈ 0.057 in the case of e = 0.75 (figure 7) and (ii) two pairs
starting at k = 0 and one starting at k ≈ 0.095 in the elastic case (figure 8)—merge
together beyond these wavenumber values (compare the corresponding left and right
panels of figures 7 and 8). As we have discussed above that non-positive growth rate
(Im(ω) 6 0) implies stability and vice versa, it is clear from the right panel of figure 7
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Figure 8. Same as figure 7 but in the elastic case, i.e., for e = 1.

that for e = 0.75, one heat mode and all the sound modes are stable for all wavenumbers
whereas the other heat mode (which has Im(ω) > 0 for some wavenumbers) is unstable
for small wavenumbers. On the other hand, it is evident from the right panel of figure 8
that in the elastic case (i.e., for e = 1), all the heat and sound modes of the longitudinal
system (6.16)1 are stable for all wavenumbers. The unstable heat mode in the case of
e = 0.75 turns stable beyond k ≈ 0.2005 (see the right panel of figure 7) since beyond this
value of the wavenumber, Im(ω) becomes negative. A value of wavenumber k at which
the growth rate, Im(ω), switches its sign is referred to as the critical wavenumber. In
other words, the corresponding eigenmode is unstable (or stable) for the wavenumbers
below the critical wavenumber since Im(ω) > 0 (or Im(ω) 6 0) for them while it is stable
(or unstable) for those above the critical wavenumber since Im(ω) 6 0 (or Im(ω) > 0) for
them. Thus, k ≈ 0.2005 is the critical wavenumber for the longitudinal system (6.16)1 in
the case of e = 0.75.
Condition (6.20) leads to five eigenmodes for the transverse system (6.16)2. The

eigenmodes of the transverse system (6.16)2 are referred to as the shear modes
(Brilliantov & Pöschel 2004; Garzó 2005). These shear modes for the coefficient of
restitution e = 0.75 and e = 1 are illustrated in figures 9 and 10, respectively. The left
panels in each of figures 9 and 10 again delineate the real part of frequency, Re(ω), while
the right panels portray the growth rate, Im(ω), all plotted over the wavenumber k. For
very small wavenumbers (k . 0.065), all the shear modes are stationary in the case of
e = 0.75 (see the left panel of figure 9). A pair of traveling shear modes commences at
k ≈ 0.065 and another pair of slow traveling shear modes commences at k ≈ 0.562. Each
pair of traveling shear modes propagates in the opposite directions, and one remaining
shear mode continues to be stationary for all wavenumbers since the frequency associated
with it is purely imaginary. For the same reason as discussed above, the imaginary parts
of frequencies of each pair of traveling shear modes coincide beyond the wavenumbers at
which they start propagating (one pair coincides for k & 0.066 and another for k & 0.563
in the right panel of figure 9). Furthermore, it is noted from the right panel of figure 9
that one shear mode in the case of e = 0.75 is also unstable for wavenumber values
below the critical wavenumber which is k ≈ 0.2827 while it is stable for wavenumber
values above the critical wavenumber; the remaining four shear modes are always stable
for all values of wavenumber k.
In the elastic case, for e = 1 (figure 10), all the shear modes are stationary for small

wavenumbers (k . 0.23). A pair of traveling shear modes commences at k ≈ 0.23 but
turns back to become stationary on slight increase in the wavenumber (at k ≈ 0.241),
refer to the zoomed region shown in the insets of figure 10. On further increase in the
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Figure 9. Eigenmodes from the transverse system (6.16)2 for the coefficient of restitution
e = 0.75: (a) the real part of frequency ω and (b) the imaginary part of frequency ω representing
the growth rate.
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Figure 10. Same as figure 9 but in the elastic case, i.e., for e = 1. The insets exhibit the
zoomed region where a pair of stationary eigenmodes changes to a pair of traveling eigenmodes
with increasing wavenumber and turns back to become stationary with further increase in the
wavenumber.

wavenumber, a pair of traveling shear modes starts at k ≈ 0.25 and another pair of
slow traveling shear modes commences at k ≈ 0.574. Each pair of traveling shear modes
propagates in the opposite directions, and one shear mode remains stationary for all
wavenumbers since the frequency associated with it is purely imaginary. For the same
reason as discussed above, the imaginary parts of frequencies of each pair of traveling
shear modes coincide for the wavenumbers for which they are propagating—one pair
coincides for 0.231 . k . 0.24 (see the inset in the right panel of figure 10), one pair
for k & 0.251 and another for k & 0.575 in the right panel of figure 10). Furthermore,
it is noted from the right panel of figure 10 that all five shear modes are always stable
in the elastic case. It can again be noticed from the left panels of figures 9 and 10 that
the speeds of traveling shear modes in the case of e = 0.75 (figure 9) are almost same as
those of corresponding traveling shear modes in elastic case (figure 10) for wavenumbers
k & 0.6.

6.2. Eigenmodes in small wavenumber limit

There is another interesting classification of eigenmodes in the small wavenumber limit
(or long wavelength limit), i.e., in the limit k → 0: an eigenmode is referred to as a
hydrodynamic mode if the frequency ω(k) of this eigenmode vanish in the limit k → 0
while it is referred to as a kinetic mode if its frequency ω(k) attains a nonzero constant
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value in the limit k → 0 (Kremer & Marques Jr. 2011). In order to explore the behavior
of the eigenmodes in the small wavenumber limit (i.e., in the limit k → 0), the frequency
ω is expressed in powers of k (see Kremer & Marques Jr. 2011):

ω = γ0 + γ1k + γ2k
2 + . . . (6.21)

The unknown coefficients γ0, γ1, γ2, . . . in the above expansion are determined by insert-
ing expansion (6.21) for ω into (6.19) and (6.20), and solving the algebraic equations
resulting from the comparison of coefficients of each power of k on both sides of each
equation. With this technique, it turns out that in the limit k → 0, the frequencies of
eight eigenmodes of the longitudinal system (6.16)1 in the inelastic (i.e., e 6= 1) case are
related to the wavenumber k via
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(6.22)

and those in the elastic (i.e., e = 1) case are related to the wavenumber k via

ω(1) = −3 i

2
k2 + . . .

ω(2) = −
√

5

3
k − 713 i

606
k2 + . . .

ω(3) =

√

5

3
k − 713 i

606
k2 + . . .

ω(4) = −2 i

3
− 2√

3
k − 59 i

84
k2 + . . .

ω(5) = −2 i

3
+

2√
3
k − 59 i

84
k2 + . . .

ω(6) = −3 i

2
+

342 i

41
k2 + . . .

ω(7) = −
(
373−

√
3385

)
i

336
−
(
453843875− 6402969

√
3385

)
i

294362985
k2 + . . .

ω(8) = −
(
373 +

√
3385

)
i

336
−
(
453843875+ 6402969

√
3385

)
i

294362985
k2 + . . .







(6.23)
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The unknown constants ξ−, ξ+, ϑ and ϑ0 in (6.22) are given by
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;

while the constants ϑ1 and ϑ2 in (6.22) are too cumbersome to write here.

It is clear from (6.22) that, in the limit k → 0, out of eight eigenmodes of the
longitudinal system (6.16)1, one mode is hydrodynamic while the rest seven modes are
kinetic in the inelastic case (i.e., e 6= 1); however, from (6.23), it is evident that three
modes out of eight eigenmodes of the longitudinal system (6.16)1 are hydrodynamic in
the elastic case while only the remaining five modes are kinetic. Figure 11 illustrates
the real (in the left panel) and imaginary (in the right panel) parts of frequencies ω—
associated with the eigenmodes of the longitudinal system (6.16)1—plotted over the
coefficient of restitution e for k = 0. The solid lines in figure 11 denote the frequencies
obtained directly from the condition det(A) = 0 on substituting k = 0 in the matrix A
while the circles denote the frequencies obtained from the analytic expressions (6.22) and
(6.23) in the limit k → 0; moreover, the numbers in figure 11 represent the numbering
of eigenmodes as given in (6.22) and (6.23). Clearly, the frequencies associated with
the eigenmodes of the longitudinal system (6.16)1 in the limit k → 0 from both the
methods match perfectly well. From the right panel of figure 11, one may notice that the
magnitude of the imaginary part of frequency, Im(ω), for eigenmodes 2 and 3 decrease
as the coefficient of restitution increases and they vanish for e = 1; thus, it is concluded
that the longitudinal system (6.16)1 has three hydrodynamic modes exclusively for the
elastic case (e = 1); in the inelastic case (e 6= 1), the longitudinal system (6.16)1 always
has only a single hydrodynamic mode. The left panel of figure 11 shows that for the
wavenumber k = 0 only two eigenmodes (7 and 8) have nonzero real part of frequency
for the coefficient of restitution 0 6 e . 0.73 while the rest six eigenmodes (1, 2, . . . , 6)
are purely diffusive since the frequencies associated with them are purely imaginary. This
can also be seen from (6.22): apart from frequency ω(1) which is zero in the limit k → 0
for all e, the frequencies ω(2), ω(3), . . . , ω(6) are purely imaginary in the limit k → 0; the
frequencies ω(7) and ω(8) are, in general, complex with nonzero real part—even in the
limit k → 0—since ξ− and ξ+ may be complex depending on the value of the coefficient of
restitution; nonetheless, in the limit k → 0, ω(7) and ω(8) also become purely imaginary
for 0.73 . e 6 1—it can be seen form (6.23) for e = 1 as well as in the left panel of
figure 11. One can further perceive from the right panel of figure 11 that the imaginary
part of frequency of one eigenmode (denoted by number ‘3’) is always positive for e 6= 1;
consequently, one eigenmode of longitudinal system (6.16)1 in the inelastic case (e 6= 1)
is unstable in the limit k → 0 whereas all the other eigenmodes are stable in this limit.
Nevertheless, all the eigenmodes of longitudinal system (6.16)1 in the elastic case (e = 1)
are always stable for any wavenumber (see also the right panel of figure 8).

By the similar frequency expansion technique employed above, the frequencies of five
eigenmodes of the transverse system (6.16)2 in the limit k → 0 are related to the
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Figure 11. Real and imaginary parts of frequencies associated with the eigenmodes of the
longitudinal system (6.16)1 plotted over the coefficient of restitution e for wavenumber k = 0.
The lines denote the frequencies obtained directly from the condition det(A) = 0 on substituting
k = 0 in the matrix A while the circles denote the frequencies obtained from the analytic
expressions (6.22) and (6.23) in the limit k → 0. The numbers represent the numbering of
eigenmodes as given in (6.22) and (6.23).
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Figure 12. Same as figure 11 but for the transverse system (6.16)2. The lines denote the
frequencies obtained directly from the condition det(B) = 0 on substituting k = 0 in the matrix
B while the circles denote the frequencies obtained from the analytic expressions (6.24) and
(6.25) in the limit k → 0. The numbers represent the numbering of eigenmodes as given in
(6.24) and (6.25).

wavenumber k in the inelastic (e 6= 1) case via
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and, in the elastic (e = 1) case, these frequencies simplify to
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The constants ϑ3 and ϑ4 in (6.24) are also too cumbersome to write here.
Expressions (6.24) and (6.25) suggest that, in the limiting case of limit k → 0, all five

eigenmodes of the transverse system (6.16)2 are kinetic for all values of the coefficient of
restitution except in the elastic case (i.e., for e = 1) for which ξ0 = 0 and consequently, one
of the five eigenmodes is hydrodynamic in the elastic limit. Figure 12 illustrates the real
(in the left panel) and imaginary (in the right panel) parts of frequencies ω—associated
with the eigenmodes of the transverse system (6.16)2—plotted over the coefficient of
restitution e for k = 0. The solid lines in figure 12 denote the frequencies obtained directly
from the condition det(B) = 0 on substituting k = 0 in the matrix B while the circles
denote the frequencies obtained from the analytic expressions (6.24) and (6.25) in the
limit k → 0; moreover, the numbers in figure 12 represent the numbering of eigenmodes as
given in (6.24). Clearly, the frequencies associated with the eigenmodes of the transverse
system (6.16)2 in the limit k → 0 from both the methods match perfectly well. From
the right panel of figure 12, one may notice that the imaginary part of frequency, Im(ω),
for one eigenmode (denoted by ‘1’) is non-negative and decreases as the coefficient of
restitution increases and, finally, vanishes for e = 1; therefore, it is concluded that one
eigenmode (denoted by ‘1’) of the transverse system (6.16)2 in the elastic case (i.e., for
e = 1) is hydrodynamic since its real and imaginary parts are zero (cf. (6.25)1) and that
this mode of the transverse system (6.16)2 in the inelastic case (e 6= 1) is unstable in the
limit k → 0 whereas all the other eigenmodes are stable in this limit. Nonetheless, all
the eigenmodes of transverse system (6.16)2 in the elastic case (e = 1) are always stable
for any wavenumber (see also the right panel of figure 10). The left panel of figure 12
shows that for the wavenumber k = 0, only two eigenmodes (4 and 5) have nonzero
real part of frequency for the coefficient of restitution 0 6 e . 0.73 while the remaining
three eigenmodes (1, 2 and 3) are purely diffusive since the frequencies associated with
them are purely imaginary. This can also be seen from (6.24): the frequencies ω(1), ω(2)

and ω(3) are purely imaginary in the limit k → 0; the frequencies ω(4) and ω(5) are, in
general, complex with nonzero real part—even in the limit k → 0—since ξ− and ξ+ may
be complex depending on the value of the coefficient of restitution; nonetheless, in the
limit k → 0, ω(4) and ω(5) also become purely imaginary for 0.73 . e 6 1—it can be
seen form (6.25) for e = 1 as well as in the left panel of figure 12.

6.3. Comparison among various Grad moment theories

As discussed in § 3.3, one can obtain a lower-level system of Grad moment equations
by dropping the appropriate field variables in the system of G26 equations. In the same
way, one can obtain the longitudinal and transverse systems associated with the G13,
G14, G20 and G21 equations by dropping the appropriate variables and corresponding
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Figure 13. Stability diagram in (e, k)-plane showing the unstable (in gray color) and stable (in
white color) regions for (a) longitudinal and (b) transverse systems associated with G13 theory.
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Figure 14. Stability diagram in (e, k)-plane showing the unstable (in gray color) and stable (in
white color) regions for (a) longitudinal and (b) transverse systems associated with G26 theory.

rows and columns of the matrices A and B in (6.16). Note that the transverse systems
for the G13 and G14 equations are same since the field variable ∆̂ does not appear in
the list of unknowns of the transverse system (see (6.16)2); for the same reason, the
transverse systems for the G20 and G21 equations are also same. It is also important
to note that the results for the G13 theory presented below are equivalent to those of
Kremer & Marques Jr. (2011) since they assumed a constant value for the field variable
∆ (given in (5.2)) and studied the eigenmodes of the G13 theory essentially.
We have demonstrated in § 6.1 that in the inelastic (e 6= 1) case, one eigenmode of both

the longitudinal and transverse systems (6.16)—a heat mode of the longitudinal system
(6.16)1 and a shear mode of the transverse system (6.16)2—is unstable below some critical
wavenumber values (see the right panels of figures 7 and 9). To analyze the stability of
the longitudinal and transverse systems (6.16), we investigate the complex frequency of
the least stable eigenmode in each system. We have found (but not shown here) that
the real part of the complex frequency of the least stable eigenmode in each system is
always zero; therefore, the instabilities of both the longitudinal and transverse systems are
stationary. This means that the complex frequency ω vanishes (i.e., ω = 0) for the least
stable eigenmode in each of the longitudinal and transverse systems. Consequently, the
principle of exchange of instabilities (Drazin & Reid 1981) is valid for both the systems.
Figures 13 and 14 illustrate the zero contours of (a) the least stable heat mode of

the longitudinal system and (b) the least stable shear mode of the transverse system
associated with the G13 and G26 equations, respectively in (e, k)-plane. The black solid
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line in both the figures represents the critical wavenumber below which the system is
unstable (region depicted with gray color) and above which the system is stable (region
shown with white color). The left panels of figures 13 and 14 unveil that the longitudinal
system associated with the G13 equations is unstable for 0 6 e . 0.21 and for 0 6

k 6 1 (in fact, for any wavenumber apparently) whereas that associated with the G26
equations is stable above some critical wavenumber for all values of e. Thus, the G13
theory of Kremer & Marques Jr. (2011) may not be suitable to the granular flows having
coefficient of restitution e . 0.35 (the point where the critical wavenumber from the
G13 theory attains a sudden jump). The critical wavenumber in the transverse system
associated with the G13 equations (right panel of figure 13)—for small values of the
coefficient of restitution (0 6 e . 0.4)—increases with increasing e, however, that in the
transverse system associated with the G26 equations (right panel of figure 14) decreases
with increasing e in the same region. Moreover, the instability region is more in the
transverse system associated with the G26 equations than that in the transverse system
associated with the G13 equations (cf. the right panels of figures 13 and 14).
In order to compare the critical wavenumbers for the longitudinal and transverse

systems associated with various moment theories (G13, G14, G20, G21 and G26), we
again plot the zero contours of the least stable eigenmode of the (a) longitudinal and
(b) transverse systems associated with these moment theories in (e, k)-plane in figure 15.
Recall that the transverse systems for the G13 and G14 equations are same and those
for the G20 and G21 equations are also same. Therefore, the curves representing the G14
(in red color) and G21 (in black color) theories in right panel of figure 15 also represent
the G13 and G20 theories, respectively. Apparently, all moment theories predict same
critical wavenumber for the longitudinal system when 0.94 . e 6 1 (see the left panel of
figure 15) and same critical wavenumber for the transverse system when 0.75 . e 6 1
(see the right panel of figure 15). From the right panel of figure 15, we see that for the
transverse system, the critical wavenumber profiles predicted by all Grad moment theories
are qualitatively similar except for that in the region where 0 6 e . 0.4; in this region,
the critical wavenumber predicted by the G14 equations increases with increasing e while
that predicted by the G21 equations remains more or less constant and that predicted by
the G26 equations decreases with increasing e. Also, the stability region for the transverse
system is decreasing as the number of moments in the system are increasing. On the other
hand, the critical wavenumber profiles for the longitudinal system predicted by various
moment theories are quite different from each other, especially for small values of the
coefficient of restitution (0 6 e . 0.4). From the left panel of figure 15, it seems that
based on the critical wavenumber profiles, one can classify the Grad moment theories
into two groups: one containing the G13 and G20 theories and the other containing the
G14, G21 and G26 theories. Notice that the first group of theories does not contain the
perturbed part of the scalar moment ∆̃ in contrast to the other group of theories. One
can see that the critical wavenumber profiles predicted by the G13 and G20 theories,
which do not contain ∆̃, are very different from those predicted by the G14, G21 and
G26 theories, which contain ∆̃. The critical wavenumber from the G20 theory closely
follows that from the G13 theory for 0.26 . e 6 1 and they both have a sudden jump
at around e ≈ 0.35; nevertheless, for 0 6 e . 0.21, the G13 theory does not give
any critical wavenumber whereas the G20 theory does give critical wavenumbers, which
means that the longitudinal system associated with G13 equations is always unstable
for 0 6 e . 0.21 while that associated with G20 equations is stable above a critical
wavenumber for all value of e. This also means that the addition of more moments into
the system is stabilizing the longitudinal system associated with the G13 equations. In
the other group of theories (G14, G21 and G26), the critical wavenumber profiles from
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Figure 15. Stability diagram in (e, k)-plane for (a) longitudinal and (b) transverse systems
associated with various moment theories (G13, G14, G20, G21, G26). The system is unstable
below or left of the curves while stable above or right of the curves. The curves from G13 theory
are equivalent to those from the theory of Kremer & Marques Jr. (2011).

the longitudinal system associated with the G14 and G21 are qualitatively similar—
including kinks at e ≈ 0.24 and e ≈ 0.23 in critical wavenumber profiles for G14 and G21
theories, respectively—since they both contain ∆̃ and do not contain R̂ij . The instability
region for the longitudinal system associated with the G26 equations is also more than
that associated with G14 and G21 equations. It may also be stated from the left panel of
figure 15 that the number of moments ought to be increased as the inelasticity increases;
while stating this, we have ignored the G20 theory (magenta line in the figure) which is,
any way, not meaningful for granular gases since it does not contain the scalar fourth
order moment.

6.4. Critical length

It is well-known (and have also been discussed above) that the HCS of a freely cooling
granular gas is unstable in general, and leads to the formation of velocity vortices
(due to the instability of shear mode) and, subsequently, to the formation of density
clusters (due to the instability of heat mode). Nevertheless, it is also known that these
instabilities are confined to long wavelengths (or to small wavenumbers), and thus may
not be observed in systems having small enough system size, (see e.g., Brey et al. 1998b;
Brilliantov & Pöschel 2004; Garzó 2005). Here, we want to find the critical system size
(length), above which the system will become unstable, through the G26 theory presented
in this work.

Recall from § 6.3 that the complex frequency ω is zero for the least stable modes of
both the longitudinal and transverse systems. Therefore the critical wavenumber for the
least stable shear mode of the longitudinal system and that for the least stable heat
mode of the transverse system can be obtained directly by inserting ω = 0 in (6.19) and
(6.20), respectively. Inserting ω = 0 in (6.19) and (6.20), they yield a8 = 0 and b5 = 0,
respectively. Note that a8 is a six degree polynomial in k while b5 is a four degree
polynomial in k. Nevertheless, the solution of a8 = 0 leads to only one meaningful value
of k, which is the critical wavenumber kh for the least stable heat mode of the longitudinal
system (6.16)1; similarly, the solution of b5 = 0 also leads to only one meaningful value
of k, which is the critical wavenumber ks for the least stable shear mode of the transverse
system (6.16)2. The explicit expressions for kh and ks, in a compact form, can be written
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as

kh =
1

3

√

ξ13 −
√

ξ213 − 216 ξ0 ξ5 ξ10 ξ11 ξ12
2 ξ12

, (6.26)

ks =

√

ξ18 −
√

ξ218 − 4 ξ0 ξ5 ξ11 ξ17
2 ξ17

, (6.27)

where

ξ11 = 35 ξ6 (ξ2 ξ7 + ξ3 ξ8),

ξ12 = 120 (1 + a2) ξ0 ξ10 − ξ14 ξ15,

ξ13 = ξ11 ξ15 + 2 ξ16,

ξ14 = 2 ξ2 + 14 ξ3 + 7 ξ7 − ξ8,

ξ15 = ξ9
[
ξ0 + 30 (1 + a2) ξ1

]
− 20 (1 + a2) ξ10,

ξ16 = ξ0 ξ10
[
28 ξ6

{
(8 + 15 a2) (7 ξ3 + ξ7)− 7 ξ2 + ξ8

}
− 27 ξ5 ξ14

]
,

ξ17 = 15 ξ0 + 6 (2− 7 a2) ξ5 + 98 (1− a2) ξ6,

ξ18 = 35 ξ6 (ξ0 ξ7 − ξ0 ξ2 − 2 ξ5 ξ7 − 14 a2 ξ3 ξ5)− (3 ξ5 + 7 ξ6) ξ0 ξ14.

The plots of the critical wavenumbers kh and ks over the coefficient of restitution e are
exactly same as the solid line in figure 14 (a) and (b), respectively. Thus, a heat mode
of the longitudinal system (6.16)1 in the regime k > kh will always decay while that
in the regime k < kh will grow exponentially; similarly a shear mode of the transverse
system (6.16)2 in the regime k > ks will always decay while that in the regime k < ks
will grow exponentially. Notice from figure 14 that ks > kh for all values of the coefficient
of restitution.
In the normal mode analysis considered above, the wavevector is assumed to be in the

x-direction; thus the x-direction is periodic with period 2π/k. Consequently, the smallest
admissible wavenumber in a system imposed with periodic boundary conditions is 2π/L,
where L is the largest system size (length). Hence, corresponding to the highest critical
wavenumber, one can determine a critical system size (length) Lc such that the system
is stable for L < Lc while unstable for L > Lc. In other words, the critical length Lc for
the system considered in this work is determined by

2π

L̃c

= max {kh, ks}, where L̃c =
Lc

ℓ
(6.28)

is the dimensionless critical length and ℓ is the length scale defined in (6.2) (recall that the
wavenumber—and hence kh and ks—are dimensionless and the length scale for making
them dimensionless was ℓ). Since we have concluded above that ks > kh, the critical
length Lc is given by

Lc =
2π

ks
× ℓ =

2π

ks
× 5

√
π

8
√
2
ℓ0, (6.29)

where ℓ0 = 1/(
√
2 πn0d

2) is the mean free path of a hard-sphere dilute gas.
Figure 16 illustrates the critical length of the system in units of mean free path

(Lc/ℓ0) as a function of the coefficient of restitution e. The solid (black) line denotes
the critical length (in units of mean free path) computed from (6.29) with expression
(6.27) for ks, which has been obtained through the G26 theory presented above. The
dashed (green) line denotes the critical length (in units of mean free path) computed
from theoretical expression obtained by the linear stability analysis of Navier–Stokes
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Figure 16. The critical length in units of the mean free path ℓ0 plotted over the coefficient
of restitution e. The solid (black) line denotes the critical length computed from (6.29) and
(6.27) while the dashed (green) line and the squares denote the critical lengths computed from
the theoretical expressions obtained in Garzó (2005) and Brey et al. (1998b), respectively. The
circles depict the two-dimensional DSMC simulation results of Brey et al. (1998b) while the
triangles represent the molecular dynamic simulation results of Mitrano et al. (2011) at solid
fraction φ = 0.1.

and Fourier equations in Garzó (2005). It is evident from the figure that the results on
critical length from the G26 (black solid line) and Navier–Stokes–Fourier (green dashed
line) theories agree for 0.55 . e 6 1 while differ significantly for more inelastic systems
as the latter is not reliable for the systems with large inelasticity. The squares delineate
the critical length (in units of mean free path) computed from the theoretical expression
given in Brey et al. (1998b), which is obtained by the linear stability analysis of a kinetic
model due to Brey et al. (1997). Clearly, the results from the G26 theory and those from
the kinetic model by Brey et al. (1997) agree perfectly for all values of e.

The simulation results (depicted by circles and triangles) in figure 16 are included only
to assess the results obtained from the G26 theory qualitatively. The circles depict the
results of two-dimensional DSMC simulations carried out by Brey et al. (1998b). One
can see in Brey et al. (1998b) that these simulation results are in excellent agreement
with the theoretical results from the linear stability of the kinetic model by Brey et al.
(1997), and the latter (shown by squares) are in perfect agreement with those from the
G26 theory (black solid line). Therefore it can be expected that the results from full
three-dimensional DSMC simulation of a dilute granular gas on critical length would
agree with those predicted by the G26 theory (black solid line). The triangles represent
the results of molecular dynamic simulations carried out by Mitrano et al. (2011) at solid
fraction φ = 0.1. Note that the results from the G26 theory presented above are in the
dilute limit (φ → 0). One may notice from Mitrano et al. (2011) that their results are
also in excellent agreement with those obtained from the theoretical expression of Garzó
(2005) at φ = 0.1 for 0.5 6 e 6 1, and the latter (green dashed line)—for φ = 0—again
agree perfectly with those obtained from the G26 theory for 0.5 6 e 6 1. Therefore, it is
stated that the G26 theory also provides the correct critical length for all values of the
coefficient of restitution.
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7. Conclusion

Higher-order Grad moment equations—up to first 26-moments—for granular gases
have been derived by employing the Grad’s method of moments to the inelastic Boltz-
mann equation, and the production terms associated with the derived moment equations
have been presented. The production terms have, in fact, been computed and presented
for the G27 system (which consists of the first 26-moments and the fully contracted
sixth moment). The production terms associated with the G26 equations can easily
be computed by dropping the terms containing the fully contracted sixth moment in
the given production terms associated with the G27 equations. The HCS of a freely
cooling granular gas has been explored with the G26 equations in a semi-linearized
setting and it has been found that the temperature decay in the HCS closely follows
Haff’s law while the other higher-order moments decay on a faster time scale. Further,
the nonlinear terms of fully contracted fourth moment have also been included and, by
exploiting the stability analysis of fixed points in a dynamical system, it has been shown
that some of the fixed points of the system are unstable and with the only stable fixed
point it has been concluded that the nonlinear terms, indeed, have only negligible effect
on Haff’s law. The G27 equations has also been scrutinized and the stability analysis
of fixed points in a dynamical system has again been exploited to deduce that even
the inclusion of scalar sixth order moment into the G26 system has negligible effect on
Haff’s law. By following the approach of Garzó (2013), the transport coefficients in the
Navier–Stokes and Fourier laws for dilute granular gases have been determined through
the G26 equations and compared with those obtained from various theoretical methods
and computer simulations. The reduced shear viscosity obtained in the present work
has been found to be in good agreement with that from the computer-aided method of
Noskowicz et al. (2007) and with the DSMC simulations of Garzó et al. (2007) for almost
all values of the coefficient of restitution. In fact, the present work yields slightly better
results for the reduced shear viscosity in comparison to the modified Sonine approach
(Garzó et al. 2007). However, in contrast to the modified Sonine approach (Garzó et al.
2007), which yields good results for all the transport coefficients, the other two transport
coefficients from the present work agree only with the first Sonine approximation, hence
overestimate the corresponding coefficients for e . 0.7. This suggests to include the full
trace of fifth moment into the G26 system in order to get coupling in the semi-linearized
RHS of the heat flux balance equation. It is expected that the inclusion of the full trace
of fifth moment—i.e., Grad 29-moment system—would improve the reduced transport
coefficients κ∗ and λ∗, although this problem will be considered somewhere else in future.

The linear stability of the HCS has been analyzed through the G26 system and
various sub-systems by decomposing them into the longitudinal and transverse systems.
It has been found that a heat mode of the longitudinal system and a shear mode
of the transverse system in the case of an inelastic gas are unstable whereas all the
eigenmodes for both the systems are stable in the case of an elastic gas. By comparing
the least stable eigenmodes from various theories, it has been established that the
unstable heat mode of the longitudinal system obtained with the 13-field eigenmode
theory of Kremer & Marques Jr. (2011) remains unstable for all wavenumbers below
a certain coefficient of restitution whereas that obtained with any other higher-order
moment theory becomes stable above some critical wavenumber for all values of the
coefficient of restitution. This is apparently an artefact of assuming the dimensionless
fourth moment as a constant in Kremer & Marques Jr. (2011) rather than considering
it as a field variable while analyzing the eigenmodes. Out of all the theories considered,
the G26 theory have produced the smoothest critical wavenumber profile. The critical
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wavenumber profiles from various Grad moment theories also suggested that the number
of moments ought to be increased with increasing inelasticity. Further investigation of
the critical wavenumbers from the G26 theory has unveiled that the value of the critical
length—beyond which the system becomes unstable—is essentially driven by the unstable
shear mode of the transverse system. The critical length profile obtained from the G26
theory is in excellent agreement with those obtained by the existing theories and also in
qualitatively good agreement with those from the simulations.
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Appendix A. Production terms

The fully nonlinear production terms associated with the G27 equations using defini-
tion ∆ = w/(ρ θ2) are given below. The corresponding production terms associated with
the G26 equations (eqs. (2.11)–(2.13) and (3.4)–(3.8)) are obtained from (A1)–(A 6) on
taking Ξ = 0 and ignoring (A 7).
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P1
ij =− (1 + e)

336
ν

[{

(499− 288e+ 66e2 − 30e3) +
(137− 36e− 66e2 + 30e3)

480
∆

− (215− 90e− 66e2 + 30e3)

13440
Ξ

}

Rij + 28

{

(87− 54e+ 22e2 − 10e3)

− (55− 18e− 66e2 + 30e3)

480
∆− (9 + 22e2 − 10e3)

13440
Ξ

}

θ σij

+ 2 (44 + 27e+ 66e2 − 30e3)
σk〈iσj〉k

ρ
+

7(4− 15e− 66e2 + 30e3)

25

q〈iqj〉

ρ θ

+
(28− 45e− 22e2 + 10e3)

6

mkl〈imj〉kl

ρ θ
+

(116− 99e− 66e2 + 30e3)

392

Rk〈iRj〉k

ρ θ2

+
(44 + 27e+ 66e2 − 30e3)

7

σk〈iRj〉k

ρ θ
+

(169− 66e2 + 30e3)

5

mijkqk
ρ θ

]

, (A 5)

P2 =− 5(1 + e)

4
ν ρ θ2

[

(1− e)(9 + 2e2) +
(271− 207e+ 30e2 − 30e3)

240
∆

+
(181− 117e+ 10e2 − 10e3)

6720
Ξ +

(137− 9e− 30e2 + 30e3)

230400

(

∆2 − 1

14
∆Ξ

)

+
(91− 27e− 10e2 + 10e3)

36126720
Ξ2 +

(23 + 9e+ 30e2 − 30e3)

120

(
σijσij
ρ2θ2

+
1

14

σijRij

ρ2θ3

)

+
(61 + 3e− 30e2 + 30e3)

600

qiqi
ρ2θ3

+
(7 − 39e− 10e2 + 10e3)

1680

mijkmijk

ρ2θ3

+
(113− 81e− 30e2 + 30e3)

94080

RijRij

ρ2θ4

]

, (A 6)

P3 =− 15(1 + e)

16
ν ρ θ3

[

(1− e)(115 + 44e2 + 8e4)

+
(8297− 6889e+ 2852e2 − 2340e3 + 280e4 − 280e5)

240
∆

+
(16841− 12617e+ 5476e2 − 3940e3 + 280e4 − 280e5)

6720
Ξ

− (551 + 217e+ 1084e2 − 60e3 − 280e4 + 280e5)

76800

(

∆2 − 1

42
∆Ξ

)

+
(3113− 1193e− 2396e2 + 860e3 + 280e4 − 280e5)

180633600
Ξ2

+
(281 + 423e+ 516e2 − 260e3 + 280e4 − 280e5)

120

(
σijσij
ρ2θ2

+
3

14

σijRij

ρ2θ3

)

+
(685− 45e+ 996e2 + 540e3 − 840e4 + 840e5)

600

qiqi
ρ2θ3

+
(95− 415e− 148e2 − 620e3 − 280e4 + 280e5)

1680

mijkmijk

ρ2θ3

+
(1641 + 215e− 796e2 + 540e3 + 280e4 − 280e5)

31360

RijRij

ρ2θ4

]

, (A 7)



Higher-order moment theories for granular gases 45

where

ν =
16

5

√
π n d2

√
θ (A 8)

is the collision frequency.

Appendix B. Governing equations for perturbed field variables

Inserting the field variables from (6.1) into the G26 equations (4.1)–(4.8) (without the
underlined term) and neglecting all the nonlinear terms in perturbations, one obtains the
following system of linear partial differential equations in the perturbed field variables.
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∂ṽi
∂xi

= 0, (B 1)

∂ṽi
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∂σ̃kl
∂xl

)

−28

5

q
(H)
〈i (t)

n0 TH(t) vH(t)

(
∂σ̃j〉k

∂xk
+

∂ñ

∂xj〉

)


− 2ξ0νH(t) R̃ij

= −νH(t)

[

ν∗R

{

R̃ij +
R

(H)
ij (t)

n0 TH(t) v2H(t)

(

ñ+
1

2
T̃

)}

− ν∗Rσ

{

σ̃ij +
σ
(H)
ij (t)

n0 TH(t)

(

ñ+
3

2
T̃

)}]

+
(1 + e)

12
νH(t)

[
(52− 27e+ 66e2 − 30e3)

28× 480

R
(H)
ij (t)

n0 TH(t) v2H(t)
∆̃

+
(202− 207e− 66e2 + 30e3)

480

σ
(H)
ij (t)

n0 TH(t)
∆̃

]

, (B 7)

∂∆̃

∂t
+ vH(t)

[

(8− 20 a2)

(

∂q̃i
∂xi

+
σ
(H)
ij (t)

n0 TH(t)

∂ṽi
∂xj

)

−8
q
(H)
i (t)

n0 TH(t) vH(t)

(

∂σ̃ij
∂xj

+
∂ñ

∂xi
− 5

2

∂T̃

∂xi

)

+ 4
R

(H)
ij (t)

n0 TH(t) v2H(t)

∂ṽi
∂xj

]

= −νH(t) ν∗∆ ∆̃,

(B 8)

where

νH(t) =
16

5

√
πn0d

2

√

TH(t)

m
and ξ0 = ζ∗0 .
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