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Harmonic Shears of Slit and Polygonal Mappings
Saminathan Ponnusamy, Tri Quach(%, and Antti Rasila

Abstract. In this paper, we study harmonic mappings by using the shear construc-
tion, introduced by Clunie and Sheil-Small in 1984. We consider two classes of
conformal mappings, each of which maps the unit disk D univalently onto a domain
which is convex in the horizontal direction, and shear these mappings with suitable
dilatations w. Mappings of the first class map the unit disk D onto four-slit domains
and mappings of the second class take D onto regular n-gons. In addition, we dis-
cuss the minimal surfaces associated with such harmonic mappings. Furthermore,
illustrations of mappings and associated minimal surfaces are given by using MATH-
EMATICA.

Keywords. Harmonic univalent mappings, convex along real directions, convex func-
tions, harmonic shear, polygonal mappings, slit mappings, and minimal surfaces.
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1. Introduction

A complex-valued harmonic function f defined on the unit disk D is called a harmonic
mapping if it maps D univalently onto a domain {2 C C. Note that it is not required that
the real and the imaginary part of f satisfy the Cauchy-Riemann equations. In 1984,
Clunie and Sheil-Small [2] showed that many classical results for conformal mappings
have natural analogues for harmonic mappings, and hence they can be regarded as a
generalization of conformal mappings. Each harmonic mapping in D has a canonical
presentation f = h + g, where h and ¢ are analytic in D and g(0) = 0. A harmonic
mapping f = h + g is called sense-preserving if the Jacobian J; = |h'[> — |¢'|? is
positive in D. Then f has an analytic dilatation w = ¢' /I’ such that |w(z)| < 1 for
z € D. For basic properties of harmonic mappings we refer to [5, 9l].

A domain €2 C C is said to be convex in the horizontal direction (CHD) if its in-
tersection with each horizontal line is connected (or empty). A univalent harmonic
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mapping is called a CHD mapping if its range is a CHD domain. Construction of a
harmonic mapping f with prescribed dilatation w can be done effectively by the shear
construction the devised by Clunie and Sheil-Small [2].

Theorem 1.1. Let f = h + g be a harmonic and locally univalent in the unit disk
D. Then f is univalent in D and its range is a CHD domain if and only if h — g is a
conformal mapping of D onto a CHD domain.

Suppose that ¢ is a CHD conformal mapping. For a given dilatation w, the harmonic
shear f = h + g of ¢ is obtained by solving the differential equations

From the above equations, we obtain

(1) h(z) = /Oz%dg.

For the anti-analytic part g, we have

@ o) = | Zw(()% .
Observe that
3) f(2) = h(z) +g(2) = 2Re U;%dc]—?z).

We shall use (1) to find the analytic part i of the harmonic mapping f = h + g. Then
the anti-analytic part g of the harmonic mapping f can be obtained from the identity
g = h — ¢, or computed via (3)).

It is known that the class of harmonic mappings has a close connection with the theory
of minimal surfaces. In the space R?, the minimal surface is a surface which mini-
mizes the area with a fixed curve as its boundary. This minimization problem is called
Plateau’s Problem. Discussion concerning the differential geometric approach to the
subject can be found from the book by Pressley [10].

Our results concerning minimal surfaces are based on the Weierstrass-Enneper repre-
sentation. Let .S be a non-parametric minimal surface over a simply connected domain
2 in C given by

S ={(u,v, F(u,v)): u+iv e Q},
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where (u,v) identifies the complex plane R?, which underlies the domain of F'. The
following result is known as the Weierstrass-Enneper representation. This representa-
tion provides a link between harmonic univalent mappings and minimal surfaces. The
surface S is minimal surfaces if and only if S has the following representation

S:{<R€ /()‘Z(pl(c)dc+01,Re/O‘ZSOQ(C)dC“FCQ, RG/O‘ZQD:')(C)dC—FCg) : ZED},

where 1, 3, 3 are analytic such that ©? + @2 + % = 0, and

f(z) =u(z) +iv(z) =Re /OZ ¢1(z)dz + iRe /Oz wa(z)dz + ¢

is a sense-preserving univalent harmonic mapping from D onto (2. In this case, the
surface S is called a minimal surface over €2 with the projection f = u + iv. Further
information about the relation between harmonic mappings and minimal surfaces can
be found from the book of Duren [5]].

Systematical construction of harmonic shears of mappings of the unit disk and un-
bounded strip domains, and their boundary behaviour are presented in the article by
Greiner [[7]]. In most cases the dilatation is chosen to be w(z) = z".

In this paper, we study two classes of conformal mappings, each of which map D
univalently onto a domain which is convex in the horizontal direction. The first one
involves the mapping

I+z z
= Al B
#(z) Og(l—z) * 1+ cz+ 22

which maps D onto C minus four symmetric half-lines. In [6], Ganczar and Widomski
have studied some special cases of this mapping and its harmonic shears. Analytic
examples of harmonic shears of ¢ with dilatations

1 — 2k
— T k=12

Y= e B

along with illustrations, are given in [3]].

The second case is related to the conformal mapping (see [8), p. 196])

@ %@—AO—&V“%

which maps the unit disk D onto a regular n-gon. In [4]], Driver and Duren discussed
the harmonic shear of ¢ by the choice of the dilatations w(z) = 2", w(z) = z and
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n/2

w(z) = z™*. With the last choice of the dilatation, it is assumed that n is even. The

minimal surfaces of these harmonic shears were studied as well.

The outline of the paper is as follows: In the first part, we study the four-slit conformal
mapping, and its harmonic shears, with the dilatation w(z) = z". Then we consider
conformal mappings of regular n-gons, with dilatations w(z) = 2?" and w(z) = 22
These dilatations lead naturally to the Appel’s hypergeometric functions, which are
formal extensions of the Gaussian hypergeometric functions into two variables. Fi-
nally, we consider minimal surfaces obtained by shearing conformal mapping of the
regular n-gon described by (). The results are also illustrated by using MATHEMAT-

ICA.

2. Shearing of Four Slit Conformal Mappings

In this section we shall give examples of harmonic shear of unbounded conformal
mappings with a suitable dilatations. For A, B > 0 and ¢ € [—2,2], let us consider
the function ¢ defined by

142 z
35) go(z)—Alog(l z) +Bl—|—cz—|—22'

Recall from [3]] that ¢ is univalent and it maps the unit disk D onto a domain convex
in the direction of the real axis. In special cases, namely ¢ = —2 and ¢ = 2, the image
of the unit disk D under ¢ is

Ar A 2A 2A+B
C\{xiTZ.xE(—oo,ElogE— 1 1},

C\{xi%i:xe [—élog%—l—ZA—i_B,oo)},

and

2 B 4
respectively. In the case ¢ = 0, the mapping ¢ maps the unit disk D onto C minus the

3

following half-lines:

{ An (_Oo A VIATB+B /BRATB)

+ —i:x € —— —
TE iz 5 log A 5B 1
and
A A V2A vVB(2A+ B
xili:xe — log 2 +B+B+ (24 + >,oo .
2 2 V2A+ DB - B 4

By writing ¢ = —2cos~y, v € (0, 7), the equation (5)) takes the form

142 z
©) plz) = Alog (1 —z) +B(1—e”z)(1—e*”z)'
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Also in [3], the authors considered harmonic shears of ¢ for some choices of A and B

with dilatations
1— ZQk
=— k=12
Let us now consider the harmonic shear of ¢ defined in @) with the dilatation w(z) =
2", n > 2. First, we need the derivative of ¢ and the direct calculation gives
2A B . et e
@ )= : |

1—22 2sinyZ 1— @ivz)Z (1 _ e—mz)g

Thus by (1) and (7), we have
4 dC
=2A
9= e
B ][ e~ d¢ [ e d(¢
mrt |, e =e -, el

We shall write this in the form

h(z) =2AI, — 2sinyi (e7"1 — €"l3),
where
s / %
o 1=¢)A—=¢")
Y
o (C—e)2(1—-¢")
I3 = /Z ~ & :
o (C—em)?(1—¢)
By partial fractions and z;, = e2mik/n I — 0,---,n— 1, we have
1 12 2
1 —2zn :_ﬁ;z—zk‘

Therefore the first integral /; can be rewritten as

—1 1n—1 _1 z dec
11—511,0‘1‘5;]1#—5/0 (1-0) 1_|_C Z/ 1—-C 1+C)(Zk—o‘

We remark that for the case n = 1, the latter part of the integral inside the summation

sign should be omitted. For the first integral, we get

[ d¢ 1z 1 14z
Il’o_/o (1—g)2(1+§)_21—z+4log(1—z)‘
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The latter integral I ;, depends on whether n is odd or even. Assuming that n is odd,
we easily see that

]““_/o (1= Q0+ )z —©)
. Rk # dC 4% # dg . 2k # d(:
_2(zk—1)/01—§+2(zk+1)/01+c z,ﬁ—l/ozk—g'

Thus
2z log(1l — 2 2z log(1 + 2 z 2y — 2
Lyp=—" 4 ) k log )—l—Qk log | £ .
2(z — 1) 2(z, + 1) zi—1 2k
Note that, by assumption, z; # +1. To simplify our notation, let N = {0,1,--- ,n —

1} be an index set. Suppose that @ € N, then we define N, = N\{a}, and N,; =
N, N N,. With this notation, in case n is even, we have

th— Z L = Z L + I )2,

k€eNg keN, /2

z d¢ 1 =z 1 142
[ln/2: = — +—10g .
’ o 1+0)2?(1—-¢) 21+=z 4 1—=2

Next we compute the integrals I and I3. Assuming thatn = e # z,1i.e,y # 27k/n,
k=0,---,n— 1, we compute

&
b= /(c DI — )

Z/ zde_2k>

_ 1S L[ d¢ 1 fde 1 2 dC
 on& {n—zk/ (C—n)2+(n—zk)2/o n—< (n—zk)Q/o Zk_C}

where

k=0
1 1 1 n—=z 2K — %
=——Z SO L g (1F) g |
n— 2 -z N (n— 2x) n %k
In the case of ¥ = 2mm/n, form = 0,--- ,n — 1, we have

_ [ d¢
fom = /0 = zm)2(1 — ")

(¢
B dC 1 (%  dC
n Z _Zm +E/O (C

" e, = %)
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The sum can be computed as above and the last integral is

1[5 d¢ 1 1 1
5/0 (C—zm)?’_%[(z—zm)f%}

Note that, we have an identity /5 = I3,,_,, and if m = 0, we have I, = I3 .

Finally, the function g can be solved readily from the following identity

g=h—o.
In Table [1| we have the integral /; of h, which depends on whether n is odd or even.

On the other hand, integrals I, and I3 depend on whether y # 27wm/n or v = 2mm/n,
foranm = 0,--- ,n — 1 and the result is given in Table 2]

TABLE 1. Analytic part h = 2AI, + ZSﬁwi(e*”b — €"13) of the
harmonic shear f of the slit mapping ¢ with a dilatation w(z) = z".
Note that in the case of n = 1, the summation should be omitted. See

Table @ for the integrals I, and I5.

n Il
1 n—1
even — (—71,0 + Z ]1,k>
n
k=1

1
odd o Lo+ I+ Z I g

keNO,n/Q

TABLE 2. The integrals I and I3 for the analytic part h = 2AI; +

-2 7i(e‘”[g — €"13) of the harmonic shear f of the slit mapping ¢

with a dilatation w(z) = 2". See Table|l|for the integral I;.

Y I, I

isnot 2rm/n | I, I;

is 27rm/n [3,7L7m IS,m

Therefore, we have obtained the following result:

Theorem 2.1. Let ¢ be given by (0). Then the harmonic shear f = h + g, where h is
given in Table[l|and Table 2 and the anti-analytic part g = h — @, maps the unit disk
D univalently onto a domain which is convex in the horizontal direction.

In the case of A = % sin? o, B = cos? a and ¢ = 0, we have the Corollary.
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Corollary 2.2. Let ¢, be defined as
1., 1+z zcos? a
Va(2) = 5 sin alog (1 — Z) + TR
Then ., maps the unit disk D univalently onto C minus the following half-lines

j:7rsinzoc, c 1.5 | (& _ oosa
x (G —00, —= sin” alog cot — —
1 2 SR

and

i7rsin2oz, c 1., | toc+cosoc
: —sin —
x 1 L% € |gsin"alogeot 5 5 )

which is convex in the horizontal direction. Then the harmonic shear f, = h+ g, with

cos? a

([2 - [3>7

where Iy, Iy, I3 are given in Table[l|and Table 2} and g = h — ,, maps the unit disk
D onto a CHD domain.

h=sinal, —

The above conformal mapping ¢,, is given in [8, p. 197]. In Figure [I] we have the
conformal mapping ¢, of the unit disk D onto a four-slit domain with o = 7/3.
Harmonic shears of this mapping as given in Corollary 2.2]are shown in Figure 2] with
a=mn/3,forn=1,2.

FIGURE 1. Conformal mapping ¢, of the unit disk ID onto a four-slit
domain with a = 7/3, and the omitted half-lines are dashed. Illustra-
tions of harmonic shears are given in Figure @
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2 L
(A) Dilatation w(z) = z. (B) Dilatation w(z) = 2.

FIGURE 2. Harmonic shears f, given in Corollary with « = 7/3
and a dilatation w(z) = 2", forn = 1, 2.

3. Shearing of Regular n-gons

As pointed out in the introduction, the authors in [4] considered the conformal map-
ping ¢ given by @). Then the harmonic shear f (with dilatations w(z) = 2"/,
k = 1,2, and w(z) = z) can be given in terms of the Gaussian hypergeometric func-

tion, which is defined by

- b
F(a,byc;2) =1+ Z (a)'rgé))nz”, lz| < 1,
n=1 n

n!
where .

(@), =ala+1)---(a+n—1) :%, a e C,
is the Pochhammer symbol. For Re ¢ > Re b > 0, this can also be written as the Euler
integral

['(c) ! b—1 —b—1 -
Fla, b cz) = ——"—— t 1-—1%)° 1—2t)7%dt.
(@.0,:2) = im0 =)

Now we consider the dilatation w(z) = 22" Therefore, by , and , we have

o) = | 1y ey,
(8) ‘.
9(z) = / ¢ (1 — )L — ) dC,
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Notice that we can write i and g as
e = [ (= ¢y ¢y
0
— / C2n(1 . Cn)flfQ/n(l + gn)fl dC
0

Using the change of variable ( = /"2, we obtain

1
h(z) = %/ (1 —2") 71721 4 ) Y=Lt
0

In order to rewrite / in a compact form for our purpose, we recall the first Appel’s
hypergeometric function [1, p. 73], which is defined by

b b
Fl(aablab2;c;$ ?J ZZ ka ;k,l,2)1$k9l7
+

k=0 =0

where («),, is the Pochhammer symbol given above. As for hypergeometric functions,
Appel’s hypergeometric functions can be defined by Euler’s integral as follows [1} p.
77]:
I'(c) ! ~1 —a—1 —b —b
Ewmmm%wz—————/ﬁ (1= 1) (1 — at) (1 — o) "2 dt,
[(a)l'(c = a)

where Rec > Rea > 0. Seta = ﬁ?bl =

S

by =1,c= 1+%.Wehave
1 2 1

9) h(z) = zFy (—,1+—,1;1+—;z",—z") i
n n n

A direct computation shows that g defined by (&) can be written in the form

Z2n+1

(10) 9(s) = 5—

1 2 1

Fy (2+—,1+—,1;3+—;z",—z") .
n n n

This proves the following result.

Theorem 3.1. Let p be given by ({@). Then the harmonic shear f = h + g, where h
and g are given in (9) and (10), respectively, maps the unit disk D univalently onto a
domain which is convex in the horizontal direction.

In Figure [3) we have illustrations of the conformal mapping ¢ onto regular n-gon and
the harmonic shear f = h + g with dilatation w(z) = 22", for n = 3,4, 5. It is worth
remarking that this situation was not considered by Duren and Driver in [4].
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3,4,5

, IV =

2271

22 see [4].

5L

-1

e e R

FIGURE 3. Conformal mappings from the unit disk D onto a regular n-

gon and its harmonic shears with the dilatation w(z)

For a comparison with a dilatation w(z)



12 S. Ponnusamy, T. Quach, and A. Rasila

Next we let 7 be odd and we consider the dilatation w(z) = z2. Thus, by (1), (2) and
@), we have

hz) = / - @),
/ C3(1— ¢") (1 — ).

Since n 1s assumed to be odd, we have
1+¢"1—¢"
1+¢ 1-¢

=(I=Ct =TI )

=144 4 D,

and as a consequence of this observation, i defined above takes the form

P 20D ¢
h(z) —/ ( gn)1+2/n 1 +C" d¢ = Z/ Cn 1+2/n(1 +Cn) dacg.

A similar expression holds for g as well. Finally, by computation, we obtain that

n—1 op41
z 2k +1 2 2k+1
h(z):22k+1F1< A4 L+ — z—z)
(1) o
UL g2kl 2k +1 2 2k+1
g(z)222k+1F1< ,1—1—5,1;1—1— - ,z,—z).
k=1

We have shown the following result:

Theorem 3.2. Let ¢ be given by {@)). Then the harmonic shear f = h+7g, where h and
g are given in (L)), maps the unit disk D univalently onto a domain which is convex in
the horizontal direction.

In Figure [] illustrations of the conformal mapping ¢ onto a regular n-gon and the
harmonic shear f with dilatation w(z) = 22, for n = 3, 5, are given.

4. Minimal Surfaces

A harmonic function f = h + g can be lifted to a minimal surface if and only if
the dilatation w is the square of an analytic function. Suppose that w = ¢ for some
analytic function ¢ in the unit disk D). Then the corresponding minimal surfaces has
the form

{u,v,w} = {Re f,Im f,2Im ¢},

w6 = [ a0 2

where
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FIGURE 4. Harmonic shear of the mapping ¢, which maps the unit
disk D onto a regular n-gon with the dilatation w(z) = z2.

Let ¢ be a conformal mapping, which maps the unit disk D onto a regular n-gon and

let the dilatation be w(z) = 2. Then the minimal surfaces is determined by the
integral

b(z) = / (- ¢ ¢y,

By the substitution ¢ = tY/7 > we have

2n+1

1
() = /O PUn(1 = )12 (1 4 )y,

n
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B)n=4

FIGURE 5. Minimal surfaces of the harmonic shear f, which is given
by Theorem@

Appel’s hypergeometric presentation gives
1 2 1
P(z) = 2" Ry (1 + =1+ =124 —;2", —z") :
n n n

In Figure[5] we have the minimal surfaces for the above mapping for n = 3, 4.
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2

In the second polygonal example, let n be odd and let the dilatation be w(z) = 2*. In

this case the minimal surface lifting is given by integral

$(z) = / - e — ) g

n—1 2
— Z/O C?k+1(1 o Cn)—l—Z/n(l + Cn)—l dC
k=0

nlo2(kt1) 1
n 0

k=0
Again the above integral can be written by Appel’s hypergeometric function

n—1 = o(k+1) 2(k

z +1) 2 2(k+1)
12 = F 1+ — 1514+ —7"2" —=2" ).

( ) ¢<Z) §2<k+1) 1( ) +TL’ ) + n 1R, TR

In Figure [6] minimal surfaces of (I2)), for n = 3, 5, are illustrated.
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B)n=>5

FIGURE 6. Minimal surfaces of the harmonic shear f, which is given
by Theorem @

References

[1] W.N. BAILEY, Generalized hypergeometric series, Cambridge Tracts in Mathematics and
Mathematical Physics, No. 32 Stechert-Hafner, Inc., New York, 1964.

[2] J. CLUNIE, T. SHEIL-SMALL, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A 1
Math. Vol. 9, pp. 3-25, 1984.

[3] M. DORFF, M. NOWAK, M. WOLOSZKIEWICZ, Harmonic mappings onto parallel slit do-
mains, Ann. Polon. Math. Vol. 101, no. 2, pp. 149-162, 2011.



Harmonic Shears of Slit and Polygonal Mappings 17

[4] K. DRIVER, P. DUREN, Harmonic shears of regular polygons by hypergeometric functions,
J. Math. Anal. Appl. Vol 239, no. 1, pp. 72-84, 1999.

[5S] P. DUREN, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156. Cam-
bridge University Press, 2004.

[6] A. GANCZAR, J. WIDOMSKI, Univalent harmonic mappings into two-slit domains, J. Aust.
Math. Soc. Vol. 88, no. 1, pp. 61-73, 2010.

[7] P. GREINER, Geometric properties of harmonic shears, Comput. Methods Funct. Theory
Vol. 4, no. 1, pp. 77-96, 2004.

[8] Z. NEHARI, Conformal mapping, Reprinting of the 1952 edition. Dover Publications, Inc.,
New York, 1975.

[9] S. PONNUSAMY, A. RASILA, Lectures on Harmonic Mappings and Quasiconformal Map-
pings, Ramanujan Mathematical Society Lecture Note Series, (in press).

[10] A.PRESSLEY, Elementary differential geometry, Springer Undergraduate Mathematics Se-

ries. Springer-Verlag London, Ltd., London, 2001.

Saminathan Ponnusamy E-MAIL: samy@iitm.ac.in
ADDRESS: [Indian Institute of Technology Madras, Department of Mathematics, Chennai-600 036,
India.

Tri Quach%’ E-MAIL: tri.quach@tkk.fi
ADDRESS: Aalto University, Department of Mathematics and Systems Analysis, P.O. Box 11100, FI-
00076 Aalto, Finland.

Antti Rasila E-MAIL: antti.rasila@iki.fi
ADDRESS: Aalto University, Department of Mathematics and Systems Analysis, P.O. Box 11100, FI-
00076 Aalto, Finland.



	1. Introduction
	2. Shearing of Four Slit Conformal Mappings
	3. Shearing of Regular n-gons
	4. Minimal Surfaces
	References

