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We compute the tail contributions to the gravitational-wave mode amplitudes for compact binaries
in eccentric orbits at the third post-Newtonian order of general relativity. We combine them with
the already available instantaneous pieces and include the post-adiabatic corrections required to
fully account for the effects of radiation-reaction forces on the motion. We compare the resulting
waveform in the small eccentricity limit to the circular one, finding perfect agreement.

PACS numbers: 04.30.-w, 04.30.Tv

I. INTRODUCTION

In recent years the discoveries of gravitational waves
(GW) by the LIGO and Virgo Collaborations have
opened a new window to the Universe [1–10]. KAGRA
will join the global GW detector network in 2019 [11] and
LIGO-India in 2025 [12], improving source localization
and parameter estimation [13], while LISA Pathfinder’s
exceptional performance [14] – showing that the LISA
mission is feasible – and maturing pulsar timing ar-
rays [15] mark the beginning of multiwavelength, multi-
band GW astronomy.

Compact binary systems are the most prominent
sources for the present and future GW observatories. So
far these events have been analyzed using quasi-circular
GW templates, as radiation-reaction effects tend to circu-
larize the orbits [16, 17] for prototypical sources. For such
systems one can thus assume that by the time the binary
enters the sensitivity band of current ground-based detec-
tors the eccentricity will be close to zero. However, there
are a number of astrophysical scenarios in which binary
systems could have moderate eccentricities when enter-
ing the sensitivity band of ground-based detectors [18–
24]. Recently, there have been studies showing that triple
interactions among black holes can produce coalescing bi-
naries with moderate eccentricities (∼ 0.1) when enter-
ing the LIGO band [25–27] or large eccentricities (∼ 0.9)
when entering the LISA band [28]. This has major impli-
cations on how to distinguish between binary black hole
(BBH) formation channels [29] and motivates the devel-
opment of waveforms valid for nonzero eccentricities.

There has been great effort to model GWs of eccen-
tric binary systems. One usually employs the quasi-
Keplerian parametrization [30, 31] to describe the con-
servative binary orbits. The phasing description, devel-
oped in Refs. [32, 33] and discussed in great detail for
low-eccentricity binaries in Ref. [34], efficiently incorpo-
rates the effects of radiation reaction, describing the bi-

nary dynamics on three different timescales: the orbital
timescale, the periastron precession timescale, and the
radiation-reaction timescale. In addition, the secular evo-
lution of the orbital elements has been completed at the
third post-Newtonian (3PN) order in Refs. [35–37], in-
cluding hereditary effects. Using this, several waveform
models have been developed in the past years [38–48], for
both nonspinning and spinning binaries.

In this paper, we extend the work in Ref. [49] by com-
puting the tail contributions to the GW amplitudes for
compact binaries in eccentric orbits at the third post-
Newtonian level. Combining our tail results with the
instantaneous ones, we then incorporate post-adiabatic
corrections [32–34] to get a complete waveform includ-
ing radiation-reaction effects valid during the early in-
spiral of the binary system. We present all our results
in modified harmonic (MH) gauge in terms of the post-
Newtonian parameter x̄ = (Gmω̄/c3)2/3, where G de-
notes the gravitational constant, c the speed of light, m
the total mass of the binary, and ω̄ the adiabatic orbital
frequency (see Sec. V), as well as a certain time eccen-
tricity ē = ēt associated with the PN-accurate quasi-
Keplerian parametrization. To calculate the complicated
tail integrals, we work within a low-eccentricity expan-
sion and express everything in terms of the mean anomaly
l and the phase angle λ, which accounts for the periastron
advance. Compared to the results in Ref. [49], ours will
thus not be valid for arbitrary eccentricities. Moreover,
they will need to be completed by the memory contribu-
tions, which we will tackle in a follow-up paper [50].

This paper is structured as follows: In Sec. II we
quickly review the basics of spherical harmonic decom-
position and recall how to connect the radiative multi-
pole moments to the actual source moments. We also
review the conservative 3PN-accurate quasi-Keplerian
parametrization [31]. In Sec. III, we discuss how to in-
corporate post-adiabatic corrections [32, 33] into this de-
scription. In Sec. IV, we are then in a position to cal-
culate the various tail integrals appearing in the source
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multipole moments. In Sec. V, we combine these results
with the instantaneous ones and introduce post-adiabatic
corrections. We also compare our results to the circular
waveforms in Ref. [51]. Finally, in Sec. VI, we give a
brief summary of our work. Throughout this paper we
mostly present results up to O(e), though expressions
up to O(e6) for all tail and post-adiabatic modes will be
listed in a supplemental Mathematica file [52].

II. CONSTRUCTION OF THE WAVEFORM

FOR COMPACT BINARIES IN ECCENTRIC

ORBITS

A. Polarizations and spherical-mode decomposition

The gravitational waves emitted by an isolated sys-
tem near future radiative infinity are encoded in the
transverse-traceless (TT) projection hTT

ij of the devia-
tion of the space-time metric gµν from a flat metric
ηµν = diag(−1, 1, 1, 1), in a radiative-type Cartesian-
like coordinate grid Xµ = (cT,X), at order 1/R, where
R = |X| denotes the Euclidean distance of the vec-
tor X to the origin. It is convenient to chose this ori-
gin at the center of mass of the full system and to in-
troduce the standard spherical coordinates (Θ,Φ) asso-
ciated with the so-defined Cartesian frame, for which
the relation X i = R (cos Φ sin Θ, sin Φ sin Θ, cos Θ) holds.
The radiative property of this frame ensures that a null
geodesic going through the origin at time TR will reach
an observer with position X at time T = TR + R/c.
If N(Θ,Φ) = X/R denotes the unit direction of that
observer, the plane span by the vectors P (Θ,Φ) and
Q(Θ,Φ) belonging to some arbitrary direct orthonormal
triad (N ,P ,Q) must be transverse to the direction of
propagation of wave rays.

The transverse-traceless projection hTT
ij can be

uniquely decomposed into symmetric trace-free (STF) ra-
diative mass-type (UL) and current-type (VL) multipole
moments as:

hTT
ij =

4G

c2R
Pijab(N)

∞
∑

ℓ=2

1

cℓℓ!

{

NL−2UabL−2

− 2ℓ

c(ℓ+ 1)
NcL−2ǫcd(aVb)dL−2

}∣

∣

∣

TR

+ O
(

1

R2

)

.

(1)

Here Pijab = PiaPjb − 1
2 PijPab, with Pij = δij − NiNj,

is the TT projection operator. The waveform is usu-
ally projected on the transverse symmetric basis e+

ij =
1
2 (PiPj −QiQj), e

×
ij = P(iQj),

(

h+

h×

)

=

(

e+
ij

e×
ij

)

hTT
ij , (2)

the resulting components being referred to as the plus
and cross polarizations, respectively. Equivalently the
complex basis formed by the vector m = (P + iQ)/

√
2

of spin weight 2 and its complex conjugate m of spin
weight −2 can be used. From the transverse trace-free
character of the waveform, it follows that

h = h+ − ih× = hTT
ij mimj . (3)

From now on we shall assume that the vector m is pro-
portional to mS = (∂N/∂θ + i sin−1θ ∂N/∂φ)/

√
2 so

that the functions adapted to the spherical decomposi-
tion of the spin −2 quantity h are the usual spin-weighted
spherical harmonics of weight −2, which will be denoted
by Y ℓm−2 (Θ,Φ). In our conventions, they are given by

Y ℓm−2 (Θ,Φ) =

√

2ℓ+ 1

4π
dℓm2 (Θ)eimΦ , (4a)

dℓm2 =

kmax
∑

k=kmin

(−1)k

k!

×
√

(ℓ+m)!(ℓ −m)!(ℓ+ 2)!(ℓ− 2)!

(k −m+ 2)!(ℓ+ m− k)!(ℓ− k − 2)!

×
(

cos
Θ

2

)2ℓ+m−2k−2 (

sin
Θ

2

)2k−m+2

,

(4b)

with kmin = max(0,m− 2) and kmax = min(ℓ+m, ℓ− 2).
Thus, the gravitational waveform may be decomposed
into spherical modes hℓm as

h+ − ih× =

+∞
∑

ℓ=2

ℓ
∑

m=−ℓ

hℓmY ℓm−2 (Θ,Φ) . (5)

The spherical harmonic modes hℓm can be written in
terms of the radiative mass-type (U ℓm) and current-type
(V ℓm) multipole moments,

hℓm = − G√
2Rcℓ+2

(

U ℓm − i

c
V ℓm

)

, (6)

with the inverse relations

U ℓm = −Rcℓ+2

√
2G

(

hℓm + (−1)mhℓ−m
)

, (7a)

V ℓm = −Rcℓ+3

√
2iG

(

−hℓm + (−1)mhℓ−m
)

. (7b)

The radiative moments (U ℓm, V ℓm) are actually related
to the STF radiative moments (UL, VL) by

U ℓm =
4

ℓ!

√

(ℓ+ 1)(ℓ+ 2)

2ℓ(ℓ− 1)
αℓmL UL , (8a)

V ℓm = − 8

ℓ!

√

ℓ(ℓ+ 2)

2(ℓ+ 1)(ℓ− 1)
αℓmL VL , (8b)

where the αℓmL denote a set of constant STF tensors that
connect the basis of spherical harmonics Y ℓm(Θ,Φ) to
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the set of STF tensors N〈L〉 as

N〈L〉(Θ,Φ) =
ℓ
∑

m=−ℓ

αℓmL Y ℓm(Θ,Φ) , (9a)

Y ℓm(Θ,Φ) =
(2ℓ+ 1)!!

4πℓ!
αℓmL N 〈L〉(Θ,Φ) . (9b)

They can be calculated through

αℓmL =

∫

dΩ N〈L〉Ȳ
ℓm , (10)

and are given explicitly in Eq. (2.12) of Ref. [53].
Remarkably, for planar binaries, there exists a mode

separation [54, 55] such that hℓm is completely deter-
mined by mass-type radiative multipole moments U ℓm

for ℓ + m even and by current-type radiative multipole
moments V ℓm for ℓ+m odd, hence

hℓm = − G√
2Rcℓ+2

U ℓm if ℓ+m is even , (11a)

hℓm =
iG√

2Rcℓ+3
V ℓm if ℓ+m is odd . (11b)

Let us finally specify the choice of the Cartesian frame
and polarization vectors in the case of interest where the
source is a binary system of pointlike objects with bound
orbits, since this choice will fully set the amplitude modes
computed in the present paper. We adopt the same con-
ventions as in Ref. [51]. In the absence of spin, the orbits
stay in a plane. The vector e3 is taken to be the unit nor-
mal vector orienting the sense of the motion positively.
For the polarization vector P , we pick the unit vector
pointing towards the ascending node N × e3, with N

representing the direction of the Earth observer. There-
fore, we can also make it coincide with e1. To complete
the triads ea and (N ,P ,Q) we pose e2 = e3 × e1 and

Q = N × P . Notice that, by construction, N belongs
to the plane spanned by {e2, e3}. Its spherical coordi-
nates, in terms of the inclination of the binary ι, are thus
(Θ = ι,Φ = π/2).

B. Multipole moments

From Eqs. (6–8), we see that we need to relate the
UL and VL to the actual source. In the multipolar
post-Minkowsian (MPM) post-Newtonian (PN) formal-
ism, the radiative moments (UL, VL) are functionals of
six sets of source moments (IL, JL, WL, XL, YL, ZL).
The relations between the radiative moments and the
source moments have been obtained at the 3PN order
and are listed in Ref. [51], Eqs. (5.4–5.11).

We can split the the expressions for the radiative mo-
ments into two parts, namely the instantaneous and the
hereditary parts:

UL = U inst
L + Uhered

L . (12)

The instantaneous contributions only depend on the state
of the source at a given retarded time, while the heredi-
tary parts depend on, and thus require knowledge of, the
entire past history of the source. At leading order, the
instantaneous parts of the radiative moments are directly
related to the source moments as

U inst
L (tr) = I

(ℓ)
L (tr) + O(c−3) , (13a)

V inst
L (tr) = J

(ℓ)
L (tr) + O(c−3) , (13b)

with tr denoting here a “dummy” variable. Corrections
from the gauge moments (WL, XL, YL, ZL) enter at
higher orders. In this work, we will focus on the heredi-
tary tail contributions. For a complete treatment of the
instantaneous contributions, we refer to Ref. [49].

To the desired accuracy, the hereditary contributions
to the radiative moments are given by

Uhered
ij (tr) =

2GM

c3

∫ ∞

0

dτ

[

ln

(

τ

2τ0

)

+
11

12

]

I
(4)
ij (tr − τ) − 2G

7c5

∫ tr

−∞

dτ I
(3)
a〈i(τ)I

(3)
j〉a(τ)

+ 2

(

GM

c3

)2 ∫ ∞

0

dτ

[

ln2

(

τ

2τ0

)

+
57

70
ln

(

τ

2τ0

)

+
124627

44100

]

I
(5)
ij (tr − τ) + O(c−7) , (14a)

Uhered
ijk (tr) =

2GM

c3

∫ ∞

0

dτ

[

ln

(

τ

2τ0

)

+
97

60

]

I
(5)
ijk(tr − τ)

+
G

c5

∫ tr

−∞

dτ

[

−1

3
I

(3)
a〈i(τ)I

(4)
jk〉a(τ) − 4

5
ǫab〈iI

(3)
ja (τ)J

(3)
k〉b(τ)

]

+ O(c−6) , (14b)

Uhered
ijkl (tr) =

2GM

c3

∫ ∞

0

dτ

[

ln

(

τ

2τ0

)

+
59

30

]

I
(6)
ijkl(tr − τ) +

2G

5c3

∫ tr

−∞

dτ I
(3)
〈ij (τ)I

(3)
kl〉 (τ) + O(c−5) , (14c)

Uhered
ijklm(tr) =

2GM

c3

∫ ∞

0

dτ

[

ln

(

τ

2τ0

)

+
232

105

]

I
(7)
ijklm(tr − τ) +

20G

21c3

∫ tr

−∞

dτ I
(3)
〈ij (τ)I

(4)
klm〉(τ) + O(c−4) , (14d)
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V hered
ij (tr) =

2GM

c3

∫ ∞

0

dτ

[

ln

(

τ

2τ0

)

+
7

6

]

J
(4)
ij (tr − τ) + O(c−6) , (15a)

V hered
ijk (tr) =

2GM

c3

∫ ∞

0

dτ

[

ln

(

τ

2τ0

)

+
5

3

]

J
(5)
ijk(tr − τ) + O(c−5) , (15b)

V hered
ijkl (tr) =

2GM

c3

∫ ∞

0

dτ

[

ln

(

τ

2τ0

)

+
119

60

]

J
(6)
ijkl(tr − τ) + O(c−4) , (15c)

where M = m(1−νx/2)+O(c−4) is the Arnowitt-Deser-
Misner (ADM) mass of the source, m = m1+m2 the total
mass, ν = m1m2/m

2 the symmetric mass ratio, and τ0 an
arbitrary length scale originally introduced in the MPM
formalism. None of the other moments contributes to the
hereditary part of the waveform (1) at 3PN order, since

Uhered
L>5 = O(c−3) , (16a)

V hered
L>4 = O(c−3) . (16b)

In the above hereditary contributions, there are two
different types of integrals: those with logarithms and
those without. The logarithmic integral in the first line
of Eq. (14a) is called the tail integral while the one on
the second line is the tails-of-tails integral. On the other
hand, the integral without a logarithmic kernel is the
memory integral. Note that there are no memory contri-
butions to the radiative current moments VL. Physically,
wave tails come from the scattering of the linear waves,
generated by the matter source, off the space-time curva-
ture due to the total ADM mass of the isolated system.
It is a (power of) monopole-wave interaction effect with a

weak past dependence. By contrast, the memory pieces
of the waves are produced by the effective stress-energy
tensor of the source radiation itself. It is a wave-wave
interaction effect with a strong past dependence [56].

The expressions for the source moments (IL, JL) in
terms of the binary separation r, its time derivative ṙ,
the polar angle φ of the relative position, and its deriva-
tive φ̇ are now required. Observing Eqs. (14–15), we note
that Iij , Jij and Iijk are needed to an accuracy of 1PN,
while all other multipole moments are only needed to
leading Newtonian order. The relevant expressions are
listed in Ref. [36] using standard harmonic (SH) coor-
dinates. The logarithms appearing at 3PN order in the
SH gauge can, however, be transformed away in appro-
priate modified harmonic coordinates, as demonstrated
Sec. IV B of Ref. [36]. For the hereditary parts, this
will not make any difference, as we shall only need rela-
tive 1PN-accurate expressions for certain (IL, JL), but,
when adding up instantaneous terms from Ref. [49] to
our hereditary parts, we shall always work within the
MH gauge. The binary separation vector will be rep-
resented by xi ≡ r ni, whereas vi = dxi/dt will stand
for the relative velocity. The expressions relevant for the
calculation of the hereditary parts are

Iij = νm

(

A1 x〈ij〉 +A2
rṙ

c2
x〈ivj〉 +A3

r2

c2
v〈ij〉

)

+ O(c−7) , (17a)

Iijk = − νm∆

(

B1 x〈ijk〉 +B2
rṙ

c2
x〈ijvj〉 +B3

r2

c2
x〈ivjk〉

)

+ O(c−6) , (17b)

Iijkl = νm(1 − 3ν)x〈ijkl〉 + O(c−5) , (17c)

Iijklm = − νm∆(1 − 2ν)x〈ijklm〉 + O(c−4) , (17d)

Jij = − νm∆

(

C1 ǫab〈ixj〉avb + C2
rṙ

c2
ǫab〈ivj〉bxa

)

+ O(c−6) , (18a)

Jijk = νm(1 − 3ν)ǫab〈ixjk〉avb + O(c−5) , (18b)

Jijkl = − νm∆(1 − 2ν)ǫab〈ixjkl〉avb + O(c−4) , (18c)

where ∆ = (m1 −m2)/m is the mass difference ratio and the constants Ai, Bi, and Ci read

A1 = 1 +
1

c2

[

v2

(

29

42
− 29ν

14

)

+
Gm

r

(

−5

7
+

8ν

7

)]

, (19a)
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A2 = − 4

7
+

12ν

7
, (19b)

A3 =
11

21
− 11ν

7
, (19c)

B1 = 1 +
1

c2

[

v2

(

5

6
− 19ν

6

)

+
Gm

r

(

−5

6
+

13ν

6

)]

, (19d)

B2 = − (1 − 2ν) , (19e)

B3 = 1 − 2ν , (19f)

C1 = 1 +
1

c2

[

v2

(

13

28
− 17ν

7

)

+
Gm

r

(

27

14
+

15ν

7

)]

, (19g)

C2 =
5

28
(1 − 2ν) . (19h)

C. Quasi-Keplerian parametrization

The expressions in Eqs. (17–18) in terms of the vari-
ables (r, ṙ, φ, φ̇) are the most general ones. Now, when
calculating the tail integrals, we should replace the lat-
ter quantities by their actual analytic time evolution for
eccentric orbits. At the third post-Newtonian order, the
conservative orbital dynamics of compact binaries in ec-
centric orbits is specified by providing the following gen-
eralized quasi-Keplerian parametrization [31] for the dy-
namical variables r and φ:

r = ar (1 − er cosu) , (20a)

φ− φ0 = (1 + k)v + (f4φ + f6φ) sin(2v)

+ (g4φ + g6φ) sin(3v) + i6φ sin(4v)

+ h6φ sin(5v) , (20b)

where v = 2 arctan

[

(

1 + eφ
1 − eφ

)1/2

tan
u

2

]

. (20c)

An interesting feature in the above equations is the pres-
ence of different eccentricity parameters er and eφ, in-
troduced in such a way that the parametrization looks
“Keplerian”. The parameter k is nothing but the peri-
astron advance per orbital revolution. The parameters
ar, er, and eφ are the PN-accurate semi-major axis and
the radial and angular eccentricities, while f4φ, f6φ, g4φ,
g6φ, i6φ, and h6φ are some orbital functions of the energy
and angular momentum that enter at the 2PN and 3PN
orders. The explicit expressions are available in Ref. [31].

The eccentric anomaly u is linked to the mean anomaly
l through the 3PN-accurate Kepler equation

l = u− et sinu+ (g4t + g6t) (v − u)

+ (f4t + f6t) sin v + i6t sin(2v) + h6t sin(3v) . (21)

Here, et is another eccentricity parameter, usually called
the time eccentricity, and the functions g4t, g6t, f4t, f6t,
i6t, and h6t are additional 2PN and 3PN orbital func-
tions of the energy and angular momentum. Together,
Eqs. (20) and (21) fully parametrize the conservative or-
bital dynamics of compact binaries on eccentric orbits.

Note that we choose to express all our equations in terms
of the post-Newtonian parameter x = (Gmω/c3)2/3 and
the time eccentricity e = et, with ω = (1 + k)n being
the orbital frequency and n = 2π/P the mean motion
associated with the period P . In the next section, we
shall introduce post-adiabatic corrections to this quasi-
Keplerian description. We will then have to replace the
parameters (x, e) with their slowly evolving counterparts
(x̄, ē).

The appearance of the periastron precession at first
post-Newtonian order introduces a double periodic mo-
tion on two timescales: the orbital timescale and the pre-
cession timescale. It is thus customary to split the phase
φ into an angle λ that is linear in l and an oscillatory
part W (l) that is 2π-periodic in l [32, 57, 58]. This leads
us to write

φ = λ+W (l) , (22a)

λ = φ0 + (1 + k)l , (22b)

W (l) = (1 + k)(v − l) + (f4φ + f6φ) sin(2v)

+ (g4φ + g6φ) sin(3v) + i6φ sin(4v)

+ h6φ sin(5v) , (22c)

with φ0 denoting the initial polar angle at u = 0.
To evaluate the various time integrals appearing in the

tail contributions to the waveform, we will need explicit
expressions for u and φ in terms of the angles l and
λ. This can be achieved by solving the Kepler equa-
tion (21). We employ the method described in Ref. [59],
which yields

u = l +

∞
∑

s=1

As sin(sl) , (23a)

As =
2

s
Js(set) +

∞
∑

j=1

αj {Js+j(set) − Js−j(set)} , (23b)

where the constants αj are some PN-accurate functions
of the energy and angular momentum entering at the
second post-Newtonian order. It remains to display an
explicit expression for the 2π-periodic function W (l) in
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terms of l,

W (l) =

∞
∑

s=1

Ws sin(sl) , (24a)

Ws = (1 + k)Bs + (f4φ + f6φ)σ2v
s

+ (g4φ + g6φ)σ3v
s + i6φσ

4v
s + h6φσ

5v
s , (24b)

with the constants Bs and σjvs given in Eqs. (C8) and
(32b) of Ref. [59]. We finally find, expanding to O(x3)
and O(e),

u = l + e sin(l) + x2

(

−15

2
+

9ν

8
+
ν2

8

)

e sin(l)

+ x3

(

−55 +
104593ν

1680
+

3ν2

4
+
ν3

24

)

e sin(l) ,

(25a)

φ = λ+ 2e sin(l) + x(10 − ν)e sin(l)

+ x2

(

52 − 235ν

12
+
ν2

12

)

e sin(l)

+ x3

(

292 +

(

−420131

840
+

287π2

32

)

ν

+
521ν2

24
+
ν3

24

)

e sin(l) . (25b)

We shall use these expressions to write the source multi-
pole moments (IL, JL) in terms of l and λ.

III. PHASING OF THE ORBITAL ELEMENTS

So far, we used the conservative quasi-Keplerian de-
scription of the dynamics of nonspinning compact bina-
ries. This analytic parametrization is possible due to the
fact that the conservative problem admits four integrals
of motion, or even two, when the problem is restricted to
the orbital plane. In our case, those two integrals are en-
coded in the two intrinsic constants x and e = et. There
also exist two extrinsic constants cl and cλ,

l(t) = n(t− t0) + cl , (26a)

λ(t) = (1 + k)n(t− t0) + cλ , (26b)

corresponding to the initial values of the two phase angles
l and λ, respectively. We now move to include phasing
effects due to energy and angular momentum loss into
this quasi-Keplerian parametrization. An efficient de-
scription of the dynamics of nonspinning compact bina-
ries with phasing is presented in Refs. [32, 33]. Following
Ref. [60], they employ a method of variation of constants

where the constants of motion of the conservative prob-
lem (x, e, cl, cλ) are treated as time-varying quantities.
Specifically, the post-Newtonian parameter x = x(t) and
the time eccentricity e = e(t) are now genuine functions
of time, while the angles l and λ are given by

l(t) =

∫ t

t0

n(t′)dt′ + cl(t) , (27a)

λ(t) =

∫ t

t0

[1 + k(t′)]n(t′)dt′ + cλ(t) . (27b)

To obtain the evolution of the functions cα(t) =
(x(t), e(t), cl(t), cλ(t)), one starts from the PN-accurate
equations of motion

ẋ = v , (28a)

v̇ = A0(x,v) + A′(x,v) , (28b)

with A0 being the conservative and A′ the dissipative
piece of the equations of motion. These equations are
first solved neglecting the dissipative term A′, leading to
the conservative quasi-Keplerian description of Sec. II C.
The full solution including radiation reaction is then
found by varying the “constants” cα(t), leading to dif-
ferential equations of the form

dcα
dl

= Gα(l, cα) . (29)

One can then introduce a two-scale decomposition of
all phase variables cα(l) into a slow (radiation-reaction
timescale) secular drift and a fast (orbital timescale) pe-
riodic oscillation as

cα(t) = c̄α(t) + c̃α(t) , (30)

with

dc̄α
dl

= Ḡα(l, cα) , (31a)

dc̃α
dl

= G̃α(l, cα) = Gα(l, cα) − Ḡα(l, cα) , (31b)

Ḡα and G̃α here being the orbital averaged and oscilla-
tory pieces of Gα. The secular evolution of the orbital
elements (31a) can also be derived from the heuristic bal-
ance equations 〈dE/dt〉 = −〈F〉 and 〈dJ/dt〉 = −〈G〉,
where F is the energy flux and G the angular momen-
tum flux. This approach is discussed at the 3PN order
in a series of papers [35–37], which notably take care of
the hereditary contributions to the energy and angular
momentum fluxes.

After the above procedure is applied, we have

x(t) = x̄(t) + x̃(t) , (32a)

e(t) = ē(t) + ẽ(t) , (32b)

cl(t) = c̄l + c̃l(t) , (32c)

cλ(t) = c̄λ + c̃λ(t) , (32d)

where c̄l and c̄λ are found to be true integration con-
stants. The secular evolution of the orbital elements n̄(t),
k̄(t), x̄(t), and ē(t) is given in Sec. VI of Ref. [37]. At
leading order, these equations reduce to the famous for-
mulas by Peters and Mathews [16, 17]:

dx̄

dt
=
c3ν

Gm

x̄5

(1 − ē2)7/2

(

64

5
+

584

15
ē2 +

74

15
ē4

)

, (33a)
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dē

dt
= − c3ν

Gm

ē x̄4

(1 − ē2)5/2

(

304

15
+

121

15
ē2

)

. (33b)

The periodic variations in Eqs. (32) can be computed
from Eqs. (34) and (35) of Ref. [33] and are explicitly
given in Eqs. (36). Note, though, that there is an error in
the expressions for c̃l and c̃λ provided by Eqs. (36c) and
(36d) of that paper. Indeed, the periodic variations c̃l
and c̃λ refer to the zero-average oscillatory contributions
to cl and cλ. They are found by integrating Eqs. (35)
and then subtracting the orbital average, i.e., finding the

unique zero-average primitive, so that we are left with
a purely oscillatory solution. Now, we find that, unfor-
tunately, the explicit orbital averages of Eqs. (36c) and
(36d) in Ref. [33] do not give zero. This is because the
averaging of these terms is performed over the eccentric
anomaly du, whereas the orbital averaging requires inte-
grating temporal variations over an orbital period and,
therefore, should be done using dl = (1 − e cosu)du. We
show below the corrected expressions for c̃l and c̃λ in
terms of et = ē, ξ = x̄3/2 and u = ū, as they appear in
Ref. [33]:

c̃l = − 2ξ5/3ν

45e2
t

{

144e2
t

χ
+

18 − 258e2
t

χ2
+

−56 + 92e2
t − 36e4

t

χ3
+

105(1 − e2
t )

2

χ4

− 1

2(1 − e2
t )

1/2

[

134 − 339e2
t + 288e2

t

√

1 − e2
t

]}

+ O(ξ7/3) , (34a)

c̃λ =
2ξ5/3ν

45e2
t

{[

18

χ2
− 56 − 36e2

t

χ3
+

105(1 − e2
t )

χ4

]

√

1 − e2
t − 144e2

t

χ
− 18 − 258e2

t

χ2
+

56 − 92e2
t + 36e4

t

χ3
− 105(1 − e2

t )
2

χ4

− 1

2(1 − e2
t )

[

134 − 147e2
t + 288e4

t −
(

134 − 339e2
t

)

√

1 − e2
t

]}

+ O(ξ7/3) . (34b)

Similarly, we split the angles l and λ into orbital aver-
aged and oscillatory contributions

l(t) = l̄(t) + l̃(t) , (35a)

λ(t) = λ̄(t) + λ̃(t) , (35b)

with l̄(t) and λ̄(t) defined by

l̄(t) =

∫ t

t0

n̄(t′)dt′ + c̄l , (36a)

λ̄(t) =

∫ t

t0

[1 + k̄(t′)]n̄(t′)dt′ + c̄λ . (36b)

The oscillatory contributions l̃ and λ̃ are calculated as in
Eqs. (39) of Ref. [33],

l̃(l̄) =

∫

ñ

n̄
dl + c̃l(l̄) , (37a)

λ̃(l̄) =

∫
[

(1 + k̄)
ñ

n̄
+ k̃

]

dl + c̃λ(l̄) , (37b)

where k̃ = (∂k/∂n)ñ + (∂k/∂et)ẽt denotes the periodic
part of k and the integrals again mean the unique zero-
average primitives. Equations (40) for l̃ and λ̃ in Ref. [33]
are erroneous, since they do not average to zero either.
We list below the corrected expressions:

l̃(l) =
ξ5/3ν

15(1 − e2
t )

3

{

(602 + 673e2
t )χ+ (314 − 203e2

t − 111e4
t ) lnχ− (602 + 673e2

t ) +
−98 + 124e2

t + 46e4
t − 72e6

t

χ

− 105(1 − e2
t )

3

χ2
− 1

2

[

432 + 444e2
t + 543e4

t − 144e6
t − (838 − 826e2

t − 12e4
t )
√

1 − e2
t + (628 − 406e2

t − 222e4
t )

× ln

(

1 +
√

1 − e2
t

2

)]}

+
ξ5/3ν

5(1 − e2
t )

7/2

(

96 + 292e2
t + 37e4

t

)

∫
[

2 tan−1

(

βt sin u

1 − βt cosu

)

+ et sin u

]

χdu

+ c̃l(l) + O(ξ7/3) , (38a)

λ̃(l) = l̃(l) − c̃l(l) + c̃λ(l) + O(ξ7/3) . (38b)

The errors in Eqs. (36c), (36d), and (40) of Ref. [33], though, do not affect the other equations of that work.
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We refer to Appendix A for some integral relations nec-
essary to compute the zero-average primitives.

We finally give expressions for the oscillatory contri-
butions x̃, ẽ, l̃, and λ̃ in terms of the slowly evolving
variables x̄, ē, and l̄. We list here the expressions to
O(ē2):

x̃(t) = νx̄7/2ē

[

80 sin(l̄) +
1436

15
ē sin(2l̄)

+ ē2

(

4538

15
sin(l̄) +

6022

45
sin(3l̄)

)]

+ O(x̄9/2) , (39a)

ẽ(t) = − νx̄5/2

[

64

5
sin(l̄) +

352

15
ē sin(2l̄)

+ ē2

(

1138

15
sin(l̄) +

358

9
sin(3l̄)

)]

+ O(x̄7/2) , (39b)

l̃(t) = − νx̄5/2

[

64

5ē
cos(l̄) +

352

15
cos(2l̄)

+ ē

(

1654

15
cos(l̄) +

358

9
cos(3l̄)

)

+ ē2

(

694

15
cos(2l̄) +

1289

20
cos(4l̄)

)]

+ O(x̄7/2) , (39c)

λ̃(t) = − νx̄5/2

[

296

3
ē cos(l̄) +

199

5
ē2 cos(2l̄)

]

+ O(x̄7/2) . (39d)

These results agree with Eqs. (4.9) of Ref. [34], except
two constant terms in l̃(t) and λ̃(t), due to the already
mentioned incorrect average. Indeed, all our results are
purely oscillatory, zero-average functions and thus cor-
rectly describe the periodic post-adiabatic corrections.

Given the waveform in terms of the conservative quasi-
Keplerian parametrization, one can then include post-
adiabatic effects by making the simple substitutions

x → x̄+ x̃ , (40a)

e → ē+ ẽ , (40b)

l → l̄ + l̃ , (40c)

λ → λ̄+ λ̃ . (40d)

As all of the periodic (tilde) contributions are of relative
2.5PN order compared to the slowly evolving (bar) parts,
we only have to make these substitutions at leading New-
tonian and 0.5PN order in the hℓm to be accurate to 3PN
order. In all higher-order terms, we can simply replace
the variables (x, e, l, λ) by their secular evolving parts
(x̄, ē, l̄, λ̄).

Note that Eq. (20b) gives the relation between the ge-
ometrical phase φ and the angles l and λ. We can rewrite
this relation in terms of the slowly evolving angles l̄ and
λ̄ and find

φ = λ+W (l) = λ̄+ W̄ (l̄) + λ̃+ (ṽ − l̃) , (41)

where W̄ (l̄) is given by Eq. (22c), but with all quantities
on the RHS replaced with their secular evolving parts,
and the periodic variation ṽ of the true anomaly is given
by

ṽ =
∂v̄

∂ū
ũ+

∂v̄

∂ē
ẽ

=

√
1 − ē2

1 − ē cos ū
ũ+

sin ū√
1 − ē2(1 − ē cos ū)

ẽ . (42)

Expanded to O(x̄3) and O(ē) this finally gives us

φ = λ̄+ 2ē sin(l̄) + x̄(10 − ν)ē sin(l̄)

+ x̄2

(

52 − 235ν

12
+
ν2

12

)

ē sin(l̄)

− x̄5/2ν

(

128

5
+

888

5
ē cos(l̄)

)

+ x̄3

(

292 +

(

−420131

840
+

287π2

32

)

ν

+
521ν2

24
+
ν3

24

)

ē sin(l̄) . (43)

This is very similar to Eq. (25b), but with the quantities
on the RHS replaced by their slowly evolving parts and
with additional terms at 2.5PN order.

IV. HEREDITARY CONTRIBUTIONS

A. Tail integrals

Note that tail effects start appearing at 1.5PN order,
and thus post-adiabatic corrections to those will only en-
ter the waveform at 4PN order and beyond. We can thus
neglect any radiation-reaction effects in this section and
only consider the conservative problem. At the end, we
can then replace all variables (x, e, l, λ) with their slowly
evolving counterparts (x̄, ē, l̄, λ̄) to get the secular evolv-
ing amplitudes.

We now employ the quasi-Keplerian parametrization
introduced in Sec. II C. As we use the two angles l and
λ to parameterize the orbital motion, time derivatives of
the source multipole moments (IL, JL) can be calculated
as

d

dt
= n

(

d

dl
+ (1 + k)

d

dλ

)

. (44)

We use a low-eccentricity expansion to simplify expres-
sions, so we expand everything in powers of both x and
e. Inserting Eqs. (25) into the source multipole moments
(17–18), and substituting those into the radiative mo-
ments (14–15) we can then easily calculate the spherical
harmonic modes in terms of l and λ. We find, e.g., for
the dominant h22

tail mode

h22
tail =

8Gmν

c2R
x5/2

√

π

5

x3/2c3

Gm
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×
∫ ∞

0

dτ e−2i(λ−λ(τ))

[

ln

(

τ

2τ0

)

+
11

12

]

×
[

− 8 + e

(

3

2
ei(l−l(τ)) − 81

2
e−i(l−l(τ))

)]

, (45)

where l(τ) = nτ and λ(τ) = (1 + k)nτ and where we re-
strict ourselves to the leading post-Newtonian order and
O(e). All other modes can be calculated similarly and be
given as integrals over past history. These integrals can
then be solved using the standard formulas

∫ ∞

0

dτ e−iωτ = − i

ω
, (46a)

∫ ∞

0

dτ e−iωτ ln

(

τ

2τ0

)

=

− 1

ω

(

π

2
sign(ω) − i [ln(2|ω|τ0) + γE]

)

, (46b)

∫ ∞

0

dτ e−iωτ ln2

(

τ

2τ0

)

=

− i

ω

(

π2

6
+

(

π

2
sign(ω) − i [ln(2|ω|τ0) + γE]

)2)

.

(46c)

Note that for terms of the form
∫

dτ e−i(α l(τ)+β λ(τ))[. . . ]
we have ω = n(α+ (1 + k)β).

We are now able to give the tail contributions to the
spherical harmonic modes in terms of the parameters x,
e = et and the angles φ and l. The modes have the
following structure:

hℓmtail =
8Gmν

c2R
x

√

π

5
e−imφHℓm

tail . (47)

The various contributions to, e.g., the H22
tail mode are

given to O(e) by

(H22
tail)1.5PN = x3/2

(

2π + 6i ln

(

x

x′
0

)

+ e

{

e−il

[

11π

4
+

27i

2
ln

(

3

2

)

+
33

4
i ln

(

x

x′
0

)]

+ eil

[

13π

4
+

3i

2
ln(2) +

39

4
i ln

(

x

x′
0

)]}

)

, (48a)

(H22
tail)2.5PN = x5/2

(

π

(

−107

21
+

34ν

21

)

+

(

−107i

7
+

34iν

7

)

ln

(

x

x′
0

)

+ e

{

eil

[

− 9i

2
+ π

(

229

168
+

61ν

42

)

+

(

473i

28
− 3iν

7

)

ln(2) +

(

229i

56
+

61iν

14

)

ln

(

x

x′
0

)]

+ e−il

[

− 27i

2
+ π

(

−1081

168
+

137ν

42

)

+

(

27i

4
+ 9iν

)

ln

(

3

2

)

+

(

−1081i

56
+

137iν

14

)

ln

(

x

x′
0

)]}

)

, (48b)

(H22
tail)3PN = x3

(

− 515063

22050
+

428iπ

105
+

2π2

3
+

(

−428

35
+ 12iπ

)

ln

(

x

x′
0

)

− 18 ln2

(

x

x′
0

)

+ e

{

e−il

[

− 515063

7200
+

749iπ

60
+

49π2

24
+

(

−2889

70
+

81iπ

2

)

ln

(

3

2

)

− 81

2
ln2

(

3

2

)

+

(

−749

20
+

147iπ

4
− 243

2
ln

(

3

2

))

ln

(

x

x′
0

)

− 441

8
ln2

(

x

x′
0

)]

+ eil

[

− 14936827

352800
+

3103iπ

420
+

29π2

24
+

(

−107

70
+

3iπ

2

)

ln(2) +
3

2
ln2(2)

+

(

−3103

140
+

87iπ

4
− 9

2
ln(2)

)

ln

(

x

x′
0

)

− 261

8
ln2

(

x

x′
0

)]}

)

. (48c)

Here, x′
0 is related to the arbitrary constant τ0 by

x′
0 =

(

Gm

c3

e11/12−γE

4τ0

)2/3

. (49)

We list expressions for all hℓmtail modes in a supplemental
Mathematica file.
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B. Memory integrals

The nonlinear memory effect arises from the nonloga-
rithmic integrals in Eqs. (14); e.g., for the ℓ = 2 modes
we have

Umem
ij (tr) = − 2G

7c5

∫ tr

−∞

dτ I
(3)
a〈i(τ)I

(3)
j〉a(τ) . (50)

There are two types of memory arising from these in-
tegrals: DC (or “direct current”) memory and oscilla-
tory memory. The DC memory is a slowly increasing,
nonoscillatory contribution to the gravitational-wave am-
plitude, entering at Newtonian order. This leads to a
difference in the amplitude between early and late times:

∆hmem = lim
t→+∞

h(t) − lim
t→−∞

h(t) . (51)

The oscillatory memory, on the other hand, is a nor-
mal periodic contribution entering the gravitational-wave
amplitude at higher PN order. In Refs. [61] and [51],
the authors give expressions for both leading-order DC
and oscillatory memory in the circular limit. The calcu-
lation of DC memory has been extended to 3PN order
for circular binaries in Ref. [62] and to Newtonian order
for eccentric binaries in Ref. [63]. In this paper, we will
only briefly discuss the leading-order contributions to the
DC and oscillatory memory for eccentric binaries, such
that we can compare our results to the circular limit in
Ref. [51]. The complete post-Newtonian corrections to
the nonlinear memory are dealt with in a subsequent pa-
per [50], completing the hereditary contributions to the
gravitational-wave amplitudes for nonspinning eccentric
binaries.

Following the same steps as in the previous section, we
can calculate the derivatives of the source moments, and
we find, e.g., for the 20-mode:

h20
DC =

256

7

Gmν

c2R

√

π

30

∫ tr

−∞

dt

(

1 +
313

48
e2

)

x5 . (52)

We find that all DC memory modes will consist of such
integrals of the form

hℓ0DC ∝
∫ tr

−∞

dt xp(t) eq(t) . (53)

One can rewrite this as an integral over the eccentricity

hℓ0DC ∝
∫ e(tr)

ei

de

(

de

dt

)−1

xp(e) eq , (54)

where ei is some initial eccentricity at early times. Solv-
ing the evolution equations (33) to leading order, we find

x(e) = x0

(e0

e

)12/19

, (55)

where x(e0) = x0. We can insert this into Eq. (54) to-
gether with the evolution equation de/dt and integrate

over e. We then find DC memory at leading Newtonian
order in the 20-mode and 40-mode:

h20
DC =

8Gmν

c2R
x

√

π

5

−5

14
√

6

{

1 −
(

e

ei

)12/19
}

, (56a)

h40
DC =

8Gmν

c2R
x

√

π

5

−1

504
√

2

{

1 −
(

e

ei

)12/19
}

. (56b)

The time derivatives of the oscillatory modes are com-
puted in the same way. We find that they consist of
integrals of the form

hℓmosc ∝
∫ tr

−∞

dt xp(t) eq(t) ei(sλ+rl) , (57)

which can be integrated to give

hℓmosc ∝ − i

n(r + (1 + k)s)
xp eq ei(sλ+rl) . (58)

Note that there are oscillatory memory contributions en-
tering the waveform at 1.5, 2, 2.5 and 3PN order. We
list here only the 2.5 and 3PN terms that have a circular
limit, as to compare our results to Ref. [51]. We refer to
our follow-up work [50] for a complete treatment of non-
linear memory. The modes have the following structure:

hℓmosc =
8Gmν

c2R
x

√

π

5
e−imφHℓm

osc . (59)

The various contributions to O(e) are:

H31
osc =

−121 x3ν∆

45
√

14

(

1 + e

{

301

242
e−il + eil

})

, (60a)

H33
osc =

11 x3ν∆

27
√

210

(

1 + e

{

9

2
e−il +

3

22
eil

})

, (60b)

H44
osc =

ix5/2ν

9
√

35

(

1 + e

{

7

5
e−il + 3eil

})

, (60c)

H51
osc =

−13 x3ν∆

63
√

385

(

1 + e

{

251

208
e−il + eil

})

, (60d)

H53
osc =

−x3ν∆

189
√

330

(

1 + e

{

201

16
eil − 369

32
e−il

})

, (60e)

H55
osc =

9 x3ν∆

35
√

66

(

1 + e

{

2285

1296
e−il +

985

288
eil

})

. (60f)

V. CONSTRUCTING THE FULL

3PN-ACCURATE WAVEFORM

We now want to construct the full 3PN-accurate wave-
form valid during the inspiral of a binary system. We be-
gin by adding up the two contributions to the spherical
harmonic modes:

hℓm = (hℓm)inst + (hℓm)hered . (61)

Note that we are still missing some memory contribu-
tions. These will be computed in full in our follow-up
work [50], and we will give expressions for the full wave-
form including memory there.
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A. Instantaneous parts

The instantaneous parts (hℓm)inst of the spherical har-
monic modes for compact binaries in elliptical orbits have
already been calculated to the third post-Newtonian or-
der in Ref. [49], although the results do not include post-
adiabatic corrections to the quasi-Keplerian parametriza-
tion. They are given in terms of the constants of motion
x and e = et and parametrized by the eccentric anomaly
u. We will rewrite these in terms of the mean anomaly l
by using the solution to the Kepler equation (25a). This

gives us expressions for the instantaneous contributions
to the different modes in terms of the post-Newtonian pa-
rameter x and the time eccentricity e, parametrized by
the angles φ and l. The modes again have the following
structure:

hℓminst =
8Gmν

c2R
x

√

π

5
e−imφHℓm

inst . (62)

The various contributions to, e.g., the H22
inst mode are

given to O(e) by

(H22
inst)Newt = 1 + e

{

1

4
e−il +

5

4
eil

}

, (63a)

(H22
inst)1PN = x

(

− 107

42
+

55ν

42
+ e

{

e−il

[

−257

168
+

169ν

168

]

+ eil

[

−31

24
+

35ν

24

]}

)

, (63b)

(H22
inst)2PN = x2

(

− 2173

1512
− 1069ν

216
+

2047ν2

1512
+ e

{

eil

[

−2155

252
− 1655ν

672
+

371ν2

288

]

+ e−il

[

−4271

756
− 35131ν

6048
+

421ν2

864

]}

)

, (63c)

(H22
inst)2.5PN = − x5/2iν

(

56

5
+ e

{

7817

420
eil +

2579

84
e−il

}

)

, (63d)

(H22
inst)3PN = x3

(

761273

13200
+

(

−278185

33264
+

41π2

96

)

ν − 20261ν2

2772
+

114635ν3

99792
+

856

105
ln

(

x

x0

)

+ e

{

eil

[

6148781

75600
+

(

−199855

3024
+

41π2

48

)

ν − 9967ν2

1008
+

35579ν3

36288
+

3103

210
ln

(

x

x0

)]

+ e−il

[

150345571

831600
+

(

−121717

20790
− 41π2

192

)

ν − 86531ν2

8316
− 33331ν3

399168
+

749

30
ln

(

x

x0

)]}

)

, (63e)

where x0 = Gm/(c3τ0) is related to x′
0 by

ln x′
0 =

11

18
− 2

3
γE − 4

3
ln 2 +

2

3
ln x0 . (64)

B. Post-adiabatic corrections

We now move to include post-adiabatic corrections
into the waveform. As already mentioned in Sec. IV,
post-adiabatic corrections to the hereditary contributions
will only enter at 4PN. We are thus left with computing
the corrections to the instantaneous contributions as de-
scribed in Sec. III. Schematically, the substitutions in
Eq. (40) may be described as

hℓm(x, e, l, λ)

⇓
hℓm(x̄+ x̃, ē+ ẽ, l̄ + l̃, λ̄+ λ̃)

⇓

hℓm(x̄, ē, l̄, λ̄) +

{

∂hℓm

∂x
x̃+

∂hℓm

∂e
ẽ+

∂hℓm

∂l
l̃ +

∂hℓm

∂λ
λ̃

}

⇓

hℓm(x̄, ē, l̄, λ̄) +
1

c5
hℓmpost-ad(x̄, ē, l̄, λ̄) . (65)

In particular, we only need to make these substitutions
at leading Newtonian and 0.5PN order. At higher orders,
we simply replace the variables (x, e, l, λ) by their secular
evolving parts (x̄, ē, l̄, λ̄) to get the secular evolving
waveform.

The post-adiabatic contributions to the different
modes in terms of the secular evolving parameters x̄ and
ē, parametrized by the angles φ and l̄, have the following
form:

hℓmpost-ad =
8Gmν

c2R
x̄

√

π

5
e−imφHℓm

post-ad . (66)
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For example, the H22
post-ad mode, that arises from includ-

ing the post-adiabatic corrections in (H22
inst)Newt, is given

by

H22
post-ad =

192

5
x̄5/2iν

(

1 + ē

{

401

72
e−il̄ +

293

72
eil̄

}

)

. (67)

We can combine these post-adiabatic contributions
with the instantaneous ones to get the full secular evolv-
ing instantaneous waveform in terms of the variables (x̄,
ē, l̄, λ̄). The result has again the following form:

hℓminst =
8Gmν

c2R
x̄

√

π

5
e−imφHℓm

inst . (68)

In e.g. the H22
inst mode we find that the only term that is

modified is the 2.5PN order:

(H22
inst)2.5PN =

− x̄5/2iν

(

24 + ē

{

43657

420
eil̄ +

1013

140
e−il̄

}

)

. (69)

All other orders are exactly as in Eqs. (63), but with (x,
e, l, λ) replaced by (x̄, ē, l̄, λ̄) .

C. Log cancellation

We observe that both instantaneous and tail terms still
have some dependence on the arbitrary constant x′

0 (or
x0). We find that this dependence on x′

0 can be reab-
sorbed in a shift of the coordinate time t [61, 64] through
a redefinition of the mean anomaly as

ξ = l̄− 3GM

c3
n̄ ln

( x̄

x′
0

)

, (70)

where M = m(1 − νx̄/2) is the ADM mass. Note that
there are no post-adiabatic corrections to n and x here,
as phasing effects would only enter at 1.5 + 2.5PN or-
der. This also means that both ξ and l̄ follow the same
evolution, i.e., dξ/dt = dl̄/dt = n̄, and they only differ
by a constant factor. To simplify the final expressions,
we also introduce a redefined phase ψ such that Eq. (41)
gives the relation between ξ and ψ:

ψ = λ̄ξ + W̄ξ + λ̃ξ + (ṽξ − l̃ξ) . (71)

Here

λ̄ξ = λ̄− 3GM

c3
(1 + k̄)n̄ ln

( x̄

x′
0

)

, (72)

is the phase λ̄ evaluated at the shifted time defined by
ξ, and W̄ξ, λ̃ξ, ṽξ, and l̃ξ are defined as in Eq. (41), but
with l̄ replaced by ξ. From this, we can easily deduce
that

ψ = φ+

∞
∑

s=1

1

s!

[

(

ξ − l̄
)s
(

d

dl̄

)s

+
(

λ̄ξ − λ̄
)s
(

d

dλ̄

)s
]

φ . (73)

Note that the phase ψ does not have the same geometric
interpretation as φ. Expanding these equations to O(x̄3)
and O(ē), we find

l̄ = ξ + 3
(

x̄3/2 − x̄5/2
(

3 +
ν

2

))

ln
( x̄

x′
0

)

, (74a)

φ = ψ +

(

x̄3/2 (3 + 6ē cos(ξ))

+ x̄5/2

(

−3ν

2
+ 6ē(2 − ν) cos(ξ)

))

ln
( x̄

x′
0

)

− 9x̄3ē sin(ξ) ln2
( x̄

x′
0

)

. (74b)

This redefinition of the time coordinate results in the
cancellation of all log terms involving the arbitrary con-
stant x′

0.

D. Full waveform

The full waveform in terms of the redefined angles ξ
and ψ – minus some memory contributions – has the
following form:

hℓm =
8Gmν

c2R
x̄

√

π

5
e−imψHℓm . (75)

The various contributions to, e.g., the H22 mode are
given to O(ē) by

H22
Newt = 1 + ē

{

1

4
e−iξ +

5

4
eiξ

}

, (76a)

H22
1PN = x̄

(

− 107

42
+

55ν

42
+ ē

{

e−iξ

[

−257

168
+

169ν

168

]

+ eiξ

[

−31

24
+

35ν

24

]}

)

, (76b)



13

H22
1.5PN = x̄3/2

(

2π + ē

{

e−iξ

[

11π

4
+

27i

2
ln

(

3

2

)]

+ eiξ

[

13π

4
+

3i

2
ln(2)

]}

)

, (76c)

H22
2PN = x̄2

(

− 2173

1512
− 1069ν

216
+

2047ν2

1512
+ ē

{

eiξ

[

−2155

252
− 1655ν

672
+

371ν2

288

]

+ e−iξ

[

−4271

756
− 35131ν

6048
+

421ν2

864

]}

)

, (76d)

H22
2.5PN = x̄5/2

(

− 107π

21
+

(

−24i +
34π

21

)

ν

+ ē

{

eiξ

[

− 9i

2
+

229π

168
+

(

−43657i

420
+

61π

42

)

ν +

(

473i

28
− 3iν

7

)

ln(2)

]

+ e−iξ

[

− 27i

2
− 1081π

168
+

(

−1013i

140
+

137π

42

)

ν +

(

27i

4
+ 9iν

)

ln

(

3

2

)]}

)

, (76e)

H22
3PN = x̄3

(

27027409

646800
+

428iπ

105
+

2π2

3
− 856γE

105
+

(

−278185

33264
+

41π2

96

)

ν − 20261ν2

2772
+

114635ν3

99792

− 1712 ln(2)

105
− 428 ln(x̄)

105

+ ē

{

e−iξ

[

219775769

1663200
+

749iπ

60
+

49π2

24
− 749γE

30
+

(

−121717

20790
− 41π2

192

)

ν − 86531ν2

8316
− 33331ν3

399168

+

(

−2889

70
+

81iπ

2

)

ln

(

3

2

)

− 81

2
ln2

(

3

2

)

− 749 ln(2)

15
− 749 ln(x̄)

60

]

+ eiξ

[

55608313

1058400
+

3103iπ

420
+

29π2

24
− 3103γE

210
+

(

−199855

3024
+

41π2

48

)

ν − 9967ν2

1008
+

35579ν3

36288

+

(

−6527

210
+

3iπ

2

)

ln(2) +
3 ln2(2)

2
− 3103 ln(x̄)

420

]}

)

. (76f)

For completeness all equations relating the different an-
gles l̄, λ̄, ξ and ψ are listed in Appendix B.

E. Quasi-Circular limit

We now check our results against those in Ref. [51]
in the quasi-circular limit. Note that the eccentricity is
not a gauge-independent quantity and one thus has to
be careful when talking about the circular limit. For a
thorough discussion on different eccentricity parameters
and discrepancies between them we refer to Refs. [65, 66].

Normally, one uses the orbital averaged description for
the evolution of x and e, where one finds that the evo-
lution equations (33) drive the eccentricity to zero dur-
ing the inspiral. When introducing post-adiabatic correc-
tions, this will not be true anymore, as the eccentricity is
split into a orbital averaged part ē and a periodic oscilla-
tory part ẽ. The orbital averaged part ē will still follow
the same evolution equations (33) and thus be driven to
zero, but the periodic variations ẽ will generally grow
larger as the binary inspirals. As discussed in Ref. [66],
the orbital averaged description also breaks down in the
late inspiral, failing to capture a secular growth in the

eccentricity observed when directly integrating the two-
body equations of motion.

In our case, it is reasonable to consider the circular
limit as the limit where x̄ → x and ē → 0, with x be-
ing the standard circular frequency parameter. Then,
the evolution equations (33) reduce to the usual circular
evolution equation

ẋ =
64c3ν

5Gm
x5 + O(x6) . (77)

In this limit our redefined phase ψ reduces to

ψ|ē=0 = φ− 3
(

1 − νx

2

)

x3/2 ln
( x

x′
0

)

, (78)

which matches exactly the phase ψ used in Ref. [51]. We
can thus directly compare our results to the circular limit
by setting ē = 0 and x̄|ē=0 = x. We find, e.g., for the h22

mode

h22 =
8Gmν

c2R
x

√

π

5
e−2iψH22 , (79)
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H22 = 1 + x

(

−107

42
+

55ν

42

)

+ 2πx3/2 + x2

(

−2173

1512
− 1069ν

216
+

2047ν2

1512

)

+ x5/2

(

−107π

21
+

(

−24i +
34π

21

)

ν

)

+ x3

(

27027409

646800
+

428iπ

105
+

2π2

3
− 856γE

105
+

(

−278185

33264
+

41π2

96

)

ν − 20261ν2

2772
+

114635ν2

99792

− 1712

105
ln(2) − 428

105
ln(x)

)

. (80)

This matches Eq. (9.4a) of Ref. [51]. Similarly, we can
compare the other modes and find perfect agreement in
all of them.

VI. CONCLUSION

In this work, we computed the tail contributions to the
3PN-accurate gravitational waveform from nonspinning
compact binaries on eccentric orbits. This extends the
work on instantaneous contributions in Ref. [49] and will
be completed with the memory contributions in a follow-
up paper [50]. We also include post-adiabatic corrections
to the quasi-Keplerian parametrization when combining
our tail results with the instantaneous ones, giving us
the full waveform (neglecting memory) that can be com-
pared to the circular one in the limit e → 0. The tail
contributions to the h22 mode are given at 3PN order
and to O(e) in Eq. (48), the post-adiabatic corrections
in Eq. (67). All other hℓm modes up to ℓ = 5 are listed in
the supplemental Mathematica notebook [52]. To reiter-
ate, all results are in MH coordinates, which differ from
the SH coordinates at 3PN order.

Note that the instantaneous results in Ref. [49] can
be applied to binary systems of arbitrary eccentricities,
while the tail results presented here are calculated in a
small eccentricity expansion. This is due to the compli-
cated tail integrals over past history, which can only be
analytically calculated when decomposing the integrand
into harmonics of the orbital timescale using an eccentric-
ity expansion. This means that our results are not ap-
plicable for large eccentricities e ∼ 1, though they might
give accurate results for moderate eccentricities e ∼ 0.4
when combined with orbital evolution equations that are
not expanded in eccentricity; see, e.g., Ref. [48].
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Appendix A: Integral relations

We calculate the average over one period as

〈F 〉 =
1

T

∫ T

0

F (t)dt =
1

2π

∫ 2π

0

F (l)dl =
1

2π

∫ 2π

0

F (u)χdu , (A1)

where χ = 1 − e cosu. Some helpful integration formulas are

1

2π

∫ 2π

0

du

χN+1
=

1

(1 − e2)(N+1)/2
PN

(

1√
1 − e2

)

, (A2a)

1

2π

∫ 2π

0

χ ln(χ)du = 1 −
√

1 − e2 + ln

(

1 +
√

1 − e2

2

)

. (A2b)

The zero-average primitive of a function F (l) can be calculated as

∫

F =

∫ l

0

F (l′)dl′ − 1

2π

∫ 2π

0

dl

∫ l

0

F (l′)dl′ =

∫ l

0

F (l′)dl′ − 1

2π

∫ 2π

0

(2π − l′)F (l′)dl′ . (A3)
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Appendix B: Quasi-Keplerian relations

We list here again all equations relating the different angles l̄, λ̄, ξ, and ψ to the actual time coordinate t:

ξ = l̄ − 3GM

c3
n̄ ln

( x̄

x′
0

)

, (B1a)

λ̄ξ = λ̄− 3GM

c3
(1 + k̄)n̄ ln

( x̄

x′
0

)

= λ̄− 3

(

1 − νx̄

2

)

x̄3/2 ln
( x̄

x′
0

)

, (B1b)

ψ = λ̄ξ + W̄ξ + λ̃ξ + (ṽξ − l̃ξ)

= λ̄ξ + 2ē sin(ξ) +
5

4
ē2 sin(2ξ) + x̄

(

(10 − ν)ē sin(ξ) +

(

31

4
− ν

)

ē2 sin(2ξ)

)

+ x̄2

(

1

12

(

624 − 235ν + ν2
)

ē sin(ξ) +
1

24

(

969 − 326ν + 2ν2
)

ē2 sin(2ξ)

)

− x̄5/2ν

(

128

5
+

888

5
ē cos(ξ) +

1

45
ē2(10728 + 8935 cos(2ξ))

)

+ x̄3

((

292 +

(

−420131

840
+

287π2

32

)

ν +
521ν2

24
+
ν3

24

)

ē sin(ξ)

+
1

168

(

35868 +
(

−55548 + 861π2
)

ν + 1925ν2 + 28ν3
)

ē2 sin(2ξ)

)

, (B1c)

where

ξ = ūξ − ē sin ūξ + (ḡ4t + ḡ6t) (v̄ξ − ūξ) +
(

f̄4t + f̄6t

)

sin v̄ξ + ī6t sin(2v̄ξ) + h̄6t sin(3v̄ξ) , (B2a)

ūξ = ξ + ē sin(ξ) +
1

2
ē2 sin(2ξ) + x̄2

(

1

8

(

−60 + 9ν + ν2
)

ē sin(ξ) +
3

16
(−5 + ν)(10 + ν)ē2 sin(2ξ)

)

+ x̄3

((

−55 +
104593ν

1680
+

3ν2

4
+
ν3

24

)

ē sin(ξ)

+

(

−315

4
+

(

229219

3360
+

41π2

256

)

ν +
53ν2

8
− 3ν3

16

)

ē2 sin(2ξ)

)

, (B2b)

v̄ξ = 2 arctan

[

(

1 + ēφ
1 − ēφ

)1/2

tan
ūξ
2

]

= ξ + 2ē sin(ξ) +
5

4
ē2 sin(2ξ) + x̄

(

(4 − ν)ē sin(ξ) + (4 − ν)ē2 sin(2ξ)
)

+ x̄2

(

1

12

(

156 − 31ν + ν2
)

ē sin(ξ) +
1

24

(

273 − 101ν + 11ν2
)

ē2 sin(2ξ)

)

+ x̄3

((

64 +

(

−106181

840
+

41π2

32

)

ν +
11ν2

24
+
ν3

24

)

ē sin(ξ)

+

(

155

4
+

(

−169649

1680
+

369π2

256

)

ν +
49ν2

6
− 5ν3

24

)

ē2 sin(2ξ)

)

, (B2c)

W̄ξ = (1 + k̄)(v̄ξ − ξ) +
(

f̄4φ + f̄6φ

)

sin(2v̄ξ) + (ḡ4φ + ḡ6φ) sin(3v̄ξ) + ī6φ sin(4v̄ξ) + h̄6φ sin(5v̄ξ)

= 2ē sin(ξ) +
5

4
ē2 sin(2ξ) + x̄

(

(10 − ν)ē sin(ξ) +

(

31

4
− ν

)

ē2 sin(2ξ)

)

+ x̄2

(

1

12

(

624 − 235ν + ν2
)

ē sin(ξ) +
1

24

(

969 − 326ν + 2ν2
)

ē2 sin(2ξ)

)

+ x̄3

((

292 +

(

−420131

840
+

287π2

32

)

ν +
521ν2

24
+
ν3

24

)

ē sin(ξ)

+
1

168

(

35868 +
(

−55548 + 861π2
)

ν + 1925ν2 + 28ν3
)

ē2 sin(2ξ)

)

, (B2d)

λ̃ξ = − νx̄5/2

[

296

3
ē cos(ξ) +

199

5
ē2 cos(2ξ)

]

+ O(x̄7/2) , (B2e)
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l̃ξ = − νx̄5/2

[

64

5ē
cos(ξ) +

352

15
cos(2ξ) + ē

(

1654

15
cos(ξ) +

358

9
cos(3ξ)

)

+ ē2

(

694

15
cos(2ξ) +

1289

20
cos(4ξ)

)]

+ O(x̄7/2) , (B2f)

ũξ = − νx̄5/2

[

64

5
+

64

5ē
cos(ξ) +

352

15
cos(2ξ) + ē

(

2198

15
cos(ξ) +

358

9
cos(3ξ)

)

+ ē2

(

340

3
+

5366

45
cos(2ξ) +

1289

20
cos(4ξ)

)]

+ O(x̄7/2) , (B2g)

ẽξ = − νx̄5/2

[

64

5
sin(ξ) +

352

15
ē sin(2ξ) + ē2

(

1138

15
sin(ξ) +

358

9
sin(3ξ)

)]

+ O(x̄7/2) , (B2h)

ṽξ =

√
1 − ē2

1 − ē cos ūξ
ũξ +

sin ūξ√
1 − ē2(1 − ē cos ūξ)

ẽ

= − νx̄5/2

[

128

5
+

64

5ē
cos(ξ) +

352

15
cos(2ξ) + ē

(

946

5
cos(ξ) +

358

9
cos(3ξ)

)

+ ē2

(

1192

5
+

9226

45
cos(2ξ) +

1289

20
cos(4ξ)

)]

+ O(x̄7/2) , (B2i)

where l̄ and λ̄ are given by Eqs. (36) and where f̄4φ, f̄6φ, ḡ4φ, ḡ6φ, ī6φ, h̄6φ, ḡ4t, ḡ6t, f̄4t, f̄6t, ī6t, and h̄6t are the slowly
evolving orbital functions given in Ref. [31], with x and e being replaced by x̄ and ē.
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