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Abstract: We provide evidence for the existence of a family of generalized Kac-Moody

(GKM) superalgebras, GN , whose Weyl-Kac-Borcherds denominator formula gives rise to

a genus-two modular form at level N , ∆k/2(Z), for (N, k) = (1, 10), (2, 6), (3, 4), and

possibly (5, 2). The square of the automorphic form is the modular transform of the

generating function of the degeneracy of CHL dyons in asymmetric ZN -orbifolds of the

heterotic string compactified on T 6. The new generalized Kac-Moody superalgebras all

arise as different ‘automorphic corrections’ of the same Lie algebra and are closely related

to a generalized Kac-Moody superalgebra constructed by Gritsenko and Nikulin. The

automorphic forms, ∆k/2(Z), arise as additive lifts of Jacobi forms of (integral) weight

k/2 and index 1/2. We note that the orbifolding acts on the imaginary simple roots of

the unorbifolded GKM superalgebra, G1, leaving the real simple roots untouched. We

anticipate that these superalgebras will play a role in understanding the ‘algebra of BPS

states’ in CHL compactifications.
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1 Introduction

The advent of D-branes, and in particular, the successful microscopic description of the

entropy of supersymmetric black holes by Strominger and Vafa [1] has provided enormous

impetus to the counting of BPS states in a variety of settings. Among these, the N = 4 su-

persymmetric theories have provided a fairly robust playground for testing and developing

new ideas. The high degree of supersymmetry ensures the existence of non-renormalization

theorems as well as the existence of dualities. This paper focuses on four-dimensional su-

perstring compactifications, the CHL orbifolds, with N = 4 supersymmetry. Such theories

typically have a triality of descriptions as heterotic and type IIA/IIB string theories [2].

The spectrum of 1/2-BPS states is independent of moduli — there is no ‘jumping’

phenomenon. In a remarkable paper [3], Dijkgraaf, Verlinde and Verlinde proposed that

the degeneracy of 1/4-BPS states in the heterotic string compactified on T 6 is generated by

a Siegel modular form of weight 10. More precisely, the degeneracy d(n, ℓ,m) is given by1

64

Φ10(Z)
=

∑

(n,ℓ,m)>0

d(n, ℓ,m) qnrℓsm (2.7)

where Z ∈ H2, the Siegel upper-half space and (n, ℓ,m) = (1
2qe

2,qe · qm,
1
2qm

2) are T-

duality invariant combinations of electric and magnetic charges. A key feature of the

formula is that it is also S-duality invariant i.e., the modular form is invariant under an

SL(2,Z) suitably embedded in Sp(2,Z). In ref. [4], Gritsenko and Nikulin have shown the

existence of a generalized Kac-Moody (GKM) superalgebra, G1, whose Weyl-Kac-Borcherds

denominator formula gives rise to a modular form (with character) of weight 5, ∆5(Z),

which squares to give Φ10(Z). It has been anticipated by Harvey and Moore [5, 6] that the

algebra of BPS states must form an algebra and one suspects that the GKM superalgebra,

G1, must play such a role in this example. However, this correspondence has not been

fully realised for this example(see ref. [7] however for some recent progress). One of our

motivations has been to understand the relation of the algebra of BPS states to this GKM

superalgebra.

A family of asymmetric orbifolds of the heterotic string compactified on T 6 leads to

heterotic compactifications that preserve N = 4 supersymmetry but the gauge symmetry

is of reduced rank [8]. These are called the CHL compactifications. In ref. [9], Jatkar

and Sen constructed a family of genus-two modular forms, Φk(Z), at level N that play

a role analogous to Φ10, for ZN -orbifolds with N = 2, 3, 5, 7 and (k + 2) = 24/(N + 1).

1We choose a normalization for the modular forms that is natural to the Weyl denominator formula.

For instance, our ∆5(Z) is 1/64 of the same form defined by Gritsenko and Nikulin [4]. Further, 64 = 2
12

2

also happens to be the size of a 1/4 BPS multiplet of states.

– 1 –
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The modular group is a subgroup of Sp(2,Z) reflecting the fact that the orbifolding breaks

the S-duality group to the sub-group, Γ1(N), of SL(2,Z) [10]. The main result of this

paper is to provide for evidence the existence of a family of GKM superalgebras, GN , by

showing the existence of modular forms, ∆k/2(Z), which: (i) square to Φk(Z) and (ii)

appear as the denominator formula for GN for N = 2, 3, 5. These constructions parallel

the construction of a family of GKM algebras as ZN -orbifolds of the fake Monster Lie

algebra [11] by Niemann [12].

We will show that the modular forms ∆k/2(Z) are indeed given by the denominator

formula for GKM superalgebras, GN , that are closely related to the GKM superalgebra

constructed by Gritsenko and Nikulin (we call the superalgebra G1) from the modular form

∆5(Z). In particular, we observe

1. All the algebras arise as (different) automorphic corrections to the Lie algebra

g(A1,II) associated with a rank three Cartan matrix A1,II . In other words, one

has g(A1,II) ⊂ GN .

2. The real simple roots (and hence the Cartan matrix A1,II) for the GN are identical

to the real roots of g(A1,II). This implies that the Weyl group is identical as well.2

3. The multiplicities of the imaginary simple roots are, however, different. For instance,

imaginary roots of the form tη0, where η0 is a primitive light-like simple root, have

multiplicity m(tη0) given by the formula:

1 −
∑

t∈N

m(tη0) q
n =

∏

n∈N

(1 − qn)
k−4
2 (1 − qNn)

k+2
2

Note that this formula correctly reproduces the multiplicity given for G1 by Gritsenko

and Nikulin [4].

4. There are also other imaginary simple roots, which are not light-like, whose multi-

plicities are determined implicitly by the modular form ∆k/2(Z).

The organization of the paper is as follows: After the introductory section, section 2

provides the necessary physical background on CHL strings and the counting of 1/4-BPS

dyons in the theory. Section 3 provides the necessary mathematical background leading

to the Weyl-Kac-Borcherds denominator formula for GKM algebras. In section 4, which

contains the main results of the paper, we provide evidence for the existence of Siegel

modular forms with character, ∆k/2(Z), at level N as the additive lift of weak Jacobi

forms of half-integral index. In sections 4.2, 4.3 and 4.4, we show that these modular

forms arise as the Weyl-Kac-Borcherds denominator formula for GKM superalgebras, GN ,

with imaginary simple roots whose multiplicities are given by the ∆k/2(Z). In section 4.5,

we attempt to provide a physical interpretation for the weak Jacobi forms of half-integral

2However, for N > 1, this Weyl group is no longer the symmetry group of the lattice of dyonic charges as

it was for N = 1. The reason is that the lattice of dyonic charges is not generated by 1/Φk(Z). Of course,

as was shown by Jatkar and Sen [9], it is another closely related modular form 1/eΦk(Z) that generates the

lattice of dyonic charges and their degeneracies.

– 2 –
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index. We conclude with a summary of our results and a discussion in section 5. Several

mathematical appendices have been included. In particular, we review the use of weak

Jacobi forms in the construction of Siegel modular forms in appendix B. In appendix C,

we discuss the additive lift of Jacobi forms with index 1/2 at level N . This generalizes

an existing result at level 1 and proves the modularity of the forms ∆k/2(Z) that we

have constructed. Appendix D gives the explicit Fourier expansion for the modular forms

∆k/2(Z) that were used in arriving at the results presented in section 4.

2 Background on CHL strings

The heterotic string compactified on T 6 and its asymmetric ZN orbifolds provide us with

four-dimensional compactifications with N = 4 supersymmetry. Writing T 6 as T 4×S̃1×S1,

consider the ZN orbifold given by the transformation corresponding to a 1/N unit of shift

in S̃1 and a simultaneous ZN involution of the Narain lattice of signature (4, 20) associated

with the heterotic string compactified on T 4. This leads to the CHL compactifications of

interest in this paper [9]. The heterotic string compactified on T 4 × S̃1 × S1 is dual to

the type IIA string compactified on K3 × S̃1 × S1. The (4, 20) lattice gets mapped to

H∗(K3,Z) in the type IIA theory and the orbifolding ZN is a Nikulin involution combined

with the 1/N shift of S̃1.

The low-energy theory consists of the following bosonic fields:

(i) the N = 4 supergravity multiplet with the graviton, a complex scalar, SH and six

graviphotons; and

(ii) m = ([48/(N + 1)] − 2) N = 4 vector multiplets each containing a gauge field and

six scalars.

In terms of the variables that appear in the heterotic description, the bosonic part of the

low-energy effective action (up to two derivatives) is [13, 15, 16]

S =

∫
d4x

√−g
[
R− ∂µSH ∂µS̄H

2 Im(SH)2
+

1

8
Tr(∂µML ∂µML)

−1

4
Im(SH) FµνLML Fµν +

1

4
Re(SH) FµνL F̃µν

]
, (2.1)

where L is a Lorentzian metric with signature (6,m), M is a (6 + m) × (6 + m) matrix

valued scalar field satisfying MT = M and MTLM = L and Fµν is a (6 +m) dimensional

vector field strength of the (6 +m) gauge fields.

The moduli space of the scalars is given by

(
Γ1(N) × SO(6,m; Z)

)∖(SL(2)

U(1)
× SO(6,m)

SO(6) × SO(m)

)
(2.2)

SO(6,m,Z) is the T-duality symmetry and Γ1(N) ⊂ SL(2,Z) is the S-duality symmetry

that is manifest in the equations of motion and is compatible with the charge quantiza-

tion [10]. The fields that appear at low-energy can be organized into multiplets of these

various symmetries.

– 3 –
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1. The heterotic dilaton combines with the axion (obtained by dualizing the antisym-

metric tensor) to form the complex scalar SH . Under S-duality, SH → (aSH +

b)/(cSH + d).

2. The (6 + m) vector fields transform as a SO(6,m; Z) vector. Thus, the electric

charges qe (resp. magnetic charges qm) associated with these vector fields are also

vectors (resp. co-vectors) of SO(6,m,Z). Further, the electric and magnetic charges3

transform as a doublet under the S-duality group, Γ1(N), where Γ1(N) is the sub-

group of SL(2,Z) matrices
(
a b
c d

)
with a = d = 1 mod N and c = 0 mod N).

One can form three T-duality invariant scalars, q2
e, q2

m and qe · qm from the charge

vectors. These transform as a triplet of the S-duality group. Equivalently, we can write

the triplet as a symmetric matrix:

Q ≡
(

q2
e −qe · qm

−qe · qm q2
m

)
(2.3)

The S-duality transformation now is Q → A ·Q·AT with A =
(
a b
c d

)
∈ Γ1(N). The charges

are quantized such that Nq2
e, q2

m ∈ 2Z and qe ·qm ∈ Z. There exist many more invariants

due to the discrete nature of the T-duality group [14] for N = 1 and more appear when

N > 1.

2.1 BPS multiplets

Four-dimensional compactifications with N = 4 supersymmetry admit two kinds of BPS

states: (i) 1/2-BPS multiplets that preserve eight supercharges (with 16 states in a mul-

tiplet) and (ii) 1/4-BPS multiplets that preserve four supercharges(with 64 states in a

multiplet). The masses of the 1/4-BPS states are determined in terms of their charges by

means of the BPS formula [2, 15, 16]:

(
M2

±

)
1/4−BPS

=
1

SH − S̄H

[
(qe + SHqm)T (M + L)(qe + S̄Hqm)

± 1

2

√
(qTe (M + L)qe)(qTm(M + L)qm) − (qTe (M + L)qm)2

]
. (2.4)

The square of the mass of a 1/4-BPS state is max(M2
+,M

2
−). 1/2-BPS states appear when

the electric and magnetic charges are parallel (or anti-parallel) i.e., qe ∝ Lqm. The BPS

mass formula for 1/2-BPS states can be obtained as a specialization of the 1/4-BPS mass

formula given above. When qe ∝ Lqm, the terms inside the square root appearing in the

1/4-BPS mass formula vanish leading to the 1/2-BPS formula

(
M2
)
1/2−BPS

=
1

SH − S̄H

[
(qe + SHqm)T (M + L)(qe + S̄Hqm)

]
. (2.5)

3To be precise, qe and −Lqm form the doublet. Also note that the Lorentzian inner product is q2
e =

qT
e Lqe. We will not indicate the appearance of L in subsequent formulae that appear in the paper.

– 4 –
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2.2 Counting 1/2-BPS states

We will now consider the counting of purely electrically charged 1/2-BPS states. Such

electrically charged states are in one to one correspondence with the states of the CHL

orbifold of the heterotic string compactified on T 4×T 2 [10]. Let d(n) denote the degeneracy

of heterotic string states carrying charge Nq2
e = 2n — the fractional charges arise from

the twisted sectors in the CHL orbifolding. Every 1/2-BPS multiplet/heterotic string state

has degeneracy 16 = 28/2. Then the generating function of d(n) is [17–19]

∞∑

n=0

d(n) exp(2πinτ
N ) =

16

(i
√
N)−k−2 f (k)(τ/N)

, (2.6)

where

f (k)(τ) ≡ η(Nτ)k+2 η(τ)k+2 .

The degeneracy of purely magnetically charged states with charge q2
m = 2m is given by a

similar formula with f (k)(τ/N) replaced by f (k)(τ). These are level-N modular forms with

weight (k + 2). For (N, k) = (1, 10), f (10)(τ) = η(τ)24.

2.3 Counting 1/4-BPS states

As we saw earlier, 1/4-BPS states are necessarily dyonic in character with the electric and

magnetic charge vectors being linearly independent. In a remarkable leap of intuition,

Dijkgraaf, Verlinde and Verlinde (DVV) proposed that a Siegel modular form of weight 10

is the generating function of the degeneracies of 1/4-BPS states [3]. Let d(n, ℓ,m) be the

degeneracy of 1/4-BPS states with charges q2
e = 2n, q2

m = 2m and qe · qm = ℓ. Then, one

has ∑

(n,ℓ,m)>0

d(n, ℓ,m) qn rℓ sm =
64

Φ10(Z)
, (2.7)

with Z = ( z1 z2z2 z3 ) ∈ H2 and q = exp(2πiz1), r = exp(2πiz2), s = exp(2πiz3) (see appendix

(B.1) for further details) and (n, ℓ,m) > 0 implies n,m ≥ 1, ℓ ∈ Z and (4nm − ℓ2) > 0.

The modular form Φ10(Z) has a double zero at z2 = 0, where it factorizes as

lim
z2→0

Φ10(Z) = (2πz2)
2 η(z1)

24 η(z3)
24 (2.8)

In this limit, one sees the appearance of the degeneracies of the pure electric and magnetic

states — these are generated by η(z1)
24 and η(z3)

24 respectively. From this we see that

the Z2 transformation which exchanges electric and magnetic charges corresponds to the

geometric action on H2: z1 ↔ z3. Another check of this formula is that this modular form

(as well as the ones that we discuss later) matches the Bekenstein-Hawking entropy of large

dyonic blackholes in the limit of large electric and magnetic charges.4

In a development that has spurred activity in this area, Jatkar and Sen generalized

the DVV proposal to the case of asymmetric ZN -orbifolds of the heterotic string on T 6

4A more precise statement is that the formula reproduces the entropy of large blackholes with torsion

one. The degeneracy of 1/2-BPS blackholes is more complicated to understand as they have no horizon

and hence have vanishing Bekenstein-Hawking entropy.

– 5 –
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for N = 2, 3, 5, 7 [9]. They proposed that the degeneracy of 1/4-BPS dyons is generated

by a Siegel modular form of weight k = 24
N+1 − 2 and level N , Φ̃k(Z). They also provided

an explicit construction of the modular form using the additive lift of a weak Jacobi form.

The constructed modular form has the following properties:

(i) It is invariant under the S-duality group Γ1(N) suitably embedded in the group

G1(N) ⊂ Sp(2,Z).

(ii) In the limit z2 → 0, it has the right factorization property:

lim
z2→0

Φ̃k(Z) = (i
√
N)−k−2 (2πz2)

2 f (k)(z1/N) f (k)(z3) (2.9)

Note that for (N, k) = (1, 10), this matches the DVV formula.

(iii) It reproduces the entropy for large blackholes [9].

(iv) For 1/2-BPS blackholes, the formula leads to a prediction for R2 (higher derivative)

corrections to the low-energy effective action given in eq. (2.1). Such corrections

lead to a non-zero entropy using Wald’s generalization of the BH entropy formula for

Einstein gravity that agrees with the prediction from the modular form [20, 21].

The S-duality group Γ1(N) as well as Γ0(N) ∈ SL(2,Z) are embedded into Sp(2,Z) as

follows:5 (Note that this is not quite the embedding given by Jatkar-Sen — we have

carried out a z1 ↔ z3 exchange on their embedding to match our notation.)

(
a b

c d

)
7→




d −c c 0

−b a 0 b

0 0 a b

0 0 c d


 , c = 0 mod N , (2.10)

with the additional condition a = 1 mod N for Γ1(N). Let us call this sub-group of

Sp(2,Z), G0(N). Further, let ΓJ(N) ≡ ΓJ ∩ G0(N). This is subgroup of G0(N) that

preserves the cusp at (z3) = i∞ (see appendix B). The weak Jacobi form φk,1(z1, z2)

that generates Φ̃k(Z) is a modular form of ΓJ(N). Then, for prime N , there are two

inequivalent cusps in the upper-half plane H1 corresponding to (z1) = 0 and (z1) = i∞.

Thus, the modular form Φ̃k(Z) behaves differently at the two cusps. Its behavior at z1 = 0

is captured by the modular form Φk(Z) also defined by Jatkar and Sen [9]. One has

Φk(Z) ≡ z−k1 Φ̃k(Z̃) , (2.11)

with

z̃1 = −1/z1 , z̃2 = z2/z1 , z̃3 = z3 − z2
2/z1 .

It is not hard to see that the above change of variables maps (z1) = 0 to (z1) = i∞ while

preserving the cusp at (z3) = i∞. We will be dealing with the modular form, Φk(Z), for

5It turns out that the modular forms constructed by Jatkar-Sen are invariant under the larger group

Γ0(N) for N = 2, 3, 5.

– 6 –
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most of this paper as it is symmetric in the ‘electric’ and ‘magnetic’ variables z1 and z3
even though it is Φ̃k(Z) which is the generating function of dyonic degeneracies. Note that

this point is not relevant for N = 1 (c.f. the DVV formula) as both the cusps get identified

under SL(2,Z).

2.4 Product formulae for the modular forms

Product representations for a closely related modular form Φk(Z) were provided by two

groups [17, 22]. In a subsequent paper [23], David and Sen derived the product represen-

tations for modular form Φ̃k(Z) as well as Φk(Z) using the 4D-5D correspondence with

the well-studied D1 − D5 system in Taub-NUT space [24]. They showed that it can be

written as the product of three contributions arising from: (i) the low-energy dynamics

in Taub-NUT space, (ii) the center of mass dynamics of the D1-D5 system in Taub-NUT

space and (iii) the dynamics of D1-branes along K3/ZN .6

Φ̃k(Z) = (i
√
N)−k−2 fk(z1/N) × Est×T 2(z1, z2) × ÊS∗(K3/ZN )(z1, z2, z3) (2.12)

where Est×T 2(z1, z2) = [ϑ1(z1, z2)/η(z1)
3]2 is the spacetime elliptic genus [16] and

ÊS∗(K3/ZN )(z1, z2, z3) is the ‘second-quantized elliptic genus’ of K3/ZN defined by [23, 25]

ÊS∗(K3/ZN )(z1, z2, z3) =
∞∑

p=0

ESp(K3/ZN )(z1, z2) e
2πipz3

where ESp(K3/ZN ) is the elliptic genus of the p-th symmetric product of K3/ZN and

ES0(K3/ZN ) ≡ 1. Note that each of the terms in eq. (2.12) independently admits a product

representation — for details see [23].

We will obtain product representations for Φk(Z) for N = 2, 3, 5 as the multiplicative

(Borcherds) lift of a Jacobi form φ
(N)
0,1 (τ, z) of Γ0(N)J = Γ0(N) ⋉ Z2 [35]. For the cases of

interest, the groups have two cusps at τ = i∞ and τ = 0. Let c1(n, ℓ) and c2(n, ℓ) be the

coefficients of the Fourier expansion about the two cusps. Then, one has [22, 35]

Φk(Z) = qrs
∏

n,ℓ,m∈Z

(
1 − qnrℓsm

)c1(nm,ℓ) ×
∏

n,ℓ,m∈Z

(
1 − (qnrℓsm)N

)c2(nm,ℓ)
. (2.13)

Note that we use a normalization for Φk(Z) that differs by on an overall sign from the one

used by David-Jatkar-Sen [17]. To make use of this formula, we need to determine the

relevant Jacobi form. According to Aoki-Ibukiyama (Prop. 6.1 in [35]), any weak Jacobi

form of weight zero and index one of Γ0(N)J is of the form

φ
(N)
0,1 (τ, z) = A(N) α(N)(τ) φ−2,1(τ, z) +B(N) φ0,1(τ, z) , (2.14)

where φ−2,1(τ, z) and φ0,1(τ, z) are as defined in eq. (B.9) and α(N)(τ) is a weight two

modular form at level N and A(N) and B(N) are constants. When N = 2, 3, 5, there is only

one such weight two modular form with constant coefficient = 1 given by the Eisenstein

6The ZN is the Nikulin involution associated with the type IIA dual of the CHL orbifold.
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series: α(N)(τ) = 12i
π(N−1)∂τ

[
ln η(τ) − ln η(Nτ)

]
. Thus, our problem is reduced to fixing

two constant coefficients, A(N) and B(N) which we do now following the procedure given

in ref. [22].

Recall that φk,1(τ, z), that generates the additive lift for Φk(Z), provides all the terms

in Φk(Z) that appear with coefficient s [9]. The product representation of the Jacobi form,

φk,1(τ, z), thus enables us to fix the coefficients in eq. (2.13) with m = 0. Comparing the

product form (referred to as the Hodge anomaly in [22]) given below with eq. (2.13)

φk,1(τ, z) = η(τ)k−2η(Nτ)k+2ϑ2
1(τ, z) , (2.15)

= qr(1 − r−1)2
∞∏

n=1

(1 − qn)k−2(1 − qnN )k+2(1 − qnr)2(1 − qnr−1)2 ,

we see that

c1(−1) = 2 , c1(0) = (k − 2) , c2(−1) = 0 and c2(0) = (k + 2) , (2.16)

where the argument of cs is given in terms of (4nm−ℓ2). Note that (k+2) = 24/(N +1) as

usual. For instance, the coefficient of r at the cusp at i∞ implies A(N) +(B(N)/2) = c1(−1)

and similarly, the constant term at the same cusp implies −2A(N) + 5B(N) = c1(0). This

implies that

A(N) =
2N

N + 1
, B(N) =

1

N + 1
, (2.17)

which match the results given in ref. [22] for N = 2. These two conditions did not need too

much detail about the weight two modular form α(N)(τ) other than its normalization, i.e.,

α(N)(i∞) = 1. The expansion at the other cusp provides an infinite number of consistency

checks of the existence of the multiplicative lift.

The product expansion for Φk(Z) that has been given by David-Jatkar-Sen in [17]

naively appears to be of a different form. However, one can show that the two expansions

are indeed the same providing us with an additional check on our product formula.7 Fur-

ther, it gives an alternate formula for c2(n, ℓ) as the Fourier coefficients of another weak

Jacobi form

φ̂
(N)
0,1 (τ, z) =

−2

N + 1
α(N)(τ) φ−2,1(τ, z) +

1

N + 1
φ0,1(τ, z) , (2.18)

about the cusp at i∞. It is also important, for our later discussion, to note that the

coefficients c1(n, ℓ) and c2(n, ℓ) are all even integers for N = 2, 3, 5 to the orders (n ≤ 12)

that we have checked. We believe that this is true to all orders.

3 Generalized Kac-Moody algebras

3.1 From Cartan matrices to Lie algebras

A Lie algebra is defined as a vector space g with an anti-symmetric bilinear map [ , ] :

g × g 7→ g satisfying the Jacobi identity. A finite dimensional Lie algebra can also be

7We thank Justin David for useful discussions and in particular, for informing us about this relationship.
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defined through its Cartan matrix. Given a real, indecomposable, (r×r) symmetric matrix8

A = (aij), i, j ∈ I = {1, 2, . . . , r} of rank r satisfying the following conditions:

(i) aii = 2 ,

(ii) aij = 0 ⇔ aji = 0 ,

(iii) aij ∈ Z≤0 for i 6= j ,

(iv) det A > 0 ,

one defines a Lie algebra g(A) generated by the generators ei, fi, and hi, for i ∈ I, satisfying

the following conditions for i, j ∈ I :

[hi, hj ] = 0 ; [ei, fj] = δijhj ; [hi, ej ] = aijej ; [hi, fj ] = −aijfj ;

(ad ei)
1−aijej = (ad fi)

1−aijfj = 0 for i 6= j .

The Cartan matrix thus uniquely defines the Lie algebra which we call g(A) (and on

occasion simply A).

More general classes of Lie algebras are obtained by weakening the axioms on the

Cartan matrix. In particular, relaxing condition (iv) on the positive definiteness of the de-

terminant of the Cartan matrix yields Kac-Moody algebras which are infinite dimensional.

Relaxing conditions (i) and (iv), one obtains the most general class of Kac-Moody algebras,

the generalized Kac-Moody (GKM) algebras.

Affine Lie algebras are obtained by requiring positive semi-definiteness of the determi-

nant of A in the place of positive definiteness. Thus, for an affine Lie algebra the condition

on the determinant is,

det A{i} > 0 (3.1)

for all i = 1, . . . , r, where A{i} are the matrices obtained from A by deleting the i-th row

and column. For an affine Lie algebra, the rank of A is at least (r − 1).

Our main focus will be on the following sequence of Cartan matrices

A1 =
(
2
)
→֒ A

(1)
1 =

(
2 −2

−2 2

)
→֒ A1,II ≡




2 −2 −2

−2 2 −2

−2 −2 2


 (3.2)

The first matrix in the sequence leads to the finite rank one Lie algebra A1, the second

leads to the affine Lie algebra Â
(1)
1 . The Lie algebra g(A1,II) is a sub-algebra of the GKM

superalgebras,9 GN , that we construct in this paper.

8The symmetric condition can be extended to include symmetrizable matrices. A matrix A is said to

be symmetrizable if there exists a non-degenerate diagonal matrix D such that A = DB where B is a

symmetric matrix.
9A superalgebra is an algebra with a Z2 grading — the algebra has bosonic and fermionic elements

satisfying a graded Lie bracket. The required generalizations have been discussed in [4] and we refer the

reader to it.
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3.2 Cartan subalgebra

The Z-span h, of the elements {hi} is called the Cartan subalgebra of g(A). The Lie algebra

decomposes into eigenspaces, called root spaces, under the simultaneous adjoint action of

h. An element α ∈ h∗ is called a (real) root if the eigenspace

gα = {g ∈ g | [h, g] = α(h) g,∀h ∈ h} (3.3)

defined by α, is not empty. The set L, of all α such that gα 6= 0, is called the root system.

The root space is generated by elements αi satisfying

αi(hj) = aij for i, j ∈ I. (3.4)

The elements αi are called the simple roots and the set of roots generated as integral linear

combinations of these with coefficients either all positive, or all negative. These sets are

called the set of positive and negative roots respectively, and are denoted by L+ and L−.

Thus, L = L+ ∪ L−. This decomposition gives a grading on the Lie algebra

g =
⊕

α∈L

gα =
⊕

α∈L−

gα
⊕

h
⊕

α∈L+

gα . (3.5)

The affine Lie algebras are obtained by ‘adding’ a root α0 to a finite Lie algebra. As

the Cartan matrix of an affine Lie algebra is degenerate, there is an element, k ∈ h, that is

central, i.e., it commutes with all elements of the Lie algebra. For Â
(1)
1 , one has k = h0+h1.

The non-degeneracy of the Cartan matrix is fixed by adding a new generator to h called

the derivation, d, to the Lie algebra g(A
(1)
1 ) with the following Lie brackets [26]:

[αi, d] = 0, [α0, d] = +α0, [hi, d] = 0, [k, d] = 0 . (3.6)

The roots are defined on h∗, consequently, modifying h implies the root space also gets

modified accordingly. The set of positive roots, L+, in this case are defined to be the

union of the set of positive roots of the finite-dimensional Lie algebra and the set of roots

for which

[α, d] = c α , with the constant c > 0 . (3.7)

For the affine Kac-Moody algebra, Â
(1)
1 , from the above definition of the set of positive

roots, we have

L+ =
(
n(α1 + α0), nα1 + (n− 1)α0, (n− 1)α1 + nα0

∣∣∣ n = 1, 2, 3, . . .
)
, (3.8)

and L− = −L+.

The class of infinite dimensional algebras that are obtained from a generalized Cartan

matrix, known as generalized Kac-Moody algebras, have a more general root structure.

In general there is no simple way to characterize the generalization from affine to the

generalized class of Kac-Moody algebras, as there are many classes of GKM algebras that

can be constructed due to the high degree of arbitrariness in the characterization of their

Cartan matrices. The root systems are also considerably different from the affine case and
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can have imaginary simple roots in addition to real simple roots, and the multiplicity of

the roots can be hard to determine.

The GKM algebra g(A1,II) is one which contains Â
(1)
1 as a sub-algebra and falls into

a class of GKM algebras called hyperbolic Kac-Moody algebras that have been classified.

There are infinitely many hyperbolic Kac-Moody algebras at rank two. At rank greater

than two but less than eleven, there exist a finite number of hyperbolic Kac-Moody algebras.

There are no hyperbolic Kac-Moody algebras at rank higher than ten. The embedding of

Â
(1)
1 has been used by Feingold and Frenkel to study another rank three hyperbolic Kac-

Moody algebra [27]. More recently, Feingold and Nicolai have shown that this hyperbolic

Kac-Moody algebra contains g(A1,II) as a sub-algebra [28].

3.3 Weyl groups

The Weyl group of a Cartan matrix, W(A), of a Cartan matrix, A, is defined as the group

generated by elementary reflections associated with the real simple roots

wαi(β) = β − 2
(β, αi)

(αi, αi)
αi, i ∈ I (3.9)

and β is any root. It is easy to see that w2
αi

= 1, ∀i ∈ I. Further, the Cartan matrix, A,

determines further relations, if any, amongst the basic reflections and thus these groups

are Coxeter groups. For symmetric matrices A, one has

(
wαiwαj

)2+|aij |
2

= 1 when |aij | = 0, 1 and i 6= j . (3.10)

Further, when |aij | ≥ 2, there are no relations.

For the three Cartan matrices given in eq. (3.2), the Weyl group is generated by r

elementary reflections, wαi , with no further relations. For r = 1, this group is Z2. For

r = 2, 3, these groups are infinite dimensional. For r = 2, the affine Weyl group is the

semi-direct product (Z2 ⋉ Z), where Z is the normal sub-group of translations generated

by t ≡ (wα1wα2).

3.3.1 The Weyl group W(A1,II)

We now discuss the Weyl group associated with the Cartan matrix A1,II given in (3.2) in

some detail as it plays an important role in this paper. Let (δ1, δ2, δ3) be the three real

simple roots whose Gram matrix (matrix of inner products) is given by the matrix A1,II .

Let (w1, w2, w3) denote the three reflections generated by the three simple roots. The

Weyl group, W(A1,II), is generated by these three elementary reflections with no further

relations. It turns out that W(A1,II) has a nicer presentation as a normal subgroup of

PGL(2,Z) which we describe later. One has [4] (see also [7, 28])

PGL(2,Z) = W(A1,II) ⋊ S3 , (3.11)

where S3 is the group of permutations of the three real simple roots.

– 11 –



J
H
E
P
0
4
(
2
0
0
9
)
0
3
2

The three real simple roots define the root lattice MII = Zδ1 ⊕Zδ2 ⊕Zδ3 and a funda-

mental polyhedron, MII, which is given by the region bounded by the spaces orthogonal

to the real simple roots.

R+MII = {x ∈MII ⊗ R | (x, δi) ≤ 0, i = 1, 2, 3}. (3.12)

The lattice MII has a lattice Weyl vector which is an element ρ ∈ MII ⊗ Q such that all

the real simple roots satisfy10

(ρ, δi) = −(δi, δi)

2
= −1 . (3.13)

One has ρ = (δ1 + δ2 + δ3)/2 i.e., it is one-half of the sum over real simple roots. The

positive real roots are then given by

Lre
+ =

(
W(δ1, δ2, δ3) ∩M+

II

)
, (3.14)

where W refers to the Weyl group W(A1,II) and M+
II = Z+δ1 ⊕ Z+δ2 ⊕ Z+δ3.

In order to make the map to PGL(2,Z) explicit, we choose to write the roots in terms

of a basis (f2, f3, f−2) which are related to the δi in the following way:

δ1 = 2f2 − f3, δ2 = f3, δ3 = 2f−2 − f3 . (3.15)

The non-vanishing inner products among the elements fi are:

(f2, f−2) = −1, (f3, f3) = 2 . (3.16)

Thus, (f2, f3, f−2) provide a basis for Minkowski space R2,1. Consider the time-like region

V = {x ∈ R2,1 | (x, x) < 0} ,

in R2,1. Let V + denote the future light-cone in the space and

Z = z3f2 + z2f3 + z1f−2 , (3.17)

be such that Z ∈ R2,1 + iV +. This is equivalent to Z ∈ H2, the Siegel upper-half space [4].

Let M1,0 be the lattice (Zf2 + Zf3 + Zf−2). The root lattice MII is a sub-lattice of

M1,0. M1,0 happens to be the root lattice of another rank three hyperbolic Kac-Moody

algebra [27, 28]. The Weyl group of this algebra is isomorphic to PGL(2,Z). Consider the

following identification:

f−2 ↔
(

1 0

0 0

)
, f3 ↔

(
0 1

1 0

)
, f2 ↔

(
0 0

0 1

)
. (3.18)

10The standard convention is to define ρ through the condition (ρ, δi) = (δi, δi)/2 for all real simple roots

δi. However, in this subsection, we reproduce the notation of Gritsenko and Nikulin (which differs by a

sign) as we wish to compare with their results in the later part of the paper.
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The norm of a matrix N ∈ M1,0 is then given by −2 detN . The Weyl group has the

following action:

N → A ·N · AT , A ∈ PGL(2,Z) and N ∈M1,0 . (3.19)

Recall that PGL(2,Z) is given by the integral matrices
(
a b
c d

)
with ad− bc = ±1. The S3

mentioned in eq. (3.11) is generated by

r−1 =

(
0 1

1 0

)
, r0 =

(
1 1

0 −1

)
. (3.20)

satisfying r2−1 = r20 = (r−1r0)
3 = 1. The three elementary reflections that generate

W(A1,II) are given by the following PGL(2,Z) matrices:

wδ1 =

(
−1 0

2 1

)
, wδ2 =

(
1 0

0 −1

)
, wδ3 =

(
1 2

0 −1

)
. (3.21)

3.4 The Weyl denominator formula

3.4.1 Finite Lie algebras

The Weyl denominator formula is a specialisation of the Weyl character formula for the

trivial representation. For finite Lie algebras, one has11

∏

α∈L+

(
1 − e−α

)
=
∑

w∈W

det(w) e[w(ρ)−ρ] , (3.22)

where eα is a formal exponential and the Weyl vector ρ is defined to be half the sum of all

positive roots, i.e., ρ = 1
2

∑
α∈L+

α. Further, w(ρ) is the image of ρ under the action of the

element w of the Weyl group.

3.4.2 Affine Kac-Moody algebras

The first twist occurs for the affine Kac-Moody algebras, where one needs to include imag-

inary roots, specifically those with zero norm, into the set of positive roots. Thus, one

has L+ = Lre
+ ∪ Lim

+ and so on. Further, the imaginary roots appear with multiplicity not

necessarily equal to one. For instance, for non-twisted affine algebras, the multiplicity of

imaginary roots is equal to the rank of the underlying finite dimensional Lie algebra.

Also, the definition of the Weyl vector as half the sum over all positive roots, needs to

be regulated due to the infinite number of such positive roots.12 An alternate definition is

given by Lepowsky and Milne which is tailored to writing the sum side of the denominator

formula [29]. The key observation (due to MacDonald [30]) is that [w(ρ)−ρ] behaves better

than either of the terms. Recall that an element of the Weyl group acts as a permutation

11Conventionally, the denominator formula is written with eρ multiplying the form given here. We write

in a form that is more suitable to affine Kac-Moody algebras.
12There is another definition of the Weyl vector ρ, through its inner product with all real simple roots

δi. It is the vector that satisfies (ρ, δi) = 1
2
(δi, δi), ∀i.
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of all roots (not necessarily positive). Thus, [w(ρ) − ρ] obtains contribution, only when a

positive root gets mapped to a non-positive root. So one defines the set Φw for all w ∈ W,

Φw = w(L−) ∩ L+ =
{
α ∈ L+

∣∣∣ w−1(α) ∈ L−

}
. (3.23)

Using this definition, we can see that

ρ− w(ρ) =
1

2

∑

α∈L+

[α− w(α)] ∼ 〈Φw〉 , (3.24)

where 〈Φw〉 is the sum of elements of the set Φw. Note that −L− = L+, which explains

the half disappearing in the r.h.s. of the above formula. Imaginary roots do not appear in

the set Φw for affine Lie algebras as the imaginary roots turn out to be Weyl invariant and

hence cancel out in the above equation.

The denominator formula that works for affine Kac-Moody algebras, after including

the imaginary roots in L+, is the Weyl-Kac denominator formula

∏

α∈L+

(
1 − e−α

)mult(α)
=
∑

w∈W

det(w) e−〈Φw〉 , (3.25)

For the affine Kac-Moody algebra, Â
(1)
1 , from the above definition of the set of positive

roots, we have

L+ =
(
n(α1 + α0), nα1 + (n− 1)α0, (n − 1)α1 + nα0

∣∣∣ n = 1, 2, 3, . . .
)
, (3.26)

and the Weyl group is isomorphic to Z2 ⋉ Z. Putting it all together into the denominator

identity gives [29]

∏

n≥1

(1 − e−nα0e−nα1)(1 − e−(n−1)α0e−nα1)(1 − e−nα0e−(n−1)α1)

=
∑

n∈Z

e−n(2n−1)α0e−n(2n+1)α1 −
∑

n∈Z

e−(n+1)(2n+1)α0e−n(2n+1)α1 (3.27)

Setting e−α0 = r and e−α1 = qr−1, the above identity is equivalent to the Jacobi triple

identity involving the theta function ϑ1(τ, z):

− iϑ1(τ, z) = q1/8r−1/2
∞∏

n=1

(1 − qn)
(
1 − qn−1r

) (
1 − qnr−1

)

=
∑

n∈Z

(−1)n q
(n−1/2)2

2 rn−1/2 . (3.28)

3.4.3 Generalized Kac-Moody algebras

For the case of generalized Kac-Moody algebras, the story gets a bit more involved. A

detailed discussion of the Weyl denominator formula for GKM algebras can be found in [31].

New kinds of roots appear here and have nontrivial multiplicities that are hard to determine.

The ‘sum side’ of the denominator formula also requires modification. For the class of GKM
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algebras with a bilinear form that is almost positive definite the denominator identity was

constructed by Borcherds generalizing the Weyl-Kac character formula for Kac-Moody

algebras [11, 32–34]. These GKM algebras contain, in addition to real and imaginary roots

of Kac-Moody algebras, imaginary simple roots and a suitable definition of the denominator

identity is required to correct for these. Also, the way the Cartan subalgebra is centrally

extended modifies the root space and requires some care as the linear independence of the

simple roots is crucial for the denominator identity to be well defined [34]. The Weyl group

continues to be generated only by elementary reflections of the real simple roots.

For the above class of generalized Kac-Moody algebras, the Weyl-Kac-Borcherds de-

nominator identity becomes [32]

∏

α∈L+

(1 − e−α)mult(α) = e−ρ
∑

w∈W

(detw) w(eρ
∑

α∈L+

ǫ(α)eα) , (3.29)

where L+ is the set of positive roots, ρ the Weyl vector, W the Weyl group of the GKM,

det(w) is defined to be ±1 depending on whether w is the product of an even or odd number

of reflections and ǫ(α) is defined to be (−1)n if α is the sum of n pairwise independent,

orthogonal imaginary simple roots, and 0 otherwise. As we will consider superalgebras, the

above formula, eq. (3.29) continues to hold with roots appearing with graded multiplicity

– fermionic roots appear with negative multiplicity.

As before we can cast it into a slightly different form by constructing the set

Φw = w(L−) ∩ L+ =
{
α ∈ L+

∣∣∣ w−1(α) ∈ L−

}
. (3.30)

such that

ρ− w(ρ) = 〈Φw〉

and the denominator identity takes the form [34]

∏

α∈L+

(1 − e−α)mult(α) =
∑

w∈Wσ

(detw)
∑

η∈Ω

(−1)ht(η)e−〈Φw〉 −w(η) , (3.31)

where Ω is defined as the sum of all the possible sets of distinct pairwise orthogonal imag-

inary simple roots and the height ht(η) of an element η =
∑

i niδi is
∑

i ni. We will verify

that the modular forms that we construct have product and sum representations that are

indeed compatible with the denominator formula.

4 Denominator formulae for ∆k/2(Z)

Gritsenko and Nikulin have shown that the denominator formula of a GKM superalgebra G1

is related to a modular form of Sp(2,Z) with character, ∆5(Z). The modular form, Φ10(Z),

that generates the degeneracy of dyons is equal to ∆5(Z)2. We extend this correspondence

to argue for the existence of new GKM superalgebras, GN , whose denominator formulae

give rise to modular forms with character, ∆k/2(Z), of suitable groups, G0(N) ⊂ Sp(2,Z),

with the property

∆k/2(Z)2 = Φk(Z) . (4.1)
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(Note that the Φk(Z) used here differs from the one defined by David-Jatkar-Sen [17] by

an overall sign.) This is the main assumption of this paper. Recall that the modular forms

Φk(Z) were first constructed in [9] and product formulae were provided in subsequent

papers [17, 22]. Further, the dyon degeneracies are given by a closely related modular form

called Φ̃k(Z) by Jatkar and Sen. This differs in the way the S-duality group, Γ1(N) ⊂
SL(2,Z), is embedded in Sp(2,Z).

4.1 Constructing the modular form ∆k/2(Z)

We have found experimentally that the modular form ∆k/2(Z) can be obtained as the

additive lift of the Jacobi cusp form of Γ1(N) of weight k/2 and index 1/2

ψk/2,1/2(τ, z) = θ1(τ, z) η(τ)
(k−4)/2 η(Nτ)(k+2)/2 . (4.2)

A proof of the additive lift has been given in appendix C.

Note that in the following we will write z1 for τ and z2 for z keeping in mind that

these become two of the three coordinates on H2. This happens to be the square root of

the Jacobi form that generates Φk(Z). A discussion of the additive lift has been provided

in appendix B. The Fourier expansion

ψk/2,1/2(z1, z2) =
∑

n,ℓ≡1 mod 2

g(n, ℓ) qn/2rℓ/2 , (4.3)

with q = exp(2πiz1) = exp(2πiτ) and r = exp(2πiz2) = exp(2πiz), enables us to define the

additive lift for ∆k/2(Z):

∆k/2(Z) ≡
∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

χ(d) d
k−2
2 g

(
nm
d2
, ℓd
)
qn/2rℓ/2sm/2 , (4.4)

where s = exp(2πiz3). This generalises the Maaß formula for ∆5(Z) when (N, k) = (1, 10).

We have experimentally verified that the square of the above formula generates Φk(Z) to

fairly high order (all terms which appear with values of mn ≤ 15 in the Fourier expansion

for Φk(Z) and more to confirm the non-trivial character for N = 3). We find that for

N = 2, 5, the character χ(d) is the trivial one (see eq. (B.16)), while for N = 3, we need a

non-trivial character χψ(d) =
(
−3
d

)
i.e.,

χψ(d) =





0 d = 0 mod 3 ,

1 d = 1 mod 3 ,

−1 d = 2 mod 3 .

(4.5)

It is known that ∆5(Z) can be written as a product of all ten even genus-two theta

constants. As we show in the appendix, ∆3(Z) can be written as a product of six even

genus-two theta constants:

∆3(Z) =
1

64
θ2(Z)

∏

m=1 mod 2

θm(Z) . (4.6)

We however do not expect such a formula for the other ∆k/2(Z).
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It is of interest to ask whether these modular forms already exist in the mathematical

literature. For N = 2, we have been able to show that ∆3(Z) is given by the product of six

even genus-two theta constants. In fact, the square root of Φ̃6(Z), which we call ∆̃3(Z),

can also be written as the product of six (different) even genus-two theta constants (see

appendix A.2 and ref. [35, 36]). Aoki and Ibukiyama [35] have studied the ring of modular

forms at levels N = 2, 3, 4. At level N = 3, they show that modular forms with character,

vψ(M) =

( −3

det(D)

)

for M =
(
A B
C D

)
∈ Ĝ0(3), necessarily have odd weight. However, for N = 3, we obtain

a modular form with even weight, ∆2(Z). Is there a contradiction? The resolution lies

in the fact that ∆2(Z) transforms with a different character13 — it is the one given by

the product of the character, vψ(M), considered by Aoki-Ibukiyama and the restriction of

the character, vΓ(M), that appears in the transformation of ∆5(Z), to Ĝ0(3)(see appendix

B.4). In appendix A.1, we show that the Jacobi form that generates ∆2(Z) is one with

non-trivial character which is consistent with our expectations. This combined with the

additive lift shown in appendix C show that this is indeed true.

With the construction of ∆k/2(Z), we are ready to verify whether they can be the

denominator formula of a GKM superalgebra GN . The product formula for ∆k/2(Z) can

be obtained from eq. (2.13) and it gives us the positive roots L+ with their multiplicities.

∆k/2(Z) = q1/2r1/2s1/2
∏

n,ℓ,m∈Z

(
1 − qnrℓsm

)1
2 c1(nm,ℓ) ×

∏

n,ℓ,m∈Z

(
1 − (qnrℓsm)N

)1
2 c2(nm,ℓ)

.

(4.7)

For this to make sense as the product side of a denominator formula of a GKM superalgebra,

it is necessary that c1(nm, ℓ) and c2(nm, ℓ) are even integers as they provide the multplicity

of various roots in L+. It appears to be true to the orders that we have checked. The

common factor q1/2r1/2s1/2 can be identified with exp(−πı(ρ, z)), giving us the Weyl vector

ρ. We thus see that the Weyl vector is independent of N . The ρ vector does not change

during the orbifolding process in the work of Niemann either (see Theorem (1.6) in ref. [12]).

In the work of Niemann, the orbifolding changes the simple roots whereas in our situation,

the three real simple roots are unaffected by the orbifolding.

However, one needs to verify that the Maaß formula (4.4) corresponds to the sum side

of the denominator formula. This is the procedure adopted by Gritsenko and Nikulin for

∆5(Z) and we repeat their method [4].

4.2 The GKM superalgebra G1

We first consider the example of G1 to illustrate the method before moving on to the new

GKM superalgebras. As it stands, the denominator formula for the Lie algebra g(A1,II) is

not related to the the automorphic form ∆5(Z). Following the ideas of Borcherds [11, 32],

13We thank Prof. Aoki for encouraging us to believe in the existence of ∆2(Z) even though our original

approach initially had no mathematical rigor. He has also informed us that Gritsenko has independently con-

structed a modular form of weight two at level 3. We also thank D. Ramakrishnan for a useful conversation.
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Gritsenko and Nikulin constructed a superalgebra, G1, by adding imaginary simple roots

— some are bosonic and others are fermionic. The superalgebra G1 has g(A1,II) as a

sub-algebra and its Weyl group is identical to the one for g(A1,II).

In the above setting, the Weyl-Kac-Borcherds denominator formula14 (3.29) becomes

(see also section 3.3.1)

e−πı(ρ,z)
∏

α∈L+

(
1 − e−πı(α,z)

)mult(α)

=

(
∑

w∈W

det(w)

{
e−πı(w(ρ),z) −

∑

η∈MII∩R+MII

m(η) e−πı(w(ρ+η),z)

})
(4.8)

where the element Z = z3f2 + z2f3 + z1f−2 belongs to the subspace R2,1 + ıV + ∼ H2

obtained upon complexification of the cone V +. We have deliberately rewritten the sum as

two terms — one arising from the real simple roots (η = 0) and the other arising from the

imaginary simple roots (η 6= 0). The first term thus arises as the sum side of the Lie algebra

g(A1,II). The second terms is specific to GKM algebras due to the presence of imaginary

simple roots with ‘multiplicities’ m(η) ∈ Z. These multiplicities are determined from the

connection to the automorphic form ∆5(Z)(an explicit expansion is given in appendix D)

— in other words, one adds enough imaginary simple roots such that the automorphic

properties are attained. The imaginary simple roots belong to the space MII ∩ R+MII.

The Maaß formula for ∆5(Z) leads to a simple expression for light-like imaginary simple

roots i.e., (η0, η0) = 0. They are generated by the formula

1 −
∑

t∈N

m(tη0)q
t =

∏

k∈N

(1 − qk)9 =

√
f (10)(τ)

η(τ)3
. (4.9)

Negative values of multiplicity implies that the root is fermionic. For instance, one has

m(2η0) = −27. Thus, such roots are fermionic and hence we have a superalgebra. There

are three primitive light-like vectors: 2f2, 2f−2 and (2f−2−2f3+2f2) each with multiplicity

9. The action of the Weyl group generates the remaining vectors. There are two primitive

vectors satisfying (η, η) < 0: (2f−2 + 2f2) and (2f−2 − f3 + 2f2). The other terms are

generated as multiples of the form tη of these primitive vectors and multiplicities given by

the above formula.

The product formula for ∆5(Z) determines the positive roots L+ — again fermionic

roots appear with negative multiplicity in the exponent. We do not write out the detailed

list and refer the diligent reader to the paper by Gritsenko and Nikulin [4]. We would

like to comment here that there is a subtle issue in extracting the multiplicities from

the exponent in the product formula — the product formula gives only the difference

between the multiplicities of the bosonic and fermionic generators and hence is more like

a Witten index.

14Here we write the denominator formula in the notation of Gritsenko and Nikulin. In particular, one

needs to replace ρ by −ρ in eq. (3.29).
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4.3 The GKM superalgebra G2

An important assumption in this paper has been that the square root of the Siegel modular

forms Φk(Z), i.e., ∆k/2(Z) should appear as the denominator formula of some GKM su-

peralgebra. The first example that we use to verify this is the Z2 orbifold for which k = 6.

It might be thought that although Φ10(Z) and Φ6(Z) are not obviously associated to any

GKM algebras, we could nevertheless obtain the changes that result from orbifolding by

directly comparing the two as given by their Maaß expansions. The remarkable thing is

that the comparison at the level of the modular forms, Φ10(Z), and Φ6(Z), is not very

transparent, in that the terms appearing in the two are not one-to-one for comparison.

There occur terms in each that do not appear in the other, and hence we can not track

down their fate as we orbifold. It is only when we compare ∆5(Z) and ∆3(Z) we see that

both the expansions are similar and suitable for comparison. Below we analyze the Maaß

expansion of square root of Φ6(Z), ∆3(Z), in the same way as was done for ∆5(Z) and

obtain the multiplicities of the primitive imaginary simple roots η.

We have already derived a Maaß formula for ∆3(Z) using the additive lift of the weak

Jacobi form ψ3,1/2(z1, z2) of weight 3 and index 1/2 as discussed earlier. We also need

to suitably interpret the region of summation of the variables (n, ℓ,m) such that they

give the space Ω of the algebra we construct. Mathematically, these will be the ‘twisted’

generalized GKM algebras that are obtained by the orbifold action on G1 analogous to the

ones constructed by Niemann [12].

By a straightforward comparison of the Fourier expansions ∆3(Z) and ∆5(Z) (given in

appendix D) by first focusing on terms appearing from real simple roots, we observe that

the Cartan matrix for G2 is the same as for G1. Next, we can see that all terms that appear

in ∆5(Z) appear in ∆3(Z) albeit with different coefficients. Thus the set of simple roots —

real and imaginary, of G2 remain unchanged from G1. This implies the lattice generated by

the three real simple roots MII = Zδ1⊕Zδ2⊕Zδ3 is the same as before. It also implies that

the cone defined by the lattice V +(MII) and the fundamental polyhedron MII, generated

by the spaces bounded by the real roots, also remain unchanged. The fundamental cone,

MII ∩ R+MII, containing the the imaginary roots also remains unchanged by orbifolding.

As already observed, the Weyl vector for the lattice ρ is the same as for G1.

The only difference comes in the generating function of the multiplicity factors such

as m(η0). The m(η0) in the case of G2 are given by the generating function

1 −
∑

t∈N

m(tη0) q
t =

∏

k∈N

(1 − qk)(1 − q2k)4 =

√
f (6)(τ)

η(τ)3
(4.10)

This can be understood from the twisted denominator formula of Niemann [12] for the

cycle shape 1k+2Nk+2 for N = 2 and k = 6 and is the special case of a more general

formula for any N and k which we give below.

It is remarkable that although the degeneracy of the dyons are given by completely

different modular forms in the two cases, the underlying GKM that we can construct for

them are similar to such a degree. The roots — real and imaginary, Weyl group, Weyl
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vector, the lattice, and the space of the imaginary roots remain unchanged. The orbifolding

of the space is reflected only in the change of the multiplicities of the imaginary roots.

4.4 The GKM superalgebras GN
In this section we list the properties of the class of GKM algebras GN for N = 1, 2, 3, 5

obtained from the modular forms that occur in degeneracy formulae for a ZN orbifold-

ing action.

The Cartan matrix, Weyl group, and the set of real and imaginary simple roots for the

GN remain the same for all values of N . The modular forms leading to these algebras, and

hence the denominator identities of the algebras, however, are different from each other.

The difference in the denominator identities is in the coefficients of the terms occurring in

the expansion, whereas the terms themselves undergo no change.

The generating functions of the multiplicity factors of light-like simple roots for differ-

ent values of N are given in terms of a single formula:15

θ1(τ, z)

(
1 −

∑

t∈N

m(tη0) q
t

)
= ψk/2,1/2(τ, z) . (4.11)

From the above we see the pattern in the progression of the m(η0) as the orbifolding group

ZN varies. For N = 3, one sees that certain multiplicities vanish and thus there are fewer

terms in the Fourier expansion for ∆3(Z) as can be seen in appendix D.

The additive lift for N = 5 is generated by a weak Jacobi form. While the formula

appears to go through, there are issues with the convergence of the series. This affects the

holomorphicity of both the forms — Φ2(Z) and ∆1(Z). However, these forms (and their

modular transforms) appear to be compatible with the entropy of black holes as well as

the higher-derivative R2-corrections in the low-energy effective action. It is not clear to us

whether this meromorphicity of ∆1(Z) affects the existence of the GKM superalgebra G5

but we caution the reader about this possibility.

One may wonder what goes wrong whenN = 7. The weak Jacobi form has half-integral

weight as well as half-integral index. It does not have an integral Fourier expansion and

hence does not seem to lead to a GKM superalgebra with integer multiplicities. There is

a related issue — the modular form Φ1(Z) is one with character and hence we anticipate

subtleties associated with it.

4.5 Interpreting the Jacobi form ψk/2,1/2(z1, z2)

Given a Siegel modular form, Fk(Z) of weight k with Z ∈ H2, its Fourier expansion with

respect to z3 can be written as

Fk(Z) =
∞∑

m=0

φk,m(z1, z2) exp(2πimz3) . (4.12)

15Interestingly, it was this pattern that lead us to the proposed additive lift using the weak Jacobi form

ψk/2,1/2(z1, z2).
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For cusp forms, the term m = 0 vanishes. The Fourier coefficients φk,m(z1, z2) are weak

Jacobi forms of weight k and index m under the sub-group, ΓJ , of Sp(2,Z) under which the

cusp Im(z3) = ∞ is invariant(see appendix B). For Siegel modular forms with character

such as ∆5(Z), the above sum runs over half-integers and we obtain Jacobi forms with

half-integral index.

In our situation, taking the limit Im(z3) → ∞ can also be understood as the removal

of a real root of the GKM superalgebra GN . The Cartan matrix for the two-dimensional

subspace of real roots is then the same as the affine Kac-Moody algebra Â
(1)
1 at level one.

We thus see that Â
(1)
1 ⊂ GN . As is well known and discussed earlier, the denominator

formula for this algebra is given by iθ1(z1, z2). In the product form for the theta function,

it is easy to see the appearance of imaginary roots with multiplicity one. The Jacobi forms

of Γ0(N) that we are interested in contain other powers of η — these are reflected in the

fact that the GN has more light-like imaginary roots than Â
(1)
1 — it is these roots that

appear in the correction terms in the sum side of the denominator formula. For instance,

the imaginary simple root η0 = 2f−2 has multiplicity m(η0) = 9 for N = 1. The same root

appears in L+ with multiplicity 10. The difference is easy to understand — the affine Lie

algebra has one light-like root that is not simple — it is the sum of the two real roots. For

N = 3, 5, we find m(η0) = 0,−1 respectively. So we see that the root η0 is a fermionic one

for N = 5.

As mentioned earlier, the analysis of David and Sen using the 4D-5D lift leads to a

separation of the product formula for Φk(Z) into three terms. Taking the square-root to

obtain ∆k/2(Z) does not change the separation. We see that two of the terms are nothing

but the product representation for the weak Jacobi form of index 1
2 , ψk/2,1/2(z1, z2). It

appears that real and light-like simple roots appear from the spacetime and T 2 sectors in

the type II picture. In particular, the electrically charged heterotic string states appear to

arise from such light-like simple roots. We believe that this is a small step in understanding

the connection between the GKM superalgebras and the algebra of BPS states.

5 Conclusion and outlook

In this paper we have shown that the square-root of the automorphic form, Φk(Z), that

generates the degeneracies of 1/4-BPS CHL dyons can be interpreted as the Weyl-Kac-

Borcherds denominator formula for a GKM superalgebra. Further, we have proposed an

additive lift that directly generates the automorphic form ∆k(Z) from a weak Jacobi form

of index 1/2. From the physical point of view, using the 4D-5D lift, we have been able to

show that the real roots and light-like imaginary roots for electrically charged states arise

from the spacetime and T 2 sectors (in the type II picture) while the other imaginary roots

necessarily arise from the K3 sector.

Cheng and Verlinde [7] observe that the walls of the Weyl chambers for the GKM

superalgebra G1 get mapped to walls of marginal stability for the 1/4-BPS dyons [37–40].

This observation, if extended to the ZN -orbifolds, seems, at first sight, to be in contradiction

with our observation that the Weyl group remained unchanged for GN . However this naive

extension is not quite correct, since for N > 1, there are two distinct modular forms that
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have been constructed by Jatkar-Sen [9], Φk(Z) and Φ̃k(Z). The first one is related to

the R2-corrections in the low-energy effective action while the second one is the one that

generates the degeneracy of 1/4-BPS dyons. Walls of marginal stability are precisely where

this degeneracy jumps. The extension of the Cheng and Verlinde observation should be

applicable to GKM superalgebras related to the square-root of Φ̃k(Z). This analysis has

been recently carried out by Cheng and Dabholkar [41] who find that the Weyl groups of

the correspoding GKM superalgebras change with N and the walls of the Weyl chambers

get mapped to the walls of marginal stability for N = 2, 3.

Sen has studied the fundamental domain in the upper half-plane bounded by walls

of marginal stability [37] and from his results one sees that for N > 3, the domain has

infinite volume (in the Poincaré metric). Cheng and Dabholkar also observe that the N = 5

situation violates a certain finiteness condition (imposed by Gritsenko and Nikulin in their

classification of rank three Lorentzian Kac-Moody algebras [42]) and thus they conclude

that there is no GKM superalgbra for N = 5. Should one relax the finiteness condition and

look for a GKM superalgebra for N = 5? Is the meromorphicity of the modular form that

we observed for N = 5 relevant? We do not have any concrete answers to these questions

and we leave if for future considerations.

Garbagnati and Sarti have studied symplectic (Nikulin) involutions of K3 mani-

folds [43, 44]. In particular, they have explicitly constructed elliptic K3’s whose auto-

morphism groups are the Nikulin involutions. Further, they have provided an explicit

description of the invariant lattice and its complementary lattice. We anticipate that these

results might be relevant in improving our physical understanding of the role of the roots

of the GKM superalgebras. The Jatkar-Sen construction holds for N = 11 as well and

it leads to a modular function (i.e., one of weight k = 0) Φ0(Z) and it is believed that a

CHL string may exist. In the type IIA picture, the Z11 is no longer a symplectic Nikulin

involution, it acts non-trivially on H∗(K3) and not on H1,1(K3) alone. It is of interest to

study aspects of the ZN orbifold both from the physical and mathematical point of view.

As mentioned in the introduction, our aim has been to address the algebra of BPS

states. While we have uncovered a nice algebraic structure, no direct relationship to the

algebra of BPS states has been achieved. A related problem is that the degeneracy of

BPS states appears related to the direct sum of two copies of the GKM superalgebras,

GN . BPS states thus seem to be elements of a module that is a tensor product of two

copies of (irreducible?) representations of the superalgebra. It would be nice to have a

microscopic understanding of these issues. A possibly relevant observation here is that the

elliptic genus of the Enriques surface [45] (these are two-dimensional complex surfaces that

arise as fixed-point free Z2 involutions of K3 surfaces) gives rise to ∆5(Z). This might

provide a hint on the appearance of two identical copies of the same GKM superalgebra

for K3.

As we have seen, for affine Kac-Moody algebras, the presence of light-like imaginary

roots in L+ leads to powers of the Dedekind eta function appearing in the product form

of the Weyl-Kac denominator formula. As is well known, q1/24/η(τ) is the generating

function of partitions of n (equivalently, Young diagrams with n boxes). An interesting

generalisation is the generating function of plane partitions (or 3D Young diagrams) which
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has a nice product representation η3D ∼ ∏n(1 − qn)n (due to MacMahon). This function

appears in the counting of D0-branes in the work of Gopakumar-Vafa [46, 47]. Is there an

algebraic interpretation for this? The addition of D2-branes to this enriches this story and

leads to interesting formulae [48].
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A Theta functions

A.1 Genus-one theta functions

The genus-one theta functions are defined by

θ
[a
b

]
(z1, z2) =

∑

l∈Z

q
1
2
(l+ a

2
)2 r(l+

a
2
) eiπlb , (A.1)

where a, b ∈ (0, 1) mod 2. One has ϑ1 (z1, z2) ≡ θ
[1

1

]
(z1, z2), ϑ2 (z1, z2) ≡ θ

[1
0

]
(z1, z2),

ϑ3 (z1, z2) ≡ θ
[

0
0

]
(z1, z2) and ϑ4 (z1, z2) ≡ θ

[
0
1

]
(z1, z2).

The transformations of ϑ1(τ, z) under modular transformations is given by

T : ϑ1(τ + 1, z) = eiπ/4 ϑ1(τ, z) ,

S : ϑ1(−1/τ,−z/τ) = − 1

q1/2r
eπiz

2/τ ϑ1(τ, z) , (A.2)

with q = exp(2πiτ) and r = exp(2πiz).

The Dedekind eta function η(τ) is defined by

η(τ) = e2πiτ/24
∞∏

n=1

(1 − qn) . (A.3)

The transformation of the Dedekind eta function under the modular group is given by

T : η(τ + 1) = eπi/12 η(τ) ,

S : η(−1/τ) = e−πi/4 (τ)1/2 η(τ) . (A.4)

The transformation of η(Nτ) is given by

T : η(Nτ +N) = eNπi/12 η(τ) ,

S : η(−1/τ) =
e−πi/4√
N

(τ)1/2 η(τ/N) . (A.5)
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One can see that η(Nτ) transforms into η(τ/N) under the S transformation. η(Nτ) gets

mapped to itself only under the subgroup, Γ0(N) of SL(2,Z). Following Niemann [12], let

ψj(τ) ≡ η
(
τ+j
N + j

)
, j = 0, 1, . . . , N − 1 mod N . (A.6)

Both S and T no longer have a diagonal action on the ψj(τ). One has

T : ψj(τ + 1) = eπi/12 ψj+1(τ) (A.7)

S : ψj(−1/τ) = e(j+j
′)πi/12 (τ)1/2 χ(G) ψ−j′(τ) , (A.8)

where jj′ = 1 mod N and the character χ(G) has to be calculated on a case by case basis

(see chapter 2 of [12] for details).

The transformations of the eta related functions show us that the functions fk(τ) and

their square root can transform with non-trivial character. In particular, one can show

that for N = 7, f (1)(τ) and for N = 3,
√
f (4)(τ) transform with character. As these

two functions enter the weak Jacobi forms that are used to construct the Siegel modular

forms Φ1(Z) and ∆2(Z) respectively, these two Siegel modular forms will transform with

non-trivial character [50]. This is the basis of our claim that ∆2(Z) must transform with

non-trivial character and is consistent with the observation of Jatkar-Sen regarding Φ1(Z).

A.2 Genus-two theta constants

We define the genus-two theta constants as follows [4]:

θ
[a
b

]
(Z) =

∑

(l1,l2)∈Z2

q
1
2
(l1+

a1
2

)2 r(l1+
a1
2

)(l2+
a2
2

) s
1
2
(l2+

a2
2

)2 eiπ(l1b1+l2b2) , (A.9)

where a =

(
a1

a2

)
, b =

(
b1
b2

)
, and Z =

(
z1 z2
z2 z3

)
∈ H2. Further, we have defined q =

exp(2πiz1), r = exp(2πiz2) and s = exp(2πiz3). The constants (a1, a2, b1, b2) take values

(0, 1). Thus, there are sixteen genus-two theta constants. The even theta constants are

those for which aTb = 0 mod 2. There are ten such theta constants for which we list the

values of a and b:

m 0 1 2 3 4 5 6 7 8 9(
a

b

) (
0
0
0
0

) (
0
1
0
0

) (
1
0
0
0

) (
1
1
0
0

) (
0
0
0
1

) (
1
0
0
1

) (
0
0
1
0

) (
0
1
1
0

) (
0
0
1
1

) (
1
1
1
1

)

We will refer to the above ten theta constants as θm(Z) with m = 0, 1, . . . , 9 representing

the ten values of a and b as defined in the above table.

The modular functions ∆5(Z) and ∆3(Z) can be written out in terms of the even theta

constants [4, 49]. One finds

∆5(Z) =
1

64

9∏

m=0

θm(Z) , (A.10)

∆3(Z) =
1

64
θ2(Z)

∏

m=1 mod 2

θm(Z) . (A.11)
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Following ref. [49], the formula for ∆3(Z) was constructed experimentally by looking for a

product of six even theta constants that had the correct series expansion. This is also in

agreement with the expression for Φ6(Z) given in ref. [35] in terms of theta constants.

Let us define ∆̃3(Z) to be the square-root of Φ̃6(Z). One may wonder if it can also be

written as the product of six genus-two theta constants. Keeping in mind that the leading

term will go as q1/4r1/2s1/2, we find that the following combination achieves this (to the

orders that we have verified):

∆̃3(Z) =
1

16
θ1(Z) θ3(Z) θ6(Z) θ7(Z) θ8(Z) θ9(Z) , (A.12)

squares to give Φ̃6(Z).

B Jacobi cusp forms

B.1 Basic group theory

The group Sp(2,Z) is the set of 4 × 4 matrices written in terms of four 2 × 2 matrices

A, B, C, D as16

M =

(
A B

C D

)

satisfying ABT = BAT , CDT = DCT and ADT − BCT = I. The congruence subgroup

Ĝ0(N) of Sp(2,Z) is given by the set of matrices such that C = 0 mod N . This group

acts naturally on the Siegel upper half space, H2, as

Z =

(
z1 z2
z2 z3

)
7−→M · Z ≡ (AZ +B)(CZ +D)−1 . (B.1)

The Jacobi group ΓJ = SL(2,Z) ⋉ H(Z) is the sub-group of Sp(2,Z) that preserves

the one-dimensional cusp z3 = i∞. The SL(2,Z) is generated by the embedding of
(
a b
c d

)
∈

SL(2,Z) in Sp(2,Z) as given below

g1(a, b; c, d) ≡




a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1


 . (B.2)

The above matrix acts on H2 as

(z1, z2, z3) 7−→
(
az1 + b

cz1 + d
,

z2
cz1 + d

, z3 −
cz2

2

cz1 + d

)
, (B.3)

with det(CZ + D) = (cz1 + d). The Heisenberg group, H(Z), is generated by Sp(2,Z)

matrices of the form

g2(λ, µ, κ) ≡




1 0 0 µ

λ 1 µ κ

0 0 1 −λ
0 0 0 1


 with λ, µ, κ ∈ Z (B.4)

16This section is based on the book by Eichler and Zagier [50].
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The above matrix acts on H2 as

(z1, z2, z3) 7−→
(
z1, λz1 + z2 + µ, z3 + λ2z1 + 2λz2 + λµ

)
, (B.5)

with det(CZ + D) = 1. It is easy to see that ΓJ preserves the one-dimensional cusp at

Im(z3) = ∞.

The full group Sp(2,Z) is generated by adding the exchange element to the group ΓJ .

g3 ≡




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 . (B.6)

This acts on H2 exchanging z1 ↔ z3. The subgroup Ĝ0(N) is generated by considering the

same three sets of matrices with the additional condition that
(
a b
c d

)
∈ Γ0(N) i.e., c = 0

mod N in eq. (B.2). Further, we will call the corresponding Jacobi group Γ0(N)J .

B.2 Weak Jacobi forms

A Siegel modular form of weight k and character v with respect to Sp(2,Z) is a holomorphic

function F : H2 → C satisfying

F (M · Z) = v(M) det(CZ +D)k F (Z) , (B.7)

for all Z ∈ H2 and M ∈ Sp(2,Z). In the above definition, one can replace Sp(2,Z) by any

of its sub-groups such as ΓJ or Ĝ0(N).

A holomorphic function

φk,t(z1, z2) : H1 × C → C ,

is called a Jacobi form of weight k and index t ∈ 1
2Z, if

1. The function

φ̃k(Z) = exp(2πitz3) φk,t(z1, z2) ,

on H2 is a modular form of weight k with respect to the Jacobi group ΓJ ⊂ Sp(2,Z).

2. It has a Fourier expansion

φk,t(z1, z2) =
∑

ℓ∈t+Z

f(n, ℓ) qnrℓ , (B.8)

such that the Fourier coefficients, f(n, ℓ) = 0, unless n ≥ 0 and 4nt− ℓ2 ≥ 0.

For weak Jacobi forms, the coefficients f(n, ℓ) are non-vanishing only when n ≥ 0 relaxing

the condition involving (4nt−ℓ2). Jacobi forms of integer index were considered by Eichler

and Zagier [50] and extended to half-integral indices by Gritsenko [45].
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The elliptic genus of Calabi-Yau manifolds are weak Jacobi forms. Examples include:

φ−2,1(z1, z2) = Est×T 2(z1, z2) =

(
iϑ1(z1, z2)

η3(z1)

)2

,

φ0,1(z1, z2) = EK3(z1, z2) = 8
4∑

i=2

(
ϑi(z1, z2)

ϑi(z1, 0)

)2

. (B.9)

We will see the appearance of weight zero Jacobi forms of the group Γ0(N)J in writing

product representations for the modular form Φk(Z).

φ
(N)
0,1 (τ, z) =

2N

N + 1
α(N)(τ) φ−2,1(τ, z) +

1

N + 1
φ0,1(τ, z) , (B.10)

with α(N)(τ) = 12i
π(N−1)∂τ

[
ln η(τ)−ln η(Nτ)

]
is the Eisenstein series for Γ0(N). The Fourier

expansion for φ
(N)
0,1 at the cusp at i∞ is

φ
(2)
0,1(τ, z) =

(
2r + 4 +

2

r

)
+

(
4r2 − 8 +

4

r2

)
q +O

(
q2
)

φ
(3)
0,1(τ, z) =

(
2r + 2 +

2

r

)
+

(
2r2 − 2r − 2

r
+

2

r2

)
q +O

(
q2
)

(B.11)

φ
(5)
0,1(τ, z) =

(
2r +

2

r

)
+

(
2r − 4 +

2

r

)
q +O

(
q2
)
.

and about the cusp at 0 is

φ
(2)
0,1 = 8 +

(
−16

r
+ 32 − 16r

)
q1/2 +

(
8

r2
− 64

r
+ 112 − 64r + 8r2

)
q +O

(
q3/2

)

φ
(3)
0,1 = 6 +

(
−6

r
+ 12 − 6r

)
q1/3 +

(
−18

r
+ 36 − 18r

)
q2/3

+

(
6

r2
− 42

r
+ 72 − 42r + 6r2

)
q +O

(
q4/3

)
(B.12)

φ
(5)
0,1 = 4 +

(
−2

r
+ 4 − 2r

)
q1/3 +

(
−6

r
+ 12 − 6r

)
q2/5 +

(
−8

r
+ 16 − 8r

)
q3/5

+

(
−14

r
+ 28 − 14r

)
q4/5 +

(
4

r2
− 26

r
+ 44 − 26r + 4r2

)
q +O

(
q6/5

)
.

B.3 Additive lift of Jacobi forms with integer index

Given a Jacobi form of weight k and index 1, Maaß constructed a Siegel modular form of

weight k leading to an explicit formula [51]

Φk(Z) ≡
∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

dk−1 f
(
nm
d2
, ℓd
)
qnrℓsm . (B.13)

This procedure is known as the arithmetic or additive lift of the Jacobi form. It is

known that the ring of Siegel modular forms is generated by four modular forms with
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weights 4, 6, 10 and 12. For instance, the weight 10 modular form, Φ10(Z), is generated

by the Jacobi form of weight 10 and index 1

φ10,1(z1, z2) = θ1(z1, z2)
2 η(z1)

18 . (B.14)

Given a weight k, index 1 Jacobi form of the subgroup Γ0(N)J , one has a similar

formula leading to a level-N Siegel modular form i.e, a modular form of Ĝ0(N) given

by [54–56]

Φk(Z) ≡
∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

χ(d) dk−1 f
(
nm
d2
, ℓd
)
qnrℓsm . (B.15)

where χ(d) is a real Dirichlet character [52] modulo N . When χ(d) is trivial, i.e.,

χ(d) =

{
0 if (d,N) 6= 1

1 otherwise ,
(B.16)

we obtain a level N Siegel modular form. For levels N = 2, 3, 5, Jatkar and Sen have

constructed modular forms of weight k = 6, 4, 2 respectively as additive lifts of the weight

k Jacobi forms [9]:

φk,1(z1, z2) = θ1(z1, z2)
2 η(z1)

k−4 η(Nz1)
k+2 . (B.17)

When the Jacobi form is one with character, one sees the appearance of a non-trivial

Dirichlet character and the Siegel modular form obtained from the additive lift is one with

character. At level N = 7, Jatkar and Sen have constructed a modular form of weight 1

with character [9]. In this case, one does indeed see the appearance of a non-trivial real

Dirichlet character in eq. (B.15) given above.

C The additive lift with character at level N

Let ∆k(Z) be a Siegel modular form of Ĝ0(N) ⊂ Sp(2,Z) with character vΓ i.e.,

∆k(M · Z) = vΓ(M) det(CZ +D)k ∆k(Z) , (C.1)

where vΓ(M) is the unique non-trivial real linear character of Sp(2,Z) [53] and M =(
A B
C D

)
∈ Ĝ0(N). An explicit expression for vΓ(M) is [57]

vΓ

(
0 −I2
I2 0

)
= 1 , vΓ

(
I2 B

0 I2

)
= (−1)b1+b2+b , (C.2)

vΓ

(
UT 0

0 U 1

)
= (−1)(1+u0+u2)(1+u1+u3)+u0u2 , (C.3)

where I2 is the 2 × 2 identity matrix, B =
(
b1 b
b b2

)
and U = ( u0 u3

u1 u2 ) is a uni-modular

matrix. The embedding of SL(2,Z) in Sp(2Z) given in eq. (B.2) induces a character for

SL(2,Z). Given an SL(2,Z) matrix M , let M∗ denote the corresponding Sp(2,Z) matrix

as determined by eq. (B.2), one defines

wΓ(M) ≡ vΓ(M∗) , (C.4)
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where wΓ(M) is the SL(2,Z) character induced by the character of Sp(2,Z). It is useful

to note that wΓ(S) = 1 when S = I2 mod 2.

Such a modular form admits a Fourier-Jacobi expansion of the form

∆k(Z) =
∑

m=1 mod 2;m>0

ψk,m/2(z1, z2) s
m/2 , (C.5)

where ψk,m/2(z1, z2) is a Jacobi form of weight k, index m/2 and character wΓ (induced

by vΓ). The condition that the exponent in the Fourier expansion be half-integral follows

from the behavior of the character. Similarly, one also has the following transformations

of ψk,m/2(z1, z2)

ψk,m/2(z1, z2 + h) = (−1)h ψk,m/2(z1, z2) , (C.6)

ψk,m/2(z1, λz1 + z2) = (−1)λ ψk,m/2(z1, z2) . (C.7)

Thus, one sees that Fourier expansion of the Jacobi form about the cusp at i∞ has half-

integral exponents. An important point to note is that the weight k must be odd else the

modular form vanishes [57].

C.1 Additive lift of Jacobi forms with half-integer index

So far we have only considered examples of modular forms obtained from the lift of Jacobi

forms with integral index. We will now consider examples with half-integral index as they

appear in the denominator formulae for the the GKM algebras, GN , discussed in the main

body of the paper. The simplest example is given by the Jacobi theta function, ϑ1(z1, z2).

It is a holomorphic Jacobi form of weight 1/2 and index 1/2 with character. This Jacobi

form appears as the denominator formula of the affine Kac-Moody algebra, Â
(1)
1 .

The Jacobi form of weight 5 and index 1/2

ψ5,1/2(z1, z2) = ϑ1(z1, z2) η(z1)
9 , (C.8)

generates the Siegel modular form with character, ∆5(Z) via the additive lift. The Fourier

expansion of the Jacobi form now involves half-integral exponents. One has

ψ5,1/2(z1, z2) =
∑

n,ℓ=1 mod 2

g(n, ℓ) qn/2rℓ/2 , (C.9)

with g(n, ℓ) = 0 unless 4n − ℓ2 ≥ 0. The modular form ∆5(Z) has the following expan-

sion [57]

∆5(Z) =
∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

dk−1 g
(
nm
d2
, ℓd
)
qn/2rℓ/2sm/2 . (C.10)

Notice the similarity with the Maaß formula given in eq. (B.15) with half-integral powers

of q, r and s appearing where integral powers appeared. Gritsenko and Nikulin have shown

that this modular form appears as the denominator formula of a GKM superalgebra.

∆5(Z) is a modular form with character under the full modular group, Sp(2,Z). It

transforms as

∆5(M · Z) = vΓ(M) (CZ +D)5 ∆5(Z) . (C.11)

We will now generalize the additive lift (C.10) to higher levels. In particular, we construct

additive lifts of the Jacobi forms of index 1/2 given in eq. (4.2).
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C.2 Hecke operators and the additive lift

Given a index-half Jacobi form ψk,1/2(τ, z) with Fourier expansion

ψk,1/2(τ, z) =
∑

n,ℓ

g(n, ℓ) qn/2rℓ/2 , (C.12)

we construct a Jacobi form of the same weight and index m/2 for odd m by the following

averaging procedure. This generalizes and closely follows the procedure due to Maaß [57]

for Jacobi forms of index half to higher levels.

Let Xm be the group of 2 × 2 matrices M =
(
α β
γ δ

)
with integral entries such that (i)

det(M) = m (m = 1 mod 2); (ii) M = I2 mod 2; (iii) γ = 0 mod N and (iv) (α,N) = 1.

Note that X1 is a subgroup of Γ0(N) for which wΓ(M) = vΓ(M∗) = 1. We will show that

the following is a Jacobi form of weight k and index m/2:

ψk,m/2(τ, z) ≡ (m)k−1
∑

“

α β
γ δ

”

∈X1\Xm

(γτ + δ)−k e
πim γz2

γτ+δ ψk,1/2

(
ατ+β
γτ+δ ,

mz
γτ+δ

)
(C.13)

Claim: Consider the coset X1\Xm. The coset can be represented by the elements

(
α 2β

0 δ

)
, with αδ = m, β = 0, 1, . . . , (δ − 1) , (α,N) = 1 and α > 0 . (C.14)

The proof is along lines similar to the one given by Jatkar-Sen [9, see appendix A] and will

not be repeated here. Using the above representation of the coset X1\Xm given above, we

can rewrite the equation defining ψk,m/2(τ, z) as follows:

ψk,m/2(τ, z) = (m)k−1
∑

αδ = m

(α, N) = 1

α > 0

δ−k
δ−1∑

β=0

ψk,1/2

(
ατ+2β
δ , mzδ

)
(C.15)

= (m)k−1
∑

αδ = m

(α, N) = 1

α > 0

δ−k
δ−1∑

β=0

∑

n,ℓ

g(n, ℓ) eiπn
ατ+2β
δ eiπℓ

mz
δ (C.16)

= (m)k−1
∑

αδ = m

(α, N) = 1

α > 0

δ−k+1
∑

n, ℓ

δ|nα

g(n, ℓ) e
iπnατ
δ e

iπℓmz
δ (C.17)

=
∑

n′,ℓ′

∑

α|(n′, ℓ′, m)

α > 0

χ(α) αk−1 g
(
n′m
α2 ,

ℓ′

α

)
eiπn

′τeiπℓ
′z , (C.18)

where χ(α) is the trivial Dirichlet character modulo N which implements the condition

(α,N) = 1. In obtaining the last line, we have defined n′ = nα/δ and ℓ′ = ℓα and replaced

δ by m/α.
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Modularity: we now prove that ψk,m/2(τ, z) constructed by the averaging procedure

is a Jacobi form with character. Let us first consider the transformation under M1 =(
a b
c d

)
∈ Γ0(N). The proof follows along the lines of Maaß [57] (and Jatkar-Sen [9] for the

modifications to account for the level.). We only repeat the crucial argument. Given any

matrix S ∈ X1\Xm, one has SM1 = M̃1S̃ where M̃1 =
(
ã b̃
c̃ d̃

)
∈ Γ0(N) and S̃ is another

matrix in X1\Xm. In other words, averaging over all S can be replaced by averaging over

S̃ with M̃1 taking the place of M1. In particular, one has

ψk,1/2

(
ãτ+b̃
c̃τ+d̃

, z
c̃τ+d̃

)
e
−iπ

c̃z2

c̃τ+d̃ = wΓ(M̃1) (c̃τ + d̃)k ψk,1/2(τ, z) . (C.19)

Since wΓ(SM1) = wΓ(M̃1S̃) and wΓ(S) = wΓ(S̃) = 1, we see that wΓ(M1) = wΓ(M̃1)

leading to the required result.

ψk,m/2

(
aτ+b
cτ+d ,

z
cτ+d

)
e
−iπm

cz2

cτ+c = wΓ(M1) (cτ + d)k ψk,m/2(τ, z) . (C.20)

The transformation under the other generators of the Jacobi group, Γ0(N)J , follow in an

elementary fashion. Thus, we see that ψk,m/2 is a Jacobi form of weight k and index m/2

for odd m.

One thus sees that

∆k(Z) =
∑

m=1 mod 2;m>0

ψk,m/2(z1, z2) e
iπmz3

=
∑

(n,ℓ,m)>0

∑

α|(n, ℓ, m)

α > 0

χ(α) αk−1 g
(
nm
α2 ,

ℓ
α

)
qn/2rℓ/2sm/2 . (C.21)

is a modular form of Ĝ0(N) with (odd) weight k and character vΓ. When the seed Jacobi

form is a weak one, then the above sum is not convergent and one obtains a meromorphic

modular form [56]. This is indeed the case in our example for N = 5.

When N = 3, the weight of the modular form we have constructed is even as k = 2.

However, the seed Jacobi form, ψ2,1/2(τ, z), transforms with character wγwψ and not as in

eq. (C.19), thus evading the restriction on k being odd. Taking into account the additional

character, wψ, one obtains a formula similar to eq. (C.21) but with χψ(α) as defined in

eq. (4.5) replacing χ(α):

∆2(Z) =
∑

(n,ℓ,m)>0

∑

α|(n, ℓ, m)

α > 0

χψ(α) αk−1 g
(
nm
α2 ,

ℓ
α

)
qn/2rℓ/2sm/2 . (C.22)

D Explicit formulae for ∆k/2(Z)

We note that ∆k/2(Z) is symmetric under the exchange z1 ↔ z3 and is anti-symmetric

under z2 → −z2 for all values of k.

∆5 =

(
− 1√

r
+
√
r

) √
q
√
s+

(
9

r
5
2

− 93

r
3
2

+
90√
r
− 90

√
r + 93 r

3
2 − 9 r

5
2

)
q

3
2 s

3
2

+

(
r−

3
2 +

9√
r
− 9

√
r − r

3
2

) (
q

3
2
√
s+

√
q s

3
2

)
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+

(−9

r
3
2

− 27√
r

+ 27
√
r + 9 r

3
2

) (
q

5
2
√
s+

√
q s

5
2

)

+

(
−r− 5

2 +
27

r
3
2

+
12√
r
− 12

√
r − 27 r

3
2 + r

5
2

) (
q

7
2
√
s+

√
q s

7
2

)

+

(
9

r
5
2

− 12

r
3
2

+
90√
r
− 90

√
r + 12 r

3
2 − 9 r

5
2

) (
q

9
2
√
s+

√
q s

9
2

)

+

(−27

r
5
2

− 90

r
3
2

− 135√
r

+ 135
√
r + 90 r

3
2 + 27 r

5
2

) (
q

11
2
√
s+

√
q s

11
2

)

+

(
r−

7
2 +

12

r
5
2

+
135

r
3
2

− 54√
r

+ 54
√
r − 135 r

3
2 − 12 r

5
2 − r

7
2

) (
q

13
2
√
s+

√
q s

13
2

)

∆3 =

(
− 1√

r
+
√
r

) √
q
√
s+

(
r−

5
2 − 5

r
3
2

− 6√
r

+ 6
√
r + 5 r

3
2 − r

5
2

)
q

3
2 s

3
2

+

(
r−

3
2 +

1√
r
−√

r − r
3
2

) (
q

3
2
√
s+

√
q s

3
2

)

+

(
−r− 3

2 +
5√
r
− 5

√
r + r

3
2

) (
q

5
2
√
s+

√
q s

5
2

)

+

(
−r− 5

2 − 5

r
3
2

− 4√
r

+ 4
√
r + 5 r

3
2 + r

5
2

) (
q

7
2
√
s+

√
q s

7
2

)

+

(
r−

5
2 +

4

r
3
2

− 6√
r

+ 6
√
r − 4 r

3
2 − r

5
2

) (
q

9
2
√
s+

√
q s

9
2

)

+

(
5

r
5
2

+
6

r
3
2

+
1√
r
−√

r − 6 r
3
2 − 5 r

5
2

) (
q

11
2
√
s+

√
q s

11
2

)

+

(
r−

7
2 − 4

r
5
2

− r−( 3
2) − 6√

r
+ 6

√
r + r

3
2 + 4 r

5
2 − r

7
2

) (
q

13
2
√
s+

√
q s

13
2

)

∆2 =

(√
r − 1√

r

)√
q
√
s+

(
3r3/2 − 3

r3/2

)
q3/2s3/2 +

(
1

r3/2
− r3/2

)(√
sq3/2 + s3/2

√
q
)

+

(
r5/2−3

√
r+

3√
r
− 1

r5/2

)(√
sq7/2+s7/2

√
q
)
+

(
3r3/2− 3

r3/2

)(√
sq9/2+s9/2

√
q
)

+

(
−r7/2 − 3r5/2 +

3

r5/2
+

1

r7/2

)(√
sq13/2 + s13/2

√
q
)

+

(
3r7/2 + 5

√
r − 5√

r
− 3

r7/2

)(√
sq19/2 + s19/2

√
q
)

∆1 =

(√
r − 1√

r

)√
q
√
s+

(
−r3/2 +

√
r − 1√

r
+

1

r3/2

)(√
sq3/2 + s3/2

√
q
)

+

(
r5/2 − 2r3/2 + 5

√
r − 5√

r
+

2

r3/2
− 1

r5/2

)
q3/2s3/2

+

(
−r3/2 + 2

√
r − 2√

r
+

1

r3/2

)(√
sq5/2 + s5/2

√
q
)

+

(
r5/2 − 2r3/2 + 3

√
r − 3√

r
+

2

r3/2
− 1

r5/2

)(√
sq7/2 + s7/2

√
q
)

+

(
r5/2 − 3r3/2 + 5

√
r − 5√

r
+

3

r3/2
− 1

r5/2

)(√
sq9/2 + s9/2

√
q
)
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+

(
2r5/2 − 5r3/2 + 5

√
r − 5√

r
+

5

r3/2
− 2

r5/2

)(√
sq11/2 + s11/2

√
q
)

+

(
−r7/2 + 3r5/2 − 5r3/2 + 9

√
r − 9√

r
+

5

r3/2
− 3

r5/2
+

1

r7/2

)(√
sq13/2 + s13/2

√
q
)

D.1 Analyzing the modular forms

We list some of the observations that can be made from the above expansions.

1. Using the expressions for the real simple roots, (δ1, δ2, δ3), and their inner product

with Z, one sees that

e−πi(δ1,Z) = qr , e−πi(δ2,Z) = r−1 and e−πi(δ3,Z) = sr .

(Recall that q = exp(2πiz1), r = exp(2πiz2) and s = exp(2πiz3).) Thus, one has

exp(−πi(ρ,Z)) = q1/2r1/2s1/2. Further, one has the identification relating the root

α[n, ℓ,m] to qnrℓsm through the relation:

qnrℓsm = e−πi(α[n,ℓ,m],Z) ,

where the root α[n, ℓ,m] = nδ1+(−l+m+n)δ2+mδ3 has norm (2ℓ2−8nm). The real

simple roots are (α[1, 1, 0], α[0,−1, 0], α[0, 1, 1]) and the Weyl vector is ρ = α[12 ,
1
2 ,

1
2 ]

in this notation.

2. In the expansion for ∆5(Z), all terms (in the expansion given above) that arise with

coefficient ±1 come from the sum side of the Lie algebra g(A1,II). In other words,

they arise by the action of all elements of the Weyl group generated by the three real

simple roots. For instance, the terms arising from Weyl reflections associated with

the simple real roots of G1 are

(q3/2r3/2s1/2, q1/2r−1/2s1/2, q1/2r3/2s3/2) = q1/2r1/2s1/2(qr, r−1, sr) .

Note that we need to pull out an overall factor of q1/2r1/2s1/2 in the sum side of the

denominator formula to extract the roots.

3. The terms that appear in ∆5(Z) with coefficient ±1 continue do so in the other

modular forms ∆k/2(Z). This is consistent with the observation that the real roots

are unaffected by the orbifolding. We have also verified that the terms involving

imaginary roots related by Weyl reflections appear with the same multiplicity.

4. All the GKM superalgebras have an outer S3 symmetry which permutes the three

real simple roots. It is easy to see only the δ1 ↔ δ3 (or equivalently the q ↔ s)

symmetry in the ∆k/2(Z). A formal proof can be given by following Gritsenko and

Nikulin’s argument for G1 [4, see Prop. 2.1]. Their proof makes use of the non-trivial

character vΓ appearing in the modular transform ∆5(Z). All the modular forms,

∆k/2(Z), share the same character suitably restricted to the relevant subgroup of

Sp(2,Z). Hence, the same proof goes through.
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5. A practical check for the outer S3 symmetry needs us to verify the δ1 ↔ δ2 invariance

of ∆k(Z). One can show that under this exchange

α[n, ℓ,m] ↔ α[−ℓ+m+ n,−ℓ+ 2m,m] .

For instance, the light-like root α[0, 0, 1] is mapped to another light-like root α[1, 2, 1].

This relates the term q1/2r1/2s3/2 to q3/2r5/2s3/2 — both have multiplicity −9 in

∆5(Z). These two terms appear with identical multiplicity −1 in ∆3(Z), 0 in ∆2(Z)

and 1 in ∆1(Z). A similar analysis has been carried out for other terms as well.

6. Another proof of the outer S3 symmetry can be obtained by considering the prod-

uct form of the modular form in eq. (4.7). The multiplicities of positive roots is

determined by two functions c1(nm, ℓ) and c2(nm, ℓ). These functions depend only

on the combination (4nm − ℓ2) as they arise from the Fourier expansions of weak

Jacobi forms. The action of the outer S3 maps a positive root α[n, ℓ,m], with norm

−2(4nm−ℓ2), to another root with the same norm. Thus both these roots necessarily

share the same multiplicity.
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