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Abstract. Work-ahead smoothing is a technique wherebya network. Consequently, techniques to minimize the rate
a server, transmitting stored compressed video to a clientvariability of transmitted video have been a hot topic of re-
utilizes client buffer space to reduce the rate variability of search in recent years. Workahead smoothing is one such
the transmitted stream. The technique requires the server tmethod, used in a setting in which a server transmits stored
compute a schedule of transfer under the constraints thatideo to a client with a given buffer size. Here, data may be
the client buffer neither overflows nor underflows. Recentprefetched into the client buffer before its playback time, in
work established an optimal off-line algorithm (which min- a manner that smooths the transmission bit rate. The tech-
imizes peak, variance and rate variability of the transmittednique requires that the server compute a schedule of video
stream) under the assumptions of fixed client buffer sizetransfer that ensures the client buffer neither overflows nor
known worst case network jitter, and strict playback of the underflows.
client video. In this paper, we examine the practical con-  Several algorithms have been suggested for computing
siderations of heterogeneous and dynamically variable clienthe schedule of transfer for a given video [3, 10, 13] (see
buffer sizes, variable worst case network jitter estimates, angb] for a survey). Briefly, these algorithms assume a pair
client interactivity. These conditions requioa-line compu-  of constraintsD(¢),B(t) which respectively denote the min-
tation of the optimal transfer schedule. We focus on techimum cumulative data which the server must transmit by
nigques for reducing on-line computation time. Specifically, time ¢ to prevent underflow and the maximum cumulative
(i) we present an algorithm for precomputing and storingdata which the server may transmit by tim&ithout over-
the optimal schedules for all possible client buffer sizes in aflow. Each algorithm constructs a piecewise-CBR schedule
compact manner; (ii) we show that it is theoretically possi-of transmissionA(¢) (the cumulative data that the server
ble to precompute and store compactly the optimal scheduleactually transmits by time) that satisfies the constraints
for all possible estimates of worst case network jitter; (iii) in D(t) < A(t) < B(t) V¢, and which is optimal according to
the context of playback resumption after client interactivity, some criteria. The algorithms differ from one another with
we show convergence of the recomputed schedule with theespect to the criterion they optimize. Feng and Sechrest [6]
original schedule, implying greatly reduced on-line compu-minimize the number of rate increases, Feng et al. [3] the
tation time; and (iv) we propose and empirically evaluate antotal number of rate changes and McManus and Ross [10]
“approximation scheme” that produces a schedule close toninimize client buffer requirements for a constraint on the
optimal but takes much less computation time. total number of CBR transmission segments. In this paper,
we base our work on the optimal smoothing algorithm pro-
Key words: Video-on-demand — Bandwidth smoothing — posed by Salehi et al. [13], which produces a schedule that
Video compression — Prefetching has minimum peak, variance and rate variability. Section
2 presents an overview of this algorithm. We will refer to
the algorithm in [13] as the optimal algorithm and to the
resulting schedule as the optimal schedule.
The model assumed by the above smoothing algorithms
1 Introduction is static in the sense that the constrairiis B are assumed
fixed throughout the presentation. The model therefore does
Constant-quality, variable-bit-rate (VBR) compressed videonet account for dynamic changes (such as changes in client
streams can have extremely bursty bit-rate characteristicyuffer size and worst case network jitter estimates) and client
This burstiness complicates the task of achieving high reinteractions (such as fast-forward and rewind), which al-
source utilization when such streams are transmitted acrosgr the work-ahead constraints and consequently the optimal
* Current addressSchool of Computer Science, Carnegie Mellon schedule 'tsel_f- In Sect. 3, We. Cons'qer a practical setting
University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA where dynamic changes and interactions may occur, show
Correspondence tdS.G. Rao
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Table 1. Notation used

N Length of video in frames

b Client buffer capacity for storing unplayed frames

d(t) size of framet

D(t) Minimum cumulative data that must be transmitted by the server by titoeavoid underflow
D(0) = 0.D(t) = D(0) +>'_, d(3)

a(t) Amount of data sent by the server at timealong the optimal schedule

A(t) Cumulative data sent by the server along the optimal schedule byttime
A(0) = D(0). A(N) = D(N). A(t) = A(0) + 22:1 a(z)

B(t) Maximum cumulative data that can be transmitted by the server byttiwiehout buffer overflow

how the work-ahead constraints are affected and discuss why BE

on-line computation of the optimal schedule becomes essen- Al(t)
tial. /-[(c) D(t

Two fundamental questions that arise in the context of aryata @ @~1© PO
on-line computation are (i) how to minimize on-line compu- ’
tation time ?, and (ii) what impact does the altered schedule
have on the network resources required by the video stream?
In this paper, we focus on addressing the first question. Our (b)
approach consists of (i) establishing fundamental relation- t=0
ships that exist between the optimal schedules arising out
of different constraints (Sect. 4), and (ii) using these results
to reduce on-line computation time in the presence of het-
erogeneous client buffer sizes, variable worst case network _ ,
jitter estimates and client interactions. (Sect. 5). Fig. 1. Optimal schedule construction

In Sect. 4, we assume that two physically different sit-
uations may be modeled by the constrainisl(B1) and ) ) ) )
(D2, B2) with optimal schedulesil and A2. Given par- 2 The optimal smoothing algorithm: overview
ticular relationships betwee1 and D2, B1 and B2,
we establish relationships betweetl and A2. Our re-
sults include, (i) theDomination Theoremwhich asserts
that, if D2(t) > D1(t) vt and B2(t) > B1(t) Vt, then
A2(t) > A1(t) Vt, (ii) the Refinement Theorewhich asserts
that, if D2(t) = D1(t) V¢t and Bl is displaced downwards or
right from B2, then the critical pointsof A1 are a superset
of those of A2, and (iii) the Convergence Theoremvhich
asserts that it > ¢, D1(t) = D2(t) and B1(t) = B2(t),
then A1 and A2 convergeat a point beyond,.

Applying these results, in Sect.5, (i) we propose an al-
gorithm that can precompute and store the optimal schedul
for all possible client buffer sizeis a compact way, (ii) we
show that it is theoretically possible to precompute and stor
the optimal schedule fall possible worst case network jitter
estimatesn a compact fashion, (iii) in the context of client

time ——=

(b) - Concave - Rate-decrease.
(d) - Convex - Rate-increase

Consider a discrete-time model at the frame level. That is,
t € {1,2,...N}, where N is the length of the video in
frames. The notation is summarized in Table 1. It is assumed
that the server transmits data periodically at the video frame
rate, and what varies is the amount of data sent each time.
S =[a(l),a(2),...,a(N)] represents a feasible schedule iff
A(0) = D(0), A(N) = D(N) and D(t) < A(t) < B(t) Vt.
Note that the last condition ensures that there is no buffer
underflow @A(t) < D(t)) or overflow (A(t) > B(t)). In the

articular case where there is no network delay or jitter, and
the client has a buffer sizé, B(0) = D(0), and B(t) =
énin{D(t —1)+b, D(N)}

The algorithm constructs a feasible piecewise-CBR trans-
mission schedule in the following manner. The idea is to
(J:jteratively identify the longest possible CBR transmission
schedule of transfeconvergeswith the original schedule, segment (since CBR transmission is optimally smooth), and
and recomputation involves examination of only the frameswh?.n the transmission rate must be change_d to ensure fea-

sibility, to make the change amarly as possible, thereby

up to the point of convergence. We empirically evaluate theensuring that the change is amall as possible. The con-
impact of this theoretical result.

Firaly, i Sect 6 we propose and empricall evaateZy (o1 & ISIeed 1 P L To prevent e overion,
an approximation schemehat involves altering the work- ! b

ahead constraints and performing optimal smoothing With(b)' (Decreasing the rate earlier than (b) would result in a

the altered constraints. The resulting schedule is feasible an c)ﬁ?r:eu?eiini(lso}ﬁgrsgggrg{ tthoepergxggt blﬁgifgf;fﬁg%ﬁ,ﬁf d)
close to being optimally smooth with respect to the original ;! P '

constraints, yet it takes much less time to compute. (Incrﬁasmg Lhe ratg ee_lrllerfthand(d) wou][d rehsult n albLljffer
Section 7 discusses related work and Sect. 8 makes corfr.. ow). The reader is re ezfre to [13] for the actual algo-
cluding remarks. rithm. _The complex_|ty iIO(N7), _but anO(N) algorithm is
also discussed. Points of rate increase or rate decrease are
1 Critical points of a schedule are those points where the client buffer isca"ed Change points, the former bem_g referre_d to as convex
empty or full. (See Sect.4). It is easy to reconstruct the optimal scheduleand the latter as concave. Thus, in Fig. 1, (b) is concave and
given its critical points. (d) is convex. It is to be noted that ifis a concave (con-
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B(t)

] /)
O Network may
have variabl /
jitter /
Multimedia i
Server é Client Buffers
D may vary widely WA$ A/ aal
Network
—
@ C] Client roou
Client Fig. 3. Playback restart after a client interaction may require schedule re-
Buffer i
Client may be allowed VCR computation (see text)
Functionality such as ff/rewind
Fig. 2. A typical complex setting its estimate using some on-line algorithm and consequently

derive an updated transmission schedule.

_ Finally, the client may be enabled to perform interactive
vex) change point, thea(t + 1) < a(t) (a(t +1) > a(t)) and  fynctions, such as fast-forward, rewind, pause/resume and
A(t) = D(t) (A(t) = B(1)). indexing (temporal jumps forward/backward) during stream

playback. While playback restart after an interaction does

not alter the work-ahead constraints, a recomputation of the
3 Need for on-line computation optimal schedule may still be required. To see this, consider

Fig. 3, which illustrates a client which while viewing frame
Consider Fig. 2 which illustrates a multimedia server, con-r of a video makes a temporal jump forward to frameThe
currently transmitting distinct VBR streams to clients acrossclient buffer is flushed out and normal playback now resumes
a high-speed network. Each client is a set-top box or a netfrom framewu + 1 onwards. Note that had the interaction not
work PC with a certain limited buffer capacity, and the servertaken place, an amount of work-ahead defal = A(u) —
transmits data to the client according to an optimal scheduld’(v) would have already been available in the client buffer
of transfer, computed as described in the previous sectior@t time u. Consequently, the original schedule cannot be
We now describe several situations where the server need¢sed directly and a new optimal schedulé needs to be
to compute the schedule of transfer on-line. computed.

In heterogeneous environments, where users purchase The optimal off-line algorithm proposed in [13] takes
set-top boxes corresponding to their budget and requiretroughly 6-8s to smooth a 174,000-frame trace on an SGI
ments, the client buffer sizes can vary from a few hun-workstation with a 150-MHz R4400 processor. However,
dred kilobytes to over a gigabyte [10]. The work-aheadit is conceivable that this overhead may be unacceptably
constraint B(t) varies with client buffer size aB(t) = high in an on-line situation. Large-scale servers handle hun-
min{D(t — 1) + b, D(N)}, resulting in a variation of the dreds of clients, and may have to deal with several on-line
optimal schedule with client buffer size. Consequently, theCcomputations concurrently. In addition, while it is expected
server must either explicitly store the optimal schedule forthat servers would be optimized for I/O-intensive operations,
every possible client buffer size, or it must determine themodern web servers may have to perform compute-intensive
client buffer size at the start of each presentation and comactivities and computation overheads cannot be ignored.
pute a schedule of transfer on-line. Further, the client may be
running other processes simultaneously, which share buffer o ) )
space. This could potentially result in dynamic variation of 4 Results establishing the relationship
the buffer available for smoothing during the presentation,P€tween optimal schedules
and necessitate on-line schedule recomputation. e

The client may be connected to the server via a networlig\/e assume that any real-world “situation” may be modeled
with highly variable and potentially unbounded jitter, such asPY @ Pair of constraintsl, B). Given two physically differ-
Ethernet or the Internet. In [13], it is assumed that the servefNt Situations D1, 51) and (02, B2) with optimal curves
estimates apriori the worst case end-to-end jitter over thel andA2, we present results, which, given particular re-
entire length of video playback. A worst case jitterjdfame atlons:hlps betweetﬁ?l and D2, and betweer31 and 52,
units, wherej = [ WorstCaseNetworkJitter(s)| g handled by establish relationships betweefl and A2. In Sect.5, we

’ 1/ framerate ' apply these results to relate schedules arising from differ-

delaying client playback by and ensuring that the server ot qjient puffer sizes and different worst case network jitter
staysj ahead of the client, i.e., by shifting the curyt) estimates.

to _the right byj units.a'nd performing smoothing with the We begin by presenting a fundamental result, Ereeni-
§h|ﬂedB(t) and the orlglnaID(t): (Formally, B1(t) = B(t—  nation theoremwhich we find useful in subsequent results.
)t>4i+1, B1({t)=b,1<t < j, B1(0) =0. Smoothing is
done withD(t), B1(t).) However, such an estimate of worst Definition 1 (Domination). A function f(t) is said to dom-
case jitterj is difficult to make in the real environments inate a functiong(t) over an intervallp, q] iff f(t) > g(t),
we consider. Instead, the server could periodically revisevt, p <t < gq.
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Theorem 1 (Domination theorem). Let B2 dominate B1 Finally, we present th€onvergence theorenwvhich we
over an intervalp, q], D2 dominateD1 over|[p, q], A2(p) > find useful in reducing on-line schedule recomputation time
Al(p) and A2(q) > Al(g). Then A2 dominatesAl over in the context of playback restart after an interaction.

[P, al. Definition 3 (Convergence).ScheduleAl is said to con-

See Appendix A for proof. Briefly, the proof is by Vverge with schedulei2 at a timep, if V¢,¢ > p, A1(t) =
contradiction. We assume a maximal segment] such  A2().

that A1 dominatesA2 over [s,u), p < s < u < 4,  Theorem 3 (Convergence theorem)Let Jq such that
that A1 has no points of rate -decrease (concave) oxer)[ A2(q) > Al(g). Then, A1 and A2 converge at the first con-

and A2 has no points of rate increase overd). From this,  caye critical point of A2(> ¢) or the first convex critical
we showAl(u) > A2(u) and arrive at a contradiction. point of A1(> g), whichever is earlier.

We now introduce the notion ofritical points of an

optimal schedule. Refer to Appendix A for proof. It is based on the obser-
vation thatA2 dominatesAl over g, N], and if 3p,p > ¢
Definition 2 (critical points). tis a critical pointofanopti-  such thatA2(p) = A1(p), then A2 and A1 dominate each
mal schedule if the client buffer is either empty({) = D(t)) other (and are hence identical) over N].
or full (A(¢t) = B(t)) at timet. In the former case, the criti-
cal point is referred to as concave and in the latter case as
convex. 5 Handling heterogeneous client buffer sizes,
variable network jitter and client interaction

All change points of an optimal schedule are also critical
points for that schedule, but the converse need not b&trueWe apply the results presented in the previous section to
Given the critical points of an optimal schedule, and storedthe contexts of heterogeneous client buffer, variable worst
D(t) values, it is easy to reconstruct the schedule itself.  case network jitter and playback resumption after an interac-

In Sect. 3, we have seen that a change of client buffer siz&on. In each case, we devise methods to reduce the on-line
displaces the work-ahead constraifitupwards or down- computation time.
wards, while a change of worst case network jitter estimate
displaces the constraifit to the left or right. We now present ) .
the Refinement theoremihat relates the critical points of 9-1 Heterogeneous client buffer sizes
schedulesAl and A2, optimal respectively for constraints
(D1, B1) and (02, B2), where D1 and D2 are identical,
B2 dominatesB1, andB1 is obtained either by displacing
B2 downwards or to the right. We will use thRefinement
theoremin Sect.5 to relate optimal schedules arising from
different client buffer sizes and different worst case network
jitter estimates.

In this section, we apply th&efinement theorero show
that the critical points of the optimal schedule for any client
buffer sizebl are a superset of the critical points of the opti-
mal schedule for any client buffer siz@, b2 > b1. We then
present an algorithm, by which the server can precompute
the optimal schedules for all possible client buffer sizes in
an efficient manner. Further, the server need not maintain a

Theorem 2 (Refinement theorem).Let D1(t) = D2(t) and  COPY of the optimal schedule for each possible client buffer

B1(t) < B2(), ¥t,0<t < N. Then, size, rather, by storing the schedule for minimum possible
(a) The concave critical ‘points ol1 are a superset of the client buffer size alone, the server can easily retrieve the
concave critical points ofi2. optimal schedule for any particular buffer size.

(b) () If B2(t) < B1() +k V1,0 <t < N, then,A2(f) < Corollary 1. LetA1andA2 represent the optimal schedules
AL(t) + k Vt,0 < t < N. (i) Further, if over an interval  for  given video and client buffefsl and b2, respectively

[p,ql, B2(t) = B1(t) + k ¥i,p < ¢ < g, then, the convex (52 > p1). Then, the critical points ofi1 are a superset of
critical points of A1 in [p, q] are a superset of the convex the critical points ofA2.

critical points of A2 in [p, ¢].
(c) (i) If B2(t) < B1(t+5) Vt,0 <t < N —j, then,A2(t) <
Al(t +4) Vt,0 <t < N — j. (ii) Further, if over an interval
[p,ql, B2(t) = B1(t + j) ¥t,p < t < ¢, then, for any convex Proof. Let D1, B1 represent the constraints for a client
critical pointw of A2, p < w < ¢, w+j is a convex critical  puffer sizebl. Let D2, B2 represent the constraints for a
point of AL. client buffer sizeb2. Now, B1(t) = min{D1(t — 1) + b1}
and B2(t) = min{D2(t — 1) +b2, D(N)}. D1(t) = D2(t) Vt.
Refer to Appendix A for proof.d) is proved observing | o TH( )be suc{h th(atBZ()t) — ’D2((t)—} 1) +(b)2 ¢ <()TVH
that A2 dominatesA1 over [Q N]. To prove ¢), we displace ;4 B2(t) = D2(N), t > TH. It is easily \’/erified that
the curvesD1, B1 upwards byk tg get/the curveDl’, B B2(t)— B1(t) < b2—%71 Vt_andBZ(t)—Bl(t) = h2—b1,0 <
and then apply Theorem 1 foD(l', B1) and 02, B2). () 7. Applying Theorem 2(a), the concave critical points
is proved in a similar fashion ta), except that D1', BL) ot 41 are a superset of the concave critical pointsAgt
is obtained by displacing the curvésl, B1 to the left byj. Applying Theorem 2(b), the convex critical points 4t in
2 For example, consider the case whereNalframes have the same size. [0, TH) are a superset of the convex critical points A2

The optimal schedule is a single CBR segment with no change-points, yet [0, TH)_- _Furthe!', it may be easily verified thaf2 has no
vt,t € {1,2,..., N}, t is a concave critical point. convex critical points inTH, N].
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Find_Optimal _ScheduleAny _buffer(d(t))
1. Call FindOptimalLSchedulef(t), o). Denote this byA% . (Salehi-96 algorithm on infinite client buffer)

2. Initialize list @ by inserting for each critical point of A% the entry< ¢, co, CONCAVE >
3. Findbmin, Apmin, 1. (see text for definition)
4. SetFirst, Secondo point respectively to first and second entries of (st
5. while (Second != NULL)
6. Let < by1,al, fo1 > and < b2, a2, fq2 > be the entries pointed to Hyirst and Secondrespectively.
7.1f (3t,al < t < a2 andt is a critical point of Ay,,47)
8. < b, L >= Refine(< al, fo1 >, < a2, fa2 >, d(t)). (see text for explanation of Refine)
9. Insert each itemx a3, f,3 > of list L into list Q as< b, a3, fu3 >
10. ResetSecondo point to the entry immediately to the right Bfrst.
else/* Interval requires no further refinement.*/
11. Advance First and Second by one step each.

Fig. 4. Algorithm 3. The algorithm precomputes and stores the optimal schedule for all possible client bufferi@igespresents the frame size trace of
the given video

Table 2. ProcedureRe fine(< al, fo1 >, < a2, fa2 >, d(t)). A list < b,3, L > is returned, wheré,3 is obtained as the maximum of an appropriate
expression and. is the list of all< a3, f;3 >, such that the maximum is attainedtat a3. See text for details

fa1 fa2 ba3 (fa3)
concave concave MaXci<a2:ier D(al) — D(t — 1) + W (convex)
convex  convex  MaX<i<a2,teT D(t) — D(al—1)— [D(“Z’l)’(ﬁ(fiz)l)]*(t’al) (concave)

D(al) — D(a2 — 1) + W(concave)
concave  convex MX<t<a2,teT [D(al)—D(tz—l)]*(aZ—al) 4+ [D(@2-1)— D(ad)]*(t—al) (convez)

a2—t a2—t
[D(a2) — D(al —1)] — (azfal)*[thlll)fD(al*l)] (convez)

convex  concave ’

MA<t<a2,teT {

a2—t

D)x(a2—al) _ D(ai);ft_al) — D(al — 1)(concave)

Let bmin be the minimum possible client buffanin =
size of largest frame of presentation). L&},,;,, denote the
optimal schedule of transmission for a client buftenin
andT denote the set of all critical points ofy,,,;,. We find
the notion oftransition buffer of a critical poinuseful.

Definition 4 (Transition buffer). Lett € T. Then, the tran-
sition bufferd, of critical pointt¢ is that buffer such that is

a critical point of the optimal schedule of transmission for a

client bufferb < b, and not for any higher client buffer.

We now present an algorithng (formally in Fig. 4)

may be identified giveml1 anda2, f,1 and fu2. (fu1,fq2 are
flags that indicate whether the respective critical points are
convex or concave.) A derivation of the results presented in
Table 2 can be seen in Appendix B.

Algorithm £ builds list @ as it progresses and operates
as follows. The critical points of the optimal schedule for
infinite client buffef are computed directly using the op-
timal algorithm in [13](Step 1), and for each point, a cor-
responding entry is inserted i@ (Step 2). At any time,
in Step 6, the following invariant holds: the pointdfgst
and Secondpoint to adjacententries< b,1,al, f,1 > and

to precompute the optimal schedules for all possible client< ba2,a2, faz > of list @, and an entry already exists in

buffer sizes. The algorithm constructs a lig{(which can be

Vt, t < al, t € T. Step 7 verifies ifdt € T in the

stored in a file and retrieved whenever needed). Each entripterval @1, a2). If this is the case, proceduRefineis ap-

of list @ is a triplet of the form< ¢, b,, f; >, which indicates
thatt € T, b, is a transition buffer of and f; is a flag that
indicates ift is concave or convex. The entries in l@tare
stored in increasing order of

The basis of the algorithn® is the procedureRefine
Given thatal, a2 € T and have transition buffers,1, b2,
respectively, and given there exists hoc T in (al,a2)
with a transition bufferb; > min{b,1,b.2}, Refine finds
< a3, by, faz > such thatb,z = max{b:jal < t < a2,t €
T, b, is transition buffer of } anda3 is the critical point for
which the maximum is attained,3 indicating if a3 is con-
vex or concave. In case of a tie, Refine returns allistf
all such< a3, f,3 >. Table 2 summarizes howand list L

plied on< al, f;1 > and < a2, f,2 > in Step 8, and the
critical points returned byrefineare inserted irQ) (Step 9).
The process continues until there is an entryiror each
critical point of Ay,in-

Note that once) is computed and stored by the server,
the critical points of the optimal schedule for a particular
client buffer b may be obtained by inspecting each entry
< t, b, fy > of @ and choosing those entries ¢, f; >
such thath, > b. With the list of critical points, the optimal

3 Interestingly, the optimal schedule for infinite client buffer as computed
according to the algorithm in [13] is identical to the schedule produced using
another smoothing algorithm — the critical bandwidth algorithm [6]
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Consider the following artificially constructed example to illustrate the working of algorithamd procedure Refine.
Assume for a videoN = 6 andd(t) is given by< 100Q 500, 375, 100Q 1125 1250 >.
Then, D(t) is given by< 100Q 150Q 1875 2875 400Q 5250>.
Also, bmin = 1250 (minimum client buffer size = size of largest frame).
Further,T" = Set of critical points of optimal schedule for client buffer sizain
={1,4,5,6} (Obtained by running the Salehi-96 Algorithm).
The optimal schedule for infinite client buffer has two concave critical poifits}.
We now trace the execution of the algorithm and show kgus constructed.

At start of while loop in algorithms, Q =< 1, co, concave >, < 6, 0o, concave >.

1. Refine is called with< 1, concave > and < 6, concave >. Refine now computes withl =1, a2 = 6,
MaX,1<<an et Dal) — D(t — 1) + [Pa2 Dledl(t=al)
The maximum occurs at=4 and is 1675. Thus now:
Q =< 1, 00, concave >, < 4,1675 convexr >, < 6, 00, concave >.
2. Refine is called with< 1, concave > and < 4, convexr >. But as At,t € T,1 < t < 4,
Q is unchanged and the interval 1,4 > needs no further refinement.
3. Refine is called with< 4, convex > and < 6, concave >. Refine now computes withl = 4 anda2 = 6,
[D(a2) — D(al — 1)] — @2=aHDE—1=D(@l-1)] (. ,nper)

t—al
maXs1<t<a2,teT
<t<lazte { D(t)*(a2—al) D(ai);(t;al) — D(al — 1)(concave)

a2—t —
The maximum occurs at= 5, for the first(convex) subexpression, and is 1375. Thus now,
Q =< 1, 00, concave >, < 4,1675 convexr >, < 5,1375 convexr >, < 6, 0o, concave >
4. The intervals< 4,5 > and < 5,6 > cannot be refined further; The algorithm terminates with
Q =< 1, 00, concave >, < 4,1675 convexr >, < 5,1375 convexr >, < 6, 0o, concave >

Determination of Optimal Schedule for a given client bufferb using Q:
Each triplet< ¢, b¢, fr > of Q is examined and those ¢, f; > are chosen for which; > b. For example, fob = 1400, the critical points
are: < 1, concave >, < 4, convex >, < 6, concave >. With the list of critical points and with storeB)(t), the optimal schedule may be
reconstructed.

Fig. 5. Example to illustrate the working of algorith and procedure Refine.

Table 3. K is much less thamV (see text)bmin is fixed to be the size of

optimal schedules for two different worst case network jitter
the largest frame for each trace

estimates. We then show that it is possible for the server

Trace bmin(KB) N K to store the optimal schedule for maximum possible worst
Advertisements 10320 16316 970 case network jitter alone,_ and yet easily retrieve th.e opti-
Jurassic Park 14.954 40000 1180 mal schedu_le for _any_part!cular worst case networl_< jitter. A
MTV 31.426 40000 1114 lot of the discussion in this section parallels the discussion
Star Wars 23.158 174054 3832 concerning heterogeneous client buffer sizes in Sect.5.1.
Wizard of Oz 42.891 41760 1139

Corollary 2. Let A1,A2 represent the optimal schedule for

worst case network jittey1 and J2 respectively,J1 < J2.

schedule for a client buffeb may be easily reconstructed. Then, (a) the concave critical points ¢f2 are a superset

Figure 5 gives a complete example that illustrates the work-of the concave critical points od1. (b) if A1 has a convex

ing of algorithm3 and procedure Refine. critical point at¢, A2 has a convex critical point at+ J2 —

Let K be the number of critical points in the optimal J1.

schedule for minimum possible client buffeK (= |T).

Theoretically, K maybe N, (the number of frames in the The proof is similar to Corollary 1 and is omitted.

video). However, we find on experimentation with several ~ Assume that, during the presentation, the worst case net-

VBR-compressed MPEG-1 video frame-size trddbst K work jitter estimate is bounded bj,, ..., and that the optimal

is in practice much smaller thav. This fact is illus-  schedule for the estimaté,,,, hasm critical points. Then,

trated in Table 3. It is easily verified that Algoriththhas it is possible to precompute and store the optimal sched-

a ma{O(K?),O(N)} complexity. Storage requirement is ules for all possible estimates of worst case network jitter

O(K) and the time of retrieval of the optimal schedule for j,j < Jmaez UsingO(m) space. This can be done by stor-

a given client buffer take®(K) time. ing triplets of the form< ¢, Jy, fi >, where, f; is a flag that
indicates concave or convex. [ is concave, thert is a
concave critical point in the optimal schedule for worst case

5.2 Variable worst case network jitter network jitterj, j > J;, and if f; is convex, thert+5 — J; is

) ) ] a convex critical point in the optimal schedule for any worst
In this section, we apply th&efinement theoreto show  case network jitterj, j > J;.

an important relationship between the critical points of the Finally, we believe that it is possible to develop an effi-
4 All traces were VBR-encoded using an MPEG-1 software encoder. TheSient algorithm to actually compute and store triplets in the

videos had length as follows (in minutesddvertisement§g] 9, Jurassic ~ above fashion. We defer development of such an algorithm
[12] 28,MTV [12] 28, andWizard[9] 23. Star Wars[7] was about 2h long.  to future work.
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5.3 Playback restart after an interaction

In this section, we apply the Convergence theorem to the 08 r
context of client playback after an interaction, and evaluate
its impact on reduction in schedule recomputation time. 06 |
For a given video ofV frames and a given client buffer % '
size b, let D,B represent the work-ahead constraints, andc,
A the optimal schedule for the entire video. Let a client 2 04 |
index randomly to a framé, flushing out its buffer. Led1
represent the new optimal schedule of transfer for frames
f+1toN. Then, by a direct application of the Convergence 02}
theorem, it follows thatA and A1 converge by the first
convex change point odl1 or the first concave change point
of A (> f), whichever is earlier. While convergence occurs 0 0 02 04 06 08 1 12 14 16 18 2
actually at the first convex critical point o1 or the first " ClientBuffer(MB)
concave critical point ofd, we find dealing with change -
points more convenient algorithmically, and hence we use a

Fig. 6. wavg VS client buffer size

slightly weaker version of the Convergence theorem. 25000 : : :

The on-line recomputation ofi1 proceeds in identical Jurassic ——
fashion to the optimal algorithm, except that, whenever a MTV -+
change point, say is identified, it is verified ifc is a change 20000 | Starwars e |

point of A as well, in which case further computation 4 Wizard E

is stopped. Beyond, A1 and A are identical.
We now empirically evaluate the impact of the Conver- S 15000 ¢
gence lemma in reducing on-line schedule recomputatiorf?
time, by experimentation with several MPEG frame-size $ |
. . < 10000
traces. We assume that the client may randomly index to
any framei (0 < i < N) with equal probability. Let”' L(3),
BR(i) denote respectively the number of frames to be in- 5000 -
spected in an on-line recomputation of the optimal schedule
for framesi + 1 to N, if the Convergence theorem were

used, and if a blind recomputation were done. (Note that 0
BR(i) = N — z) Let w(i) = GRD. Let wayy = X w@, " Client Buffer(MB)
CL(z) Fig. 7. CLavg Vs client buffer size

CLgyg = Z . Wi, Waug are measures of the impact
of the Convergence theorem in reducing on-line computation
overhead, while”'L(i), C'Lq., are measures of the absolute in case of an on-line recomputation as there is no “penalty”
computation overheads involved when the Convergence thénvolved.
orem is used.

Figure 6 shows the variation af,,, with client buffer
size for several MPEG-1 traces. For each trace, note thas Approximation scheme
Wqng iNCreases with client buffer size. This is due to the fact
that, when the segment lengths of the original schedule arén this section, we propose an approximation scheme that
relatively small, the change point of convergence is likely toworks by altering the work-ahead constraints and performing
occur faster. (Also, the Convergence theorem becomes momptimal smoothing on the altered constraints. The resulting
significant as the length of the trace increases; note that thechedule is feasible and close to being optimally smooth with
Star Warstrace is four times as long as other traces.) Fromrespect to the original constraints, yet it takes significantly
the figure, we see that for most traces and client buffer sizefess time to compute.
< 512K B, there is an average reduction of more than five = The optimal algorithm proceeds by inspecting every
times (wq,¢ < 0.2) in the number of frames to be inspected frame as a possible candidate for being a change point. Yet
when theConvergence theoreis used. it may be verified that a frame with size 0 cannot be a

Figure 7 shows the variation af'L,,, with the client  change point and the optimal algorithm can skip inspect-
buffer size for several traces. On average, an on-line recoming such a frame. The approximation scheme readjusts the
putation inspects less than 5000 frames across all traces férame size sequence in such a manner that many frames have
buffer sizes< 512K B when the Convergence theorem is a size 0. The video is assumed to consisf\ofy blocks of
used. g consecutive frames each (assume for simplicity tNaits

In conclusion, the Convergence theorem can have apa multiple of g). The sequence is now readjusted so that,
preciable impact in reducing recomputation time of a newin each block, the entire data of all the frames of the block
schedule. Even in cases where the Convergence theorem may attributed to its first frame, all other frames having size
not have a significant influence, we still recommend its used. Formally, if f;f and F; respectively denote the size of
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B(t) B() 14 | Advertisments —— 1
’ Jurassic -+
12 | MTV e
Starwars -
Infeasibl L Wizard -+ |
Regions. g 10
x
e 8 ~
. = buff =
D(t) b pﬂshetgown 8 6 ]
<
[an
2 & :
0 | S e

! ! ! ! ! !

0 10 20 30 40 50 60
Client Buffer(MB)

Fig. 9. The % increase in peak using the approximation scheme

Fig. 8. lllustration of the approximation scheme

8 T T T T T T

, Advertisments ——
frame j of block i in the original and new sequences, then, JUESTS\? E
Fj =>9,f and F} = 0,j # 1. Figure 8 shows how 6 Starwars x|
the original constraintd(t),B(t) may be modified to give & Wizard -«
the new constraint®1(t) and B2(t) after readjustment of 5T )
the sequence. Note, however, that the schedule arising frorﬁ 4l |
smoothing with constraint®1(¢), B2(t) may be infeasible. §
We tackle this by adjusting the cun/2(t) downwards (thus 3; 3 H A
we do not make fullest possible use of the client buffer).= :
Let PD; = 329, fi,1 < i < N/g. Then, the altered con- 2 ¢ ‘x 1
straint B1(t) is obtained asB1(t) = B2(t) — PDrioyy,t > N “,x‘;\‘ ]
1, B1(1) = B2(1). Smoothing is now performed with the i i
work-ahead constraint®1(t), B1(t) and we refer to the re- 0 PR 20 """""" 30‘3 """" 4050 """""" 6 '('J """ - .
sulting schedule as the approximate schedule. Q¥ily Client Buffer(MB)

frames have to be examined as all other frames have a size
0; however, the schedule is not optimaL as we start off withFig. 10. The % increase in standard deviation using the approximation
a burstier sequence and do not make fullest possible use Gf"€me

the client buffer.

We now investigate the performance of the approxima-pg instead we retain the original frame size sequence for

tion scheme by experimentation with several MPEG framey,oqq piocks, In the experiments described below, we fix
size traces. We demonstrate that the smoothness of the opli-— 15 ;1 = 15 and2 = 15. For each video we fixed

mal and approximate schedules are comparable. Further, Wge ook _sizey to be equal to th&ZOP of that video. The
expect that the approximation scheme achieves a reductlog"OP of a video is the number of frames between consec-

in computation time close to the block siz€as it examines utive I-pictures in its compression pattern [1]. The GOP of

only about ¥g of the frames that the optimal scheme does) gy, \arsis 12, ofAdvertisements, of Jurassicl2, of MTV
and we show that this is indeed the case. 12. and ofWizard 15.

We fir§t present some of the parameters that we use in Let PA,SA andCA (PO,SO,CO) denote respectively
our experiments. Typically, the very first frame of the video y,e neak  standard deviation and computation time of the
is much larger than its |r_nmed|ately _subsequent frames an41pproximate (optimal) schedule. Figures 9 and 10 plot the
a start-up latency of units may be introduced to smooth o rease (as compared to optimal) in peak and standard

its transmission [13]. However, the approximation schémeye,iation when the approximation scheme is used against
results in an increase in the size of the first frame due 10 aGzjient pyffer size for several traces. Across all traces, for

gregation, which offsets the benefits of the start-up atencyyjient pyffers greater than A1 B, the increase of peak is less
Further, with the approximation scheme, no data is transmity, oy 295 For most traces, and client buffer sizes greater than
ted 'g' tt:'e lastg Bll (g is thz block S'ZT) fLame times. T‘? 4 M B, the increase in peak is less tha®%. The increase
avoid these problems, we do not apply the approximation, gianqard deviation is less than 2% for buffer sizes greater
scheme to the firsL.1 and the last.2 blocks of the video, than 1M B for most traces. For small buffer sizes (M B)

5 The smoothing algorithm runs B(V) time, whereN is the number of ggv;la(.arveerggeegoe/oal?]ithtgretﬁggrgXItrinrr?;? (Sncctlteg#é?/vrr??g g:gwht)o
frames examined. In our experiments, we actually usedX§2) version . _g g p .g pn).
of the smoothing algorithm; however, this version too runs in close to linear 1 Nis is understandable, because for small buffer sizes, the
time in practice. cost of under-utilizing client buffer becomes significant.
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20 : : : : : , . . ,

18| Advertisments (GOP=6) —— | abrlecomputatlon of the optimal schedule becomes unavoid
Jurassic (GOP=12) -+ able. _

6 N MTV (GOP=12) -&-- | Dey et al. [2] have considered the problem of playback
| Starwars (GOP=12) - restart after an interaction. They propose an algorithm by

... Wizard (GOP=15) = 1 whjch the restart latency can be minimized, assuming trans-
; , S——— fer bounded by a particular peak rate determined by the
10 i | original schedule of transfer. They do not recompute a new
B e schedule of transfer on-line, rather they transmit at the peak
g rate until convergence with the old schedule of transfer oc-
Ro, A curs. While this approach has advantages in that the exist-
ing network resources are sufficient and no fresh reservation
needs to be made, the disadvantage is that there is no direct
1 control over the resulting start-up latency. Again, their tech-
‘ ‘ ‘ ‘ ‘ ‘ nique is not applicable when there is a change of smoothing
0 10 20 30 40 50 60 70  constraints during the presentation.
Client Buffer(MB) Rexford et al. [11] have considered work-ahead smooth-
Fig. 11. Reduction in computation time (CO/CA) using the approximation INg of live video, where there is only a limited knowledge
scheme. The block size used for each trace was fixed at the GOP of thef frame sizes in the future (made possible by the introduc-
trace. The GOP of the traces are as follows: Wizard 15, Advertisements 6ion of delay at the source). The authors examine schemes in
Star Wars 12, J'urassic Parl'< 12 and MTV 12.. For each vjdeo, a speed-Ugyhich the optimal smoothing algorithm is periodically exe-
close to block size was achieved across all client buffer sizes cuted on-line to compute a transmission schedule over the
next window of frames. The performance of these schemes is

Figure 11 shows the speed-up obtained on using the al5;or'.npared to that of optimal off-line transmission. An inter.—
proximate algorithm as compared to the optimal one, as £sting question tha’g has not been e>_(plored is the_ cumulative
function of client buffer. The speed-up is measured on a PencOSts associated with repeated on-line computation.
tium 266-MHz processdtr.Only schedule computation time
is considered, and time for input, preprocessing and output
is not. As expected, the speedup is close to the block sizg summary and conclusions
used for each trace and is not significantly affected by the
client buffer size. For exampl#yizard(block size 15) shows S .

a 13-17-fold speed-up, and Jurassic (block size 12) show¥/ork-ahead smoothing is a technique whereby a server
around a 12-fold speed-up across all client buffer sizes. ~ transmits stored video to a client in accordance with a com-
block size on the performance of the approximation scheme@lgorithm that computes a schedule, which optimally mini-
Our findings indicate that (i) the speed-up achieved is pronizes peak, variance and rate vanal_)lhty of_ the transm|t_ted
portional to the block size, and (ii) in general, larger block- Stream, under the assumptions of fixed client buffer size,
sizes result in poorer approximations; however, exception&Nown worst case network jitter and strict playback of the

do occur for MPEG video because of the encoding patterncliént video. In this paper, we have considered practical sit-
See [14] for details. uations characterized by heterogeneous client buffer sizes,

dynamically changing worst case network jitter estimates,
and client interactions such as fast-forward and rewind. Such
a setting requires an on-line computation of the schedule of
transfer. We have presented themination theorenRefine-
ment theorenand theConvergence theoremhich establish

itv in the context of work-ahead smoothing. The introduceimportant relationships between optimal schedules obtained
trzle notion of “VCR window” and demonstrg.te theﬁ for large under different sets of constraints. We then use these results
' 9€ 10 devise methods for reducing on-line computation time in

buffers above 25 MB, most requests for rewind could be han-_ - : L ; i
dled within the window itself, from the data residing within i/arlous practical situations. We summarize our results be

e Smooting bler I Such orcase, 1 fecomputalon 97 gased on th Refinement theorem e have proposed
sion by the computed schedu(?e of t.ransfer is sto ’ ed and ia/ O(K®) algorithm that can precompute the optimal sched-
y P PP les for all possible client buffer sizes and store them in

resumed when normal playback reaches the original poin (K) space, such that retrieval of the schedule for a partic-

of play. However, it is not clear that this approach woul_d ular buffer size can be done A(K) time. Here, K is the

work we_II in the case of smaller Cl'ent buffers. FWthe“ the_lr number of critical points in the optimal schedule for smallest
method is not applicable when there is a change in smoothmiq

: . X . ossible client buffer size, and experiments reveal fias
constraints during the presentation (such as dynamic chan

of client buffer or worst case network jitter estimates) WhenViggglcantly smaller thanV, the number of frames in the

6 The speedup is measured using UNIX system calls getitimer() and (”) _It 1S theoretlca"y pOSSIble to precom_pute and store
setitimer(), using the flag ITIMEBPROF, so that only CPU-time for the the optimal SChedU|e__5 of transfer for_ all possible estimates of
process is considered. worst case network jittef, j < Jq. In O(m) space. Here,

COICA
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7 Related work

Feng et al. [4] have considered the problem of interactiv-
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’ Bzét)l(t) A2(t) From Claim 1, we have;1(u) > al(s) > a2(s) > a2(u).
’ ‘ But, al(u) < a2(u) (asAl(u) < A2(u), Al(u—1) > A2(u—

AL(t) 1)), and we have a contradiction.

\
.
\ \
\ \
\
\ |
\ \
.
\
\

D;(t) We find the following fact useful in our later proofs.
Fact 1. Let A (A1) represent the optimal curve of trans-
b1y mission for the constraint® (D1) and B(B1). Let D1 and
B1 both be displaced upwards (downwards,right,left) from
/ D and B by the same constakt Then,A1l is also displaced
upwards (downwards, right,left) from by the same constant

k.

sl s

u-l u

Fig. 12. lllustration for Theorem 1. All functions are step functions shown Proof of Theorem 2

as curves for convenience

(a) A2(0) = D2(0) = D1(0) = A1(0). Similarly, A2(N) =
A1(N). Applying Theorem 142 dominatesA1 over [Q N].
m is the number of critical points in the optimal schedule Let w be a concave critical point ofi2. Then, A2(w) =
for worst case network jittey,,, 4. D2(w). Also, D2(w) = D1(w) (given) andA2(w) > Al(w)
(iii) In the context of on-line recomputation of the op- (A2 dominatesAl). From the aboveD1(w) > Al(w). But
timal schedule on playback resumption after an interactionfor feasibility of A1, Al(w) > D1(w). Hence, Al(w) =
the Convergence theoreshows at what point in time the re- D1(w) andw is a concave critical point ofi1.
computed and original schedules converge. The theorem h&®)(i) ConstructB1’, D1’ by displacingB1,D1 upwards by
a significant impact in reducing on-line computation time for k. That is, B1'(t) = B1(t) + k, D1'(t) = D1(t) + k Vt 0 <
small client buffer sizes and long videos. For client buffert < N. By Fact 1, the optimal schedule fab(’, B1') , say
sizes< 512K B, the number of frames to be examined in A, is displaced upwards from1 by k, that is, A1'(t) =
an on-line recomputation is reduced more than fivefold ond1(t) + & V¢,0 < ¢ < N. It is easily verified thatB1’
average. dominatesB2 over [Q N], D1’ dominatesD2 over [Q N].
(iv) We have proposed an approximation scheme thafurther,A1'(0) > A2(0), (A1'(0) = A1(0) +k = D1(0) +k =
works by altering the work-ahead constraints and perform-D2(0) +k = A2(0) +k) and similarly, A1'(N) > A2(N).
ing smoothing on the altered constraints. Experimental evalHence, applying Theorem K1’ dominatesA2 over [Q N].
uation shows that, for client buffer sizes 1M B, the ap- Thatis,Vt 0 <t < N, A2(t) < AL'(t) = AL(t) + k.
proximate schedule has peak and standard deviation withifii) Let w, p < w < ¢ be a convex critical point afi2. Then,
2% of optimal, yet it may be computed as much as 10-15A42(w) = B2(w) = Bl(w)+k. From (i), A2(w) < Al(w)+k.
times faster. Hence, we haveBl(w) < Al(w). But for feasibility of A1,
Al(w) < Bl(w). Hence,Al(w) = B1(w) andw is a convex
critical point of A1.
(c) The proof is similar to (b), except thal’, D1’ are

Appendix ) _
constructed by displacing1, D1 left by j.

A Proofs of theorems

Proof of Theorem 1 Proof of Theorem 3
. . . . B2 dominatesB1 over |, N], and D2 dominatesD1 over

We will consistently use the notation presented in Table 1[q N]. A2(g) > Al(g). Also, A2(N) = AL(N). (A2(N) =

using the suffixes 1,2 to distinguish between the two situa-D’Z(N) = D1(N) = AL(N)). Hence A2 dominatesdl over

t!ons. The_proof is by contradiction. Let be the_smallest [¢, N]. Let u be the first concave cr’itical point of2 (u > ).

time at whichA2(s) < Al(s), p < s < ¢. Letu = min{t[t > We have,Al(u) < A2(u) = D2(u) = D1(u). But, we have

s, A2(t) > AL(t)}. Clearly,u must exist, as12(q) = AL@)-  A1¢,) > D1(u) for feasibility of AL, and hence we have

(Refer Fig. 12) AL(u) = D1(u) = A2(u). If v is the first convex critical point

of A1,v > ¢, then, similarly, we can show1(v) = A2(v)(=

Bl(v) = B2(v)). Let r = min{u,v}. Then, A1(r) = A2(r).

Now, applying Theorem 1 twice over,[N], A1 and A2

dominate each other over,[NV]. This is possible only if

ALQ) = A2(t) Vt, t > 7.

Next, it is easy to see that convergence does not occur before

Claim 1. al1(t) is non-decreasing;2(t) non-increasing over
[s,u], and al(s) > a2(s).

Proof. Vt,s <t < u, A1(t) (strictly) > A2(t) > D2(t) >
D1(t). Hence, there is no concave change pointAdf in
[s,u), for if ¢ were concaveAl(t) = D1(t). Hence,vt, s <

t <wu,al(t+1)>al(t).

Similarly, Vi, s < t < u, A2(t) < A1(t) < B1(t) < B2(t)
anda?2(t) is non-increasing over [s,u].

al(s) > a2(s) is obvious. A1(s) > A2(s), Al(s — 1) <
A2(s — 1)).

r. If convergence occurs at timeg then,A1(p—1) < A2(p—
1), Al(p) = A2(p) and Al(p + 1) = A2(p + 1). Hencep is
either a point of rate decrease (concave change poir)lof
or a point of rate increase (convex change pointydat In
the former caseA2(p) = Al(p) = D1(p) = D2(p) or p is a
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min{ b1,b2}

al ) 2
Fig. 13. lllustration for proof of Observation 8

concave critical point ofd2. Similarly, in the latter case, it
may be verifiedp is a convex critical point ofA1.

B Derivation of Table 2

= [D(t — 1) +b] — [D(al) + &= “1)*((1D81§)1) D(al))
(asal, a2 are concave critical points of1).
=b— H(t), where,

H(t) - [D(al) _ D(t 1)] + (t— al)*((aD(aZ)) D(al))

But, B1(t) — Al({t) > 0 Vt,al < t < a2,t € T,
and further,B1(a3) — A1(a3) = 0. Hence, we havd;, >
H(t),Vt,al < t < a2,t € T andb = H(a3). Hence,

b= MaX1<t<azter H(1).
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