
Multimedia Systems 7: 222–233 (1999) Multimedia Systems
c© Springer-Verlag 1999

Fast techniques for the optimal smoothing of stored video
Sanjay G. Rao?, S.V.Raghavan

Department of Computer Science and Engineering, Indian Institute of Technology, Madras 600 036, India
e-mail: sanjay@cs.cmu.edu, svr@iitm.ernet.in

Abstract. Work-ahead smoothing is a technique whereby
a server, transmitting stored compressed video to a client,
utilizes client buffer space to reduce the rate variability of
the transmitted stream. The technique requires the server to
compute a schedule of transfer under the constraints that
the client buffer neither overflows nor underflows. Recent
work established an optimal off-line algorithm (which min-
imizes peak, variance and rate variability of the transmitted
stream) under the assumptions of fixed client buffer size,
known worst case network jitter, and strict playback of the
client video. In this paper, we examine the practical con-
siderations of heterogeneous and dynamically variable client
buffer sizes, variable worst case network jitter estimates, and
client interactivity. These conditions requireon-line compu-
tation of the optimal transfer schedule. We focus on tech-
niques for reducing on-line computation time. Specifically,
(i) we present an algorithm for precomputing and storing
the optimal schedules for all possible client buffer sizes in a
compact manner; (ii) we show that it is theoretically possi-
ble to precompute and store compactly the optimal schedules
for all possible estimates of worst case network jitter; (iii) in
the context of playback resumption after client interactivity,
we show convergence of the recomputed schedule with the
original schedule, implying greatly reduced on-line compu-
tation time; and (iv) we propose and empirically evaluate an
“approximation scheme” that produces a schedule close to
optimal but takes much less computation time.

Key words: Video-on-demand – Bandwidth smoothing –
Video compression – Prefetching

1 Introduction

Constant-quality, variable-bit-rate (VBR) compressed video
streams can have extremely bursty bit-rate characteristics.
This burstiness complicates the task of achieving high re-
source utilization when such streams are transmitted across

? Current address: School of Computer Science, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Correspondence to: S.G. Rao

a network. Consequently, techniques to minimize the rate
variability of transmitted video have been a hot topic of re-
search in recent years. Workahead smoothing is one such
method, used in a setting in which a server transmits stored
video to a client with a given buffer size. Here, data may be
prefetched into the client buffer before its playback time, in
a manner that smooths the transmission bit rate. The tech-
nique requires that the server compute a schedule of video
transfer that ensures the client buffer neither overflows nor
underflows.

Several algorithms have been suggested for computing
the schedule of transfer for a given video [3, 10, 13] (see
[5] for a survey). Briefly, these algorithms assume a pair
of constraintsD(t),B(t) which respectively denote the min-
imum cumulative data which the server must transmit by
time t to prevent underflow and the maximum cumulative
data which the server may transmit by timet without over-
flow. Each algorithm constructs a piecewise-CBR schedule
of transmissionA(t) (the cumulative data that the server
actually transmits by timet) that satisfies the constraints
D(t) ≤ A(t) ≤ B(t) ∀t, and which is optimal according to
some criteria. The algorithms differ from one another with
respect to the criterion they optimize. Feng and Sechrest [6]
minimize the number of rate increases, Feng et al. [3] the
total number of rate changes and McManus and Ross [10]
minimize client buffer requirements for a constraint on the
total number of CBR transmission segments. In this paper,
we base our work on the optimal smoothing algorithm pro-
posed by Salehi et al. [13], which produces a schedule that
has minimum peak, variance and rate variability. Section
2 presents an overview of this algorithm. We will refer to
the algorithm in [13] as the optimal algorithm and to the
resulting schedule as the optimal schedule.

The model assumed by the above smoothing algorithms
is static in the sense that the constraintsD, B are assumed
fixed throughout the presentation. The model therefore does
not account for dynamic changes (such as changes in client
buffer size and worst case network jitter estimates) and client
interactions (such as fast-forward and rewind), which al-
ter the work-ahead constraints and consequently the optimal
schedule itself. In Sect. 3, we consider a practical setting
where dynamic changes and interactions may occur, show

223

Table 1. Notation used

N Length of video in frames
b Client buffer capacity for storing unplayed frames
d(t) size of framet
D(t) Minimum cumulative data that must be transmitted by the server by timet to avoid underflow

D(0) = 0. D(t) = D(0) +
∑t

i=1
d(i)

a(t) Amount of data sent by the server at timet, along the optimal schedule
A(t) Cumulative data sent by the server along the optimal schedule by timet

A(0) = D(0). A(N) = D(N). A(t) = A(0) +
∑t

i=1
a(i)

B(t) Maximum cumulative data that can be transmitted by the server by timet without buffer overflow

how the work-ahead constraints are affected and discuss why
on-line computation of the optimal schedule becomes essen-
tial.

Two fundamental questions that arise in the context of an
on-line computation are (i) how to minimize on-line compu-
tation time ?, and (ii) what impact does the altered schedule
have on the network resources required by the video stream?
In this paper, we focus on addressing the first question. Our
approach consists of (i) establishing fundamental relation-
ships that exist between the optimal schedules arising out
of different constraints (Sect. 4), and (ii) using these results
to reduce on-line computation time in the presence of het-
erogeneous client buffer sizes, variable worst case network
jitter estimates and client interactions. (Sect. 5).

In Sect. 4, we assume that two physically different sit-
uations may be modeled by the constraints (D1, B1) and
(D2, B2) with optimal schedulesA1 and A2. Given par-
ticular relationships betweenD1 and D2, B1 and B2,
we establish relationships betweenA1 and A2. Our re-
sults include, (i) theDomination Theoremwhich asserts
that, if D2(t) ≥ D1(t) ∀t and B2(t) ≥ B1(t) ∀t, then
A2(t) ≥ A1(t) ∀t, (ii) the Refinement Theoremwhich asserts
that, if D2(t) = D1(t) ∀t andB1 is displaced downwards or
right from B2, then the critical points1 of A1 are a superset
of those ofA2, and (iii) theConvergence Theoremwhich
asserts that if∀t ≥ q, D1(t) = D2(t) and B1(t) = B2(t),
thenA1 andA2 convergeat a point beyondq.

Applying these results, in Sect. 5, (i) we propose an al-
gorithm that can precompute and store the optimal schedules
for all possible client buffer sizesin a compact way, (ii) we
show that it is theoretically possible to precompute and store
the optimal schedule forall possible worst case network jitter
estimatesin a compact fashion, (iii) in the context of client
playback after an interaction, we show that the recomputed
schedule of transferconvergeswith the original schedule,
and recomputation involves examination of only the frames
up to the point of convergence. We empirically evaluate the
impact of this theoretical result.

Finally, in Sect. 6, we propose and empirically evaluate
an approximation scheme, that involves altering the work-
ahead constraints and performing optimal smoothing with
the altered constraints. The resulting schedule is feasible and
close to being optimally smooth with respect to the original
constraints, yet it takes much less time to compute.

Section 7 discusses related work and Sect. 8 makes con-
cluding remarks.

1 Critical points of a schedule are those points where the client buffer is
empty or full. (See Sect. 4). It is easy to reconstruct the optimal schedule
given its critical points.

(d) - Convex - Rate-increase
(b) - Concave - Rate-decrease.

data
 tx

t=0 time

B(t)

(b)

 (a)
 (d) (c) D(t)

 A (t)

Fig. 1. Optimal schedule construction

2 The optimal smoothing algorithm: overview

Consider a discrete-time model at the frame level. That is,
t ∈ {1, 2, . . . N}, where N is the length of the video in
frames. The notation is summarized in Table 1. It is assumed
that the server transmits data periodically at the video frame
rate, and what varies is the amount of data sent each time.
S = [a(1), a(2), . . . , a(N)] represents a feasible schedule iff
A(0) = D(0), A(N) = D(N) and D(t) ≤ A(t) ≤ B(t) ∀t.
Note that the last condition ensures that there is no buffer
underflow (A(t) ≤ D(t)) or overflow (A(t) ≥ B(t)). In the
particular case where there is no network delay or jitter, and
the client has a buffer sizeb, B(0) = D(0), and B(t) =
min{D(t − 1) + b, D(N)}

The algorithm constructs a feasible piecewise-CBR trans-
mission schedule in the following manner. The idea is to
iteratively identify the longest possible CBR transmission
segment (since CBR transmission is optimally smooth), and
when the transmission rate must be changed to ensure fea-
sibility, to make the change asearly as possible, thereby
ensuring that the change is assmall as possible. The con-
struction is illustrated in Fig. 1. To prevent buffer overflow
at (a), the rate is decreased at the earliest possible moment
(b). (Decreasing the rate earlier than (b) would result in a
buffer underflow.) Similarly, to prevent buffer underflow at
(c), the rate is increased at the earliest possible moment (d).
(Increasing the rate earlier than (d) would result in a buffer
overflow). The reader is referred to [13] for the actual algo-
rithm. The complexity isO(N2), but anO(N) algorithm is
also discussed. Points of rate increase or rate decrease are
called change points, the former being referred to as convex
and the latter as concave. Thus, in Fig. 1, (b) is concave and
(d) is convex. It is to be noted that ift is a concave (con-

224

Network

Client Buffers
may vary widely

Network may
have variable

jitter

Client may be allowed VCR
Functionality such as ff/rewind

Client

 Multimedia
 Server

Client
Buffer

Fig. 2. A typical complex setting

vex) change point, thena(t + 1) < a(t) (a(t + 1) > a(t)) and
A(t) = D(t) (A(t) = B(t)).

3 Need for on-line computation

Consider Fig. 2 which illustrates a multimedia server, con-
currently transmitting distinct VBR streams to clients across
a high-speed network. Each client is a set-top box or a net-
work PC with a certain limited buffer capacity, and the server
transmits data to the client according to an optimal schedule
of transfer, computed as described in the previous section.
We now describe several situations where the server needs
to compute the schedule of transfer on-line.

In heterogeneous environments, where users purchase
set-top boxes corresponding to their budget and require-
ments, the client buffer sizes can vary from a few hun-
dred kilobytes to over a gigabyte [10]. The work-ahead
constraint B(t) varies with client buffer size asB(t) =
min{D(t − 1) + b, D(N)}, resulting in a variation of the
optimal schedule with client buffer size. Consequently, the
server must either explicitly store the optimal schedule for
every possible client buffer size, or it must determine the
client buffer size at the start of each presentation and com-
pute a schedule of transfer on-line. Further, the client may be
running other processes simultaneously, which share buffer
space. This could potentially result in dynamic variation of
the buffer available for smoothing during the presentation,
and necessitate on-line schedule recomputation.

The client may be connected to the server via a network
with highly variable and potentially unbounded jitter, such as
Ethernet or the Internet. In [13], it is assumed that the server
estimates apriori the worst case end-to-end jitter over the
entire length of video playback. A worst case jitter ofj frame
units, wherej = dWorstCaseNetworkJitter(s)

1/framerate e, is handled by
delaying client playback byj and ensuring that the server
staysj ahead of the client, i.e., by shifting the curveB(t)
to the right byj units and performing smoothing with the
shiftedB(t) and the originalD(t). (Formally,B1(t) = B(t−
j), t ≥ j + 1, B1(t) = b, 1 ≤ t ≤ j, B1(0) = 0. Smoothing is
done withD(t), B1(t).) However, such an estimate of worst
case jitterj is difficult to make in the real environments
we consider. Instead, the server could periodically revise

B(t)

D(t)

r u

WA A A1

Fig. 3. Playback restart after a client interaction may require schedule re-
computation (see text)

its estimate using some on-line algorithm and consequently
derive an updated transmission schedule.

Finally, the client may be enabled to perform interactive
functions, such as fast-forward, rewind, pause/resume and
indexing (temporal jumps forward/backward) during stream
playback. While playback restart after an interaction does
not alter the work-ahead constraints, a recomputation of the
optimal schedule may still be required. To see this, consider
Fig. 3, which illustrates a client which while viewing frame
r of a video makes a temporal jump forward to frameu. The
client buffer is flushed out and normal playback now resumes
from frameu + 1 onwards. Note that had the interaction not
taken place, an amount of work-ahead dataWA = A(u) −
D(u) would have already been available in the client buffer
at time u. Consequently, the original schedule cannot be
used directly and a new optimal scheduleA1 needs to be
computed.

The optimal off-line algorithm proposed in [13] takes
roughly 6–8 s to smooth a 174,000-frame trace on an SGI
workstation with a 150-MHz R4400 processor. However,
it is conceivable that this overhead may be unacceptably
high in an on-line situation. Large-scale servers handle hun-
dreds of clients, and may have to deal with several on-line
computations concurrently. In addition, while it is expected
that servers would be optimized for I/O-intensive operations,
modern web servers may have to perform compute-intensive
activities and computation overheads cannot be ignored.

4 Results establishing the relationship
between optimal schedules

We assume that any real-world “situation” may be modeled
by a pair of constraints (D, B). Given two physically differ-
ent situations (D1, B1) and (D2, B2) with optimal curves
A1 andA2, we present results, which, given particular re-
lationships betweenD1 andD2, and betweenB1 andB2,
establish relationships betweenA1 andA2. In Sect. 5, we
apply these results to relate schedules arising from differ-
ent client buffer sizes and different worst case network jitter
estimates.

We begin by presenting a fundamental result, theDomi-
nation theorem, which we find useful in subsequent results.

Definition 1 (Domination). A functionf (t) is said to dom-
inate a functiong(t) over an interval[p, q] iff f (t) ≥ g(t),
∀t, p ≤ t ≤ q.

225

Theorem 1 (Domination theorem). Let B2 dominateB1
over an interval[p, q], D2 dominateD1 over[p, q], A2(p) ≥
A1(p) and A2(q) ≥ A1(q). ThenA2 dominatesA1 over
[p, q].

See Appendix A for proof. Briefly, the proof is by
contradiction. We assume a maximal segment [s, u) such
that A1 dominatesA2 over [s, u), p < s ≤ u ≤ q,
A2(s − 1) ≥ A1(s − 1) andA2(u) ≥ A1(u). We then show
thatA1 has no points of rate -decrease (concave) over [s, u)
andA2 has no points of rate increase over [s, u). From this,
we showA1(u) > A2(u) and arrive at a contradiction.

We now introduce the notion ofcritical points of an
optimal schedule.

Definition 2 (critical points). t is a critical point of an opti-
mal schedule if the client buffer is either empty (A(t) = D(t))
or full (A(t) = B(t)) at timet. In the former case, the criti-
cal point is referred to as concave and in the latter case as
convex.

All change points of an optimal schedule are also critical
points for that schedule, but the converse need not be true.2

Given the critical points of an optimal schedule, and stored
D(t) values, it is easy to reconstruct the schedule itself.

In Sect. 3, we have seen that a change of client buffer size
displaces the work-ahead constraintB upwards or down-
wards, while a change of worst case network jitter estimate
displaces the constraintB to the left or right. We now present
the Refinement theorem, that relates the critical points of
schedulesA1 andA2, optimal respectively for constraints
(D1, B1) and (D2, B2), whereD1 and D2 are identical,
B2 dominatesB1, andB1 is obtained either by displacing
B2 downwards or to the right. We will use theRefinement
theoremin Sect. 5 to relate optimal schedules arising from
different client buffer sizes and different worst case network
jitter estimates.

Theorem 2 (Refinement theorem).Let D1(t) = D2(t) and
B1(t) ≤ B2(t), ∀t, 0 ≤ t ≤ N . Then,
(a) The concave critical points ofA1 are a superset of the
concave critical points ofA2.
(b) (i) If B2(t) ≤ B1(t) + k ∀t, 0 ≤ t ≤ N , then,A2(t) ≤
A1(t) + k ∀t, 0 ≤ t ≤ N . (ii) Further, if over an interval
[p, q], B2(t) = B1(t) + k ∀t, p ≤ t ≤ q, then, the convex
critical points of A1 in [p, q] are a superset of the convex
critical points ofA2 in [p, q].
(c) (i) If B2(t) ≤ B1(t+j) ∀t, 0 ≤ t ≤ N − j, then,A2(t) ≤
A1(t + j) ∀t, 0 ≤ t ≤ N − j. (ii) Further, if over an interval
[p, q], B2(t) = B1(t + j) ∀t, p ≤ t ≤ q, then, for any convex
critical point w of A2, p ≤ w ≤ q, w + j is a convex critical
point ofA1.

Refer to Appendix A for proof. (a) is proved observing
thatA2 dominatesA1 over [0, N]. To prove (b), we displace
the curvesD1, B1 upwards byk to get the curvesD1′, B1′
and then apply Theorem 1 for (D1′, B1′) and (D2, B2). (c)
is proved in a similar fashion to (b), except that (D1′, B1′)
is obtained by displacing the curvesD1, B1 to the left byj.

2 For example, consider the case where allN frames have the same size.
The optimal schedule is a single CBR segment with no change-points, yet
∀t, t ∈ {1, 2, . . . , N}, t is a concave critical point.

Finally, we present theConvergence theorem, which we
find useful in reducing on-line schedule recomputation time
in the context of playback restart after an interaction.

Definition 3 (Convergence).ScheduleA1 is said to con-
verge with scheduleA2 at a timep, if ∀t, t ≥ p, A1(t) =
A2(t).

Theorem 3 (Convergence theorem).Let ∃q such that
B2(t) = B1(t), D2(t) = D1(t) ∀t, q ≤ t ≤ N . Let
A2(q) ≥ A1(q). Then,A1 andA2 converge at the first con-
cave critical point ofA2(> q) or the first convex critical
point ofA1(> q), whichever is earlier.

Refer to Appendix A for proof. It is based on the obser-
vation thatA2 dominatesA1 over [q, N], and if ∃p, p ≥ q
such thatA2(p) = A1(p), then A2 andA1 dominate each
other (and are hence identical) over [p, N].

5 Handling heterogeneous client buffer sizes,
variable network jitter and client interaction

We apply the results presented in the previous section to
the contexts of heterogeneous client buffer, variable worst
case network jitter and playback resumption after an interac-
tion. In each case, we devise methods to reduce the on-line
computation time.

5.1 Heterogeneous client buffer sizes

In this section, we apply theRefinement theoremto show
that the critical points of the optimal schedule for any client
buffer sizeb1 are a superset of the critical points of the opti-
mal schedule for any client buffer sizeb2, b2 > b1. We then
present an algorithm, by which the server can precompute
the optimal schedules for all possible client buffer sizes in
an efficient manner. Further, the server need not maintain a
copy of the optimal schedule for each possible client buffer
size; rather, by storing the schedule for minimum possible
client buffer size alone, the server can easily retrieve the
optimal schedule for any particular buffer size.

Corollary 1. LetA1 andA2 represent the optimal schedules
for a given video and client buffersb1 and b2, respectively
(b2 > b1). Then, the critical points ofA1 are a superset of
the critical points ofA2.

Proof. Let D1, B1 represent the constraints for a client
buffer sizeb1. Let D2, B2 represent the constraints for a
client buffer sizeb2. Now, B1(t) = min{D1(t − 1) + b1}
andB2(t) = min{D2(t − 1) +b2, D(N)}. D1(t) = D2(t) ∀t.
Let TH be such thatB2(t) = D2(t − 1) + b2, t < TH
and B2(t) = D2(N), t ≥ TH. It is easily verified that
B2(t)−B1(t) ≤ b2−b1 ∀t andB2(t)−B1(t) = b2−b1, 0 ≤
t < TH. Applying Theorem 2(a), the concave critical points
of A1 are a superset of the concave critical points ofA2.
Applying Theorem 2(b), the convex critical points ofA1 in
[0, TH) are a superset of the convex critical points ofA2
in [0, TH). Further, it may be easily verified thatA2 has no
convex critical points in [TH, N].

226

Find Optimal ScheduleAny buffer(d(t))
1. Call FindOptimal Schedule(d(t), ∞). Denote this byA∗∞. (Salehi-96 algorithm on infinite client buffer)

2. Initialize list Q by inserting for each critical pointt of A∗∞ the entry< t, ∞, CONCAVE >

3. Find bmin, Abmin, T . (see text for definition)

4. SetFirst, Secondto point respectively to first and second entries of listQ.

5. while (Second != NULL)

6. Let < ba1, a1, fa1 > and< ba2, a2, fa2 > be the entries pointed to byFirst andSecond, respectively.

7. if (∃t, a1 < t < a2 andt is a critical point ofAbmin)

8. < b, L >= Refine(< a1, fa1 >, < a2, fa2 >, d(t)). (see text for explanation of Refine)

9. Insert each item< a3, fa3 > of list L into list Q as< b, a3, fa3 >

10. ResetSecondto point to the entry immediately to the right ofFirst.

else/* Interval requires no further refinement.*/

11. Advance First and Second by one step each.

Fig. 4. Algorithm β. The algorithm precomputes and stores the optimal schedule for all possible client buffer sizes.d(t) represents the frame size trace of
the given video

Table 2. ProcedureRefine(< a1, fa1 >, < a2, fa2 >, d(t)). A list < ba3, L > is returned, whereba3 is obtained as the maximum of an appropriate
expression andL is the list of all< a3, fa3 >, such that the maximum is attained att = a3. See text for details

fa1 fa2 ba3 (fa3)

concave concave maxa1<t<a2,t∈T D(a1) − D(t − 1) + [D(a2)−D(a1)]∗(t−a1)
(a2−a1) (convex)

convex convex maxa1<t<a2,t∈T D(t) − D(a1 − 1) − [D(a2−1)−D(a1−1)]∗(t−a1)
(a2−a1) (concave)

concave convex maxa1<t<a2,t∈T

{
D(a1) − D(a2 − 1) + (a2−a1)∗[D(t)−D(a1)]

t−a1 (concave)
[D(a1)−D(t−1)]∗(a2−a1)

a2−t
+ [D(a2−1)−D(a1)]∗(t−a1)

a2−t
(convex)

convex concave maxa1<t<a2,t∈T

{
[D(a2) − D(a1 − 1)] − (a2−a1)∗[D(t−1)−D(a1−1)]

t−a1 (convex)
D(t)∗(a2−a1)

a2−t
− D(a2)∗(t−a1)

a2−t
− D(a1 − 1)(concave)

Let bmin be the minimum possible client buffer (bmin =
size of largest frame of presentation). LetAbmin denote the
optimal schedule of transmission for a client bufferbmin
andT denote the set of all critical points ofAbmin. We find
the notion oftransition buffer of a critical pointuseful.

Definition 4 (Transition buffer). Lett ∈ T . Then, the tran-
sition bufferbt of critical point t is that buffer such thatt is
a critical point of the optimal schedule of transmission for a
client bufferb ≤ bt and not for any higher client buffer.

We now present an algorithmβ (formally in Fig. 4)
to precompute the optimal schedules for all possible client
buffer sizes. The algorithm constructs a listQ (which can be
stored in a file and retrieved whenever needed). Each entry
of list Q is a triplet of the form< t, bt, ft >, which indicates
that t ∈ T , bt is a transition buffer oft andft is a flag that
indicates ift is concave or convex. The entries in listQ are
stored in increasing order oft.

The basis of the algorithmβ is the procedureRefine.
Given thata1, a2 ∈ T and have transition buffersba1, ba2,
respectively, and given there exists not ∈ T in (a1, a2)
with a transition bufferbt ≥ min{ba1, ba2}, Refine finds
< a3, ba3, fa3 > such thatba3 = max{bt|a1 < t < a2, t ∈
T, bt is transition buffer of t} anda3 is the critical point for
which the maximum is attained,fa3 indicating if a3 is con-
vex or concave. In case of a tie, Refine returns a listL of
all such< a3, fa3 >. Table 2 summarizes howb and listL

may be identified givena1 anda2, fa1 andfa2. (fa1,fa2 are
flags that indicate whether the respective critical points are
convex or concave.) A derivation of the results presented in
Table 2 can be seen in Appendix B.

Algorithm β builds list Q as it progresses and operates
as follows. The critical points of the optimal schedule for
infinite client buffer3 are computed directly using the op-
timal algorithm in [13](Step 1), and for each point, a cor-
responding entry is inserted inQ (Step 2). At any time,
in Step 6, the following invariant holds: the pointersFirst
and Secondpoint to adjacententries< ba1, a1, fa1 > and
< ba2, a2, fa2 > of list Q, and an entry already exists in
Q ∀t, t < a1, t ∈ T . Step 7 verifies if∃t ∈ T in the
interval (a1, a2). If this is the case, procedureRefineis ap-
plied on < a1, fa1 > and < a2, fa2 > in Step 8, and the
critical points returned byRefineare inserted inQ (Step 9).
The process continues until there is an entry inQ for each
critical point of Abmin.

Note that onceQ is computed and stored by the server,
the critical points of the optimal schedule for a particular
client buffer b may be obtained by inspecting each entry
< t, bt, ft > of Q and choosing those entries< t, ft >
such thatbt ≥ b. With the list of critical points, the optimal

3 Interestingly, the optimal schedule for infinite client buffer as computed
according to the algorithm in [13] is identical to the schedule produced using
another smoothing algorithm – the critical bandwidth algorithm [6]

227

Consider the following artificially constructed example to illustrate the working of algorithmβ and procedure Refine.
Assume for a video,N = 6 andd(t) is given by< 1000, 500, 375, 1000, 1125, 1250>.
Then,D(t) is given by< 1000, 1500, 1875, 2875, 4000, 5250>.
Also, bmin = 1250 (minimum client buffer size = size of largest frame).
Further,T = Set of critical points of optimal schedule for client buffer sizebmin

= {1, 4, 5, 6} (Obtained by running the Salehi-96 Algorithm).
The optimal schedule for infinite client buffer has two concave critical points:{1,6}.
We now trace the execution of the algorithm and show howQ is constructed.

At start of while loop in algorithmβ, Q =< 1, ∞, concave >, < 6, ∞, concave >.

1. Refine is called with< 1, concave > and< 6, concave >. Refine now computes witha1 = 1, a2 = 6,
maxa1<t<a2,t∈T D(a1) − D(t − 1) + [D(a2)−D(a1)]∗(t−a1)

(a2−a1)
The maximum occurs att = 4 and is 1675. Thus now:
Q =< 1, ∞, concave >, < 4, 1675, convex >, < 6, ∞, concave >.

2. Refine is called with< 1, concave > and< 4, convex >. But as 6 ∃t, t ∈ T, 1 < t < 4,
Q is unchanged and the interval< 1, 4 > needs no further refinement.

3. Refine is called with< 4, convex > and< 6, concave >. Refine now computes witha1 = 4 anda2 = 6,

maxa1<t<a2,t∈T

{
[D(a2) − D(a1 − 1)] − (a2−a1)∗[D(t−1)−D(a1−1)]

t−a1 (convex)
D(t)∗(a2−a1)

a2−t
− D(a2)∗(t−a1)

a2−t
− D(a1 − 1)(concave)

The maximum occurs att = 5, for the first(convex) subexpression, and is 1375. Thus now,
Q =< 1, ∞, concave >, < 4, 1675, convex >, < 5, 1375, convex >, < 6, ∞, concave >

4. The intervals< 4, 5 > and< 5, 6 > cannot be refined further; The algorithm terminates with
Q =< 1, ∞, concave >, < 4, 1675, convex >, < 5, 1375, convex >, < 6, ∞, concave >

Determination of Optimal Schedule for a given client buffer b using Q:
Each triplet< t, bt, ft > of Q is examined and those< t, ft > are chosen for whichbt ≥ b. For example, forb = 1400, the critical points
are:< 1, concave >, < 4, convex >, < 6, concave >. With the list of critical points and with storedD(t), the optimal schedule may be
reconstructed.

Fig. 5. Example to illustrate the working of algorithmβ and procedure Refine.

Table 3. K is much less thanN (see text).bmin is fixed to be the size of
the largest frame for each trace

Trace bmin(KB) N K

Advertisements 10.320 16316 970
Jurassic Park 14.954 40000 1180
MTV 31.426 40000 1114
Star Wars 23.158 174054 3832
Wizard of Oz 42.891 41760 1139

schedule for a client bufferb may be easily reconstructed.
Figure 5 gives a complete example that illustrates the work-
ing of algorithmβ and procedure Refine.

Let K be the number of critical points in the optimal
schedule for minimum possible client buffer (K = |T |).
Theoretically,K maybeN , (the number of frames in the
video). However, we find on experimentation with several
VBR-compressed MPEG-1 video frame-size traces4 that K
is in practice much smaller thanN . This fact is illus-
trated in Table 3. It is easily verified that Algorithmβ has
a max{O(K2), O(N)} complexity. Storage requirement is
O(K) and the time of retrieval of the optimal schedule for
a given client buffer takesO(K) time.

5.2 Variable worst case network jitter

In this section, we apply theRefinement theoremto show
an important relationship between the critical points of the

4 All traces were VBR-encoded using an MPEG-1 software encoder. The
videos had length as follows (in minutes):Advertisements[8] 9, Jurassic
[12] 28, MTV [12] 28, andWizard[9] 23. Star Wars[7] was about 2 h long.

optimal schedules for two different worst case network jitter
estimates. We then show that it is possible for the server
to store the optimal schedule for maximum possible worst
case network jitter alone, and yet easily retrieve the opti-
mal schedule for any particular worst case network jitter. A
lot of the discussion in this section parallels the discussion
concerning heterogeneous client buffer sizes in Sect. 5.1.

Corollary 2. Let A1,A2 represent the optimal schedule for
worst case network jitterJ1 andJ2 respectively,J1 < J2.
Then, (a) the concave critical points ofA2 are a superset
of the concave critical points ofA1. (b) if A1 has a convex
critical point at t, A2 has a convex critical point att + J2−
J1.

The proof is similar to Corollary 1 and is omitted.
Assume that, during the presentation, the worst case net-

work jitter estimate is bounded byJmax, and that the optimal
schedule for the estimateJmax hasm critical points. Then,
it is possible to precompute and store the optimal sched-
ules for all possible estimates of worst case network jitter
j, j ≤ Jmax usingO(m) space. This can be done by stor-
ing triplets of the form< t, Jt, ft >, where,ft is a flag that
indicates concave or convex. Ifft is concave, thent is a
concave critical point in the optimal schedule for worst case
network jitterj, j ≥ Jt, and ifft is convex, thent+j−Jt is
a convex critical point in the optimal schedule for any worst
case network jitterj, j ≥ Jt.

Finally, we believe that it is possible to develop an effi-
cient algorithm to actually compute and store triplets in the
above fashion. We defer development of such an algorithm
to future work.

228

5.3 Playback restart after an interaction

In this section, we apply the Convergence theorem to the
context of client playback after an interaction, and evaluate
its impact on reduction in schedule recomputation time.

For a given video ofN frames and a given client buffer
size b, let D,B represent the work-ahead constraints, and
A the optimal schedule for the entire video. Let a client
index randomly to a framef , flushing out its buffer. LetA1
represent the new optimal schedule of transfer for frames
f +1 to N . Then, by a direct application of the Convergence
theorem, it follows thatA and A1 converge by the first
convex change point ofA1 or the first concave change point
of A (> f), whichever is earlier. While convergence occurs
actually at the first convex critical point ofA1 or the first
concave critical point ofA, we find dealing with change -
points more convenient algorithmically, and hence we use a
slightly weaker version of the Convergence theorem.

The on-line recomputation ofA1 proceeds in identical
fashion to the optimal algorithm, except that, whenever a
change point, sayc is identified, it is verified ifc is a change
point of A as well, in which case further computation ofA1
is stopped. Beyondc, A1 andA are identical.

We now empirically evaluate the impact of the Conver-
gence lemma in reducing on-line schedule recomputation
time, by experimentation with several MPEG frame-size
traces. We assume that the client may randomly index to
any framei (0 ≤ i < N) with equal probability. LetCL(i),
BR(i) denote respectively the number of frames to be in-
spected in an on-line recomputation of the optimal schedule
for frames i + 1 to N , if the Convergence theorem were
used, and if a blind recomputation were done. (Note that

BR(i) = N − i). Let w(i) = CL(i)
BR(i) . Let wavg =

∑N−1

i=0
w(i)

N ,

CLavg =
∑N−1

i=0
CL(i)

N . wi, wavg are measures of the impact
of the Convergence theorem in reducing on-line computation
overhead, whileCL(i), CLavg are measures of the absolute
computation overheads involved when the Convergence the-
orem is used.

Figure 6 shows the variation ofwavg with client buffer
size for several MPEG-1 traces. For each trace, note that
wavg increases with client buffer size. This is due to the fact
that, when the segment lengths of the original schedule are
relatively small, the change point of convergence is likely to
occur faster. (Also, the Convergence theorem becomes more
significant as the length of the trace increases; note that the
Star Warstrace is four times as long as other traces.) From
the figure, we see that for most traces and client buffer sizes
≤ 512KB, there is an average reduction of more than five
times (wavg ≤ 0.2) in the number of frames to be inspected
when theConvergence theoremis used.

Figure 7 shows the variation ofCLavg with the client
buffer size for several traces. On average, an on-line recom-
putation inspects less than 5000 frames across all traces for
buffer sizes≤ 512KB when the Convergence theorem is
used.

In conclusion, the Convergence theorem can have ap-
preciable impact in reducing recomputation time of a new
schedule. Even in cases where the Convergence theorem may
not have a significant influence, we still recommend its use

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
vg

. w
(i

)

Client Buffer(MB)

Jurassic
MTV

Starwars
Wizard

Fig. 6. wavg vs client buffer size

0

5000

10000

15000

20000

25000

0 0.5 1 1.5 2

A
vg

. C
L

(i
)

Client Buffer(MB)

Jurassic
MTV

Starwars
Wizard

Fig. 7. CLavg vs client buffer size

in case of an on-line recomputation as there is no “penalty”
involved.

6 Approximation scheme

In this section, we propose an approximation scheme that
works by altering the work-ahead constraints and performing
optimal smoothing on the altered constraints. The resulting
schedule is feasible and close to being optimally smooth with
respect to the original constraints, yet it takes significantly
less time to compute.

The optimal algorithm proceeds by inspecting every
frame as a possible candidate for being a change point. Yet
it may be verified that a frame with size 0 cannot be a
change point and the optimal algorithm can skip inspect-
ing such a frame. The approximation scheme readjusts the
frame size sequence in such a manner that many frames have
a size 0. The video is assumed to consist ofN/g blocks of
g consecutive frames each (assume for simplicity thatN is
a multiple of g). The sequence is now readjusted so that,
in each block, the entire data of all the frames of the block
is attributed to its first frame, all other frames having size
0. Formally, if f i

j and F i
j respectively denote the size of

229

B(t)

D(t)

 Infeasible
Regions.

pushdown
buffer

B2(t)

D1(t)

D(t)

B1(t)

B(t)

PDi =

Fig. 8. Illustration of the approximation scheme

framej of block i in the original and new sequences, then,
F i

1 =
∑g

j=1 f i
j and F i

j = 0, j /= 1. Figure 8 shows how
the original constraintsD(t),B(t) may be modified to give
the new constraintsD1(t) and B2(t) after readjustment of
the sequence. Note, however, that the schedule arising from
smoothing with constraintsD1(t), B2(t) may be infeasible.
We tackle this by adjusting the curveB2(t) downwards (thus
we do not make fullest possible use of the client buffer).
Let PDi =

∑g
j=2 f i

j , 1 ≤ i ≤ N/g. Then, the altered con-
straintB1(t) is obtained asB1(t) = B2(t) − PDd t−1

g e, t >

1, B1(1) = B2(1). Smoothing is now performed with the
work-ahead constraintsD1(t), B1(t) and we refer to the re-
sulting schedule as the approximate schedule. OnlyN/g
frames have to be examined as all other frames have a size
0; however, the schedule is not optimal, as we start off with
a burstier sequence and do not make fullest possible use of
the client buffer.

We now investigate the performance of the approxima-
tion scheme by experimentation with several MPEG frame
size traces. We demonstrate that the smoothness of the opti-
mal and approximate schedules are comparable. Further, we
expect that the approximation scheme achieves a reduction
in computation time close to the block sizeg (as it examines
only about 1/g of the frames that the optimal scheme does)
and we show that this is indeed the case.5

We first present some of the parameters that we use in
our experiments. Typically, the very first frame of the video
is much larger than its immediately subsequent frames and
a start-up latency ofs units may be introduced to smooth
its transmission [13]. However, the approximation scheme
results in an increase in the size of the first frame due to ag-
gregation, which offsets the benefits of the start-up latency.
Further, with the approximation scheme, no data is transmit-
ted in the lastg − 1 (g is the block size) frame times. To
avoid these problems, we do not apply the approximation
scheme to the firstL1 and the lastL2 blocks of the video,

5 The smoothing algorithm runs inO(N) time, whereN is the number of
frames examined. In our experiments, we actually used theO(N2) version
of the smoothing algorithm; however, this version too runs in close to linear
time in practice.

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

((
PA

-P
O

)/
PO

)*
10

0

Client Buffer(MB)

Advertisments
Jurassic

MTV
Starwars

Wizard

Fig. 9. The % increase in peak using the approximation scheme

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

((
SA

-S
O

)/
SO

)*
10

0

Client Buffer(MB)

Advertisments
Jurassic

MTV
Starwars

Wizard

Fig. 10. The % increase in standard deviation using the approximation
scheme

and instead we retain the original frame size sequence for
these blocks. In the experiments described below, we fix
s = 15, L1 = 15 andL2 = 15. For each video, we fixed
the block-sizeg to be equal to theGOP of that video. The
GOP of a video is the number of frames between consec-
utive I-pictures in its compression pattern [1]. The GOP of
Star Warsis 12, ofAdvertisements6, of Jurassic12, ofMTV
12, and ofWizard15.

Let PA,SA andCA (PO,SO,CO) denote respectively
the peak, standard deviation and computation time of the
approximate (optimal) schedule. Figures 9 and 10 plot the
% increase (as compared to optimal) in peak and standard
deviation when the approximation scheme is used against
client buffer size for several traces. Across all traces, for
client buffers greater than 1MB, the increase of peak is less
than 2%. For most traces, and client buffer sizes greater than
4 MB, the increase in peak is less than 0.5%. The increase
in standard deviation is less than 2% for buffer sizes greater
than 1MB for most traces. For small buffer sizes (< 1MB),
however, the peak of the approximate schedule may grow to
as large as 60% higher than optimal (not shown in graph).
This is understandable, because for small buffer sizes, the
cost of under-utilizing client buffer becomes significant.

230

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70

C
O

/C
A

Client Buffer(MB)

Advertisments (GOP=6)
Jurassic (GOP=12)

MTV (GOP=12)
Starwars (GOP=12)

Wizard (GOP=15)

Fig. 11. Reduction in computation time (CO/CA) using the approximation
scheme. The block size used for each trace was fixed at the GOP of the
trace. The GOP of the traces are as follows: Wizard 15, Advertisements 6,
Star Wars 12, Jurassic Park 12 and MTV 12. For each video, a speed-up
close to block size was achieved across all client buffer sizes

Figure 11 shows the speed-up obtained on using the ap-
proximate algorithm as compared to the optimal one, as a
function of client buffer. The speed-up is measured on a Pen-
tium 266-MHz processor.6 Only schedule computation time
is considered, and time for input, preprocessing and output
is not. As expected, the speedup is close to the block size
used for each trace and is not significantly affected by the
client buffer size. For example,Wizard(block size 15) shows
a 13–17-fold speed-up, and Jurassic (block size 12) shows
around a 12-fold speed-up across all client buffer sizes.

Finally, in [14], we investigate the impact of varying the
block size on the performance of the approximation scheme.
Our findings indicate that (i) the speed-up achieved is pro-
portional to the block size, and (ii) in general, larger block-
sizes result in poorer approximations; however, exceptions
do occur for MPEG video because of the encoding pattern.
See [14] for details.

7 Related work

Feng et al. [4] have considered the problem of interactiv-
ity in the context of work-ahead smoothing. They introduce
the notion of “VCR window” and demonstrate that, for large
buffers above 25 MB, most requests for rewind could be han-
dled within the window itself, from the data residing within
the smoothing buffer. In such a case, no recomputation of
the schedule of transfer is required. On a rewind, transmis-
sion by the computed schedule of transfer is stopped and is
resumed when normal playback reaches the original point
of play. However, it is not clear that this approach would
work well in the case of smaller client buffers. Further, their
method is not applicable when there is a change in smoothing
constraints during the presentation (such as dynamic change
of client buffer or worst case network jitter estimates) when

6 The speedup is measured using UNIX system calls getitimer() and
setitimer(), using the flag ITIMERPROF, so that only CPU-time for the
process is considered.

a recomputation of the optimal schedule becomes unavoid-
able.

Dey et al. [2] have considered the problem of playback
restart after an interaction. They propose an algorithm by
which the restart latency can be minimized, assuming trans-
fer bounded by a particular peak rate determined by the
original schedule of transfer. They do not recompute a new
schedule of transfer on-line, rather they transmit at the peak
rate until convergence with the old schedule of transfer oc-
curs. While this approach has advantages in that the exist-
ing network resources are sufficient and no fresh reservation
needs to be made, the disadvantage is that there is no direct
control over the resulting start-up latency. Again, their tech-
nique is not applicable when there is a change of smoothing
constraints during the presentation.

Rexford et al. [11] have considered work-ahead smooth-
ing of live video, where there is only a limited knowledge
of frame sizes in the future (made possible by the introduc-
tion of delay at the source). The authors examine schemes in
which the optimal smoothing algorithm is periodically exe-
cuted on-line to compute a transmission schedule over the
next window of frames. The performance of these schemes is
compared to that of optimal off-line transmission. An inter-
esting question that has not been explored is the cumulative
costs associated with repeated on-line computation.

8 Summary and conclusions

Work-ahead smoothing is a technique whereby a server
transmits stored video to a client in accordance with a com-
puted schedule of transfer. Past work [13] established an
algorithm that computes a schedule, which optimally mini-
mizes peak, variance and rate variability of the transmitted
stream, under the assumptions of fixed client buffer size,
known worst case network jitter and strict playback of the
client video. In this paper, we have considered practical sit-
uations characterized by heterogeneous client buffer sizes,
dynamically changing worst case network jitter estimates,
and client interactions such as fast-forward and rewind. Such
a setting requires an on-line computation of the schedule of
transfer. We have presented theDomination theorem, Refine-
ment theoremand theConvergence theoremwhich establish
important relationships between optimal schedules obtained
under different sets of constraints. We then use these results
to devise methods for reducing on-line computation time in
various practical situations. We summarize our results be-
low.

(i) Based on the Refinement theorem, we have proposed
anO(K2) algorithm that can precompute the optimal sched-
ules for all possible client buffer sizes and store them in
O(K) space, such that retrieval of the schedule for a partic-
ular buffer size can be done inO(K) time. Here,K is the
number of critical points in the optimal schedule for smallest
possible client buffer size, and experiments reveal thatK is
significantly smaller thanN , the number of frames in the
video.

(ii) It is theoretically possible to precompute and store
the optimal schedules of transfer for all possible estimates of
worst case network jitterj, j < Jmax in O(m) space. Here,

231

B2(t)
B1(t) A2(t)

A1(t)

D2(t)

D1(t)

s-1 s u-1 u

Fig. 12. Illustration for Theorem 1. All functions are step functions shown
as curves for convenience

m is the number of critical points in the optimal schedule
for worst case network jitterJmax.

(iii) In the context of on-line recomputation of the op-
timal schedule on playback resumption after an interaction,
theConvergence theoremshows at what point in time the re-
computed and original schedules converge. The theorem has
a significant impact in reducing on-line computation time for
small client buffer sizes and long videos. For client buffer
sizes≤ 512KB, the number of frames to be examined in
an on-line recomputation is reduced more than fivefold on
average.

(iv) We have proposed an approximation scheme that
works by altering the work-ahead constraints and perform-
ing smoothing on the altered constraints. Experimental eval-
uation shows that, for client buffer sizes> 1MB, the ap-
proximate schedule has peak and standard deviation within
2% of optimal, yet it may be computed as much as 10–15
times faster.

Appendix

A Proofs of theorems

Proof of Theorem 1

We will consistently use the notation presented in Table 1
using the suffixes 1,2 to distinguish between the two situa-
tions. The proof is by contradiction. Lets be the smallest
time at whichA2(s) < A1(s), p < s < q. Let u = min{t|t >
s, A2(t) ≥ A1(t)}. Clearly,u must exist, asA2(q) ≥ A1(q).
(Refer Fig. 12)

Claim 1. a1(t) is non-decreasing,a2(t) non-increasing over
[s,u], and a1(s) > a2(s).

Proof. ∀t, s ≤ t < u, A1(t) (strictly) > A2(t) ≥ D2(t) ≥
D1(t). Hence, there is no concave change point ofA1 in
[s,u), for if t were concave,A1(t) = D1(t). Hence,∀t, s ≤
t < u, a1(t + 1) ≥ a1(t).
Similarly, ∀t, s ≤ t < u, A2(t) < A1(t) ≤ B1(t) ≤ B2(t)
anda2(t) is non-increasing over [s,u].
a1(s) > a2(s) is obvious. (A1(s) > A2(s), A1(s − 1) ≤
A2(s − 1)).

From Claim 1, we have,a1(u) ≥ a1(s) > a2(s) ≥ a2(u).
But, a1(u) < a2(u) (asA1(u) ≤ A2(u), A1(u−1) > A2(u−
1)), and we have a contradiction.

We find the following fact useful in our later proofs.

Fact 1. Let A (A1) represent the optimal curve of trans-
mission for the constraintsD (D1) andB(B1). Let D1 and
B1 both be displaced upwards (downwards,right,left) from
D andB by the same constantk. Then,A1 is also displaced
upwards (downwards, right,left) fromA by the same constant
k.

Proof of Theorem 2

(a) A2(0) = D2(0) = D1(0) = A1(0). Similarly, A2(N) =
A1(N). Applying Theorem 1,A2 dominatesA1 over [0, N].
Let w be a concave critical point ofA2. Then,A2(w) =
D2(w). Also, D2(w) = D1(w) (given) andA2(w) ≥ A1(w)
(A2 dominatesA1). From the above,D1(w) ≥ A1(w). But
for feasibility of A1, A1(w) ≥ D1(w). Hence,A1(w) =
D1(w) andw is a concave critical point ofA1.
(b)(i) ConstructB1′, D1′ by displacingB1,D1 upwards by
k. That is,B1′(t) = B1(t) + k, D1′(t) = D1(t) + k ∀t 0 ≤
t ≤ N . By Fact 1, the optimal schedule for (D1′, B1′) , say
A1′, is displaced upwards fromA1 by k, that is,A1′(t) =
A1(t) + k ∀t, 0 ≤ t ≤ N . It is easily verified thatB1′
dominatesB2 over [0, N], D1′ dominatesD2 over [0, N].
Further,A1′(0) > A2(0), (A1′(0) = A1(0) +k = D1(0) +k =
D2(0) + k = A2(0) + k) and similarly,A1′(N) > A2(N).
Hence, applying Theorem 1,A1′ dominatesA2 over [0, N].
That is,∀t 0 ≤ t ≤ N, A2(t) ≤ A1′(t) = A1(t) + k.
(ii) Let w, p ≤ w ≤ q be a convex critical point ofA2. Then,
A2(w) = B2(w) = B1(w)+k. From (i),A2(w) ≤ A1(w)+k.
Hence, we have,B1(w) ≤ A1(w). But for feasibility ofA1,
A1(w) ≤ B1(w). Hence,A1(w) = B1(w) andw is a convex
critical point of A1.
(c) The proof is similar to (b), except thatB1′, D1′ are
constructed by displacingB1, D1 left by j.

Proof of Theorem 3

B2 dominatesB1 over [q, N], and D2 dominatesD1 over
[q, N]. A2(q) ≥ A1(q). Also, A2(N) = A1(N). (A2(N) =
D2(N) = D1(N) = A1(N)). Hence,A2 dominatesA1 over
[q, N]. Let u be the first concave critical point ofA2 (u > q).
We have,A1(u) ≤ A2(u) = D2(u) = D1(u). But, we have
A1(u) ≥ D1(u) for feasibility of A1, and hence we have
A1(u) = D1(u) = A2(u). If v is the first convex critical point
of A1, v > q, then, similarly, we can showA1(v) = A2(v)(=
B1(v) = B2(v)). Let r = min{u, v}. Then,A1(r) = A2(r).
Now, applying Theorem 1 twice over [r, N], A1 and A2
dominate each other over [r, N]. This is possible only if
A1(t) = A2(t) ∀t, t ≥ r.
Next, it is easy to see that convergence does not occur before
r. If convergence occurs at timep, then,A1(p−1) < A2(p−
1), A1(p) = A2(p) and A1(p + 1) = A2(p + 1). Hence,p is
either a point of rate decrease (concave change point) ofA1
or a point of rate increase (convex change point) ofA2. In
the former case,A2(p) = A1(p) = D1(p) = D2(p) or p is a

232

min{b1,b2}

b

a1 a3 a2

B(t)

D(t)
A(t)

L

B1(t)

Fig. 13. Illustration for proof of Observation 8

concave critical point ofA2. Similarly, in the latter case, it
may be verifiedp is a convex critical point ofA1.

B Derivation of Table 2

Table 2 is derived considering each of four separate cases,
wheref1 may be concave or convex andf2 may be concave
or convex, (f1 and f2 are as discussed in Sect. 5.1). We
consider only the case wheref1 andf2 are both concave.
The other cases may be handled similarly. We assume close
familiarity with the terminology stated in Sect. 5.1.

Observation 1. Let a1 and a2 be concave critical points
of Abmin, with transition buffersb1 and b2, respectively.
Let ∀t, a1 < t < a2 andt ∈ T , the transition buffer fort
be < min{b1, b2}. Let b = maxa1<t<a2,t∈T D(a1) − D(t −
1) + (D(a2)−D(a1))∗(t−a1)

(a2−a1) , with the maximum attained att =
a3 (a3 may not be unique). Then,a3 is a convex critical
point of Abmin, has a transition bufferb, and∀t, a1 < t <
a2 andt ∈ T , the transition buffer fort is ≤ b.

Proof. Let b0 = min{b1, b2}. Let D(t), B(t) represent the
constraints for a client bufferb0, andA(t) the optimal sched-
ule for that buffer size. As by assumption, there are no criti-
cal points in (a1, a2) for client bufferb0, A (refer Fig. 13) is
a straight line over (a1, a2). The effect of reducing the client
buffer below theb0 translates mathematically to displacing
the curveB(t) downwards. By Corollary 1,a1 anda2 con-
tinue to be concave critical points of the optimal schedule
as the buffer decreases. Further, as long as displacingB(t)
downwards does not render the straight line transmission
over (a1, a2) as in A infeasible, no new critical point is
introduced in (a1, a2). An additional convex critical point
is created at that client bufferb where B(t) just touches
the curveA(t) at some time saya3, a1 < a3 < a2. By
Corollary 1,a3 is now a convex critical point in the optimal
schedule calculated for any smaller buffer≤ b, that is the
buffer b is the transition buffer ofa3. Further,∀t such that
a1 < t < a2 and t ∈ T , t has a transition buffer≤ b. It
now remains to calculateb. Let B1(t), D(t) represent the
constraints for bufferb andA1(t) the optimal curve.A1 is
identical toA over the interval (a1, a2).
For a1 < t < a2, we haveB1(t) − A1(t) = B1(t) − A(t)
= [D(t − 1) + b] − [A(a1) + (t−a1)∗(A(a2)−A(a1))

(a2−a1)]

= [D(t − 1) + b] − [D(a1) + (t−a1)∗(D(a2)−D(a1))
(a2−a1)]

(asa1, a2 are concave critical points ofA1).
= b − H(t), where,
H(t) = [D(a1) − D(t − 1)] + (t−a1)∗(D(a2)−D(a1))

(a2−a1) .
But, B1(t) − A1(t) ≥ 0 ∀t, a1 < t < a2, t ∈ T ,
and further,B1(a3) − A1(a3) = 0. Hence, we have,b ≥
H(t),∀t, a1 < t < a2, t ∈ T and b = H(a3). Hence,
b = maxa1<t<a2,t∈T H(t).

Acknowledgements.We are grateful to J.D. Salehi for his constant encour-
agement throughout this work, and for innumerable suggestions and critical
comments on the content and presentation of drafts of this paper. We thank
Jayanta Dey for his encouragement and the anonymous referees of the paper
for relevant remarks. The traces we used were obtained from Mark Garrett
[7], Ed Knightly [8], Marwan Krunz [9] and Oliver Rose [12].

References

1. Le Gall D (1991) MPEG: A video compression standard for multimedia
applications. Commun ACM 34: 46–58

2. Dey JK, Sen S, Kurose JF, Towsley D, Salehi JD (1997) Playback
restart in interactive streaming video applications. In: Proc. IEEE In-
ternational Conference on Multimedia Computing and Systems, June
1997, Ottawa, Canada, pp 458–465

3. Feng W, Jahanian F, Sechrest S (1997) An Optimal Bandwidth Al-
location Strategy for the Delivery of Compressed Prerecorded Video.
Multimedia Syst 5(5): 297–309

4. Feng W, Jahanian F, Sechrest S (1996) Providing VCR functional-
ity in a Constant Quality video-on-demand transportation service. In:
Proc. IEEE International Conference on Multimedia Computing and
Systems, June 1996, Hiroshima, Japan, pp 127–135

5. Feng W, Rexford J (1997) A comparison of bandwidth smoothing
techniques for the transmission of prerecorded compressed video. In:
Proc. IEEE INFOCOM, April 1997, Kobe, Japan, pp 58–66

6. Feng W, Sechrest S (1995) Critical bandwidth allocation for delivery
of compressed video. Comput Commun 18(10): 709–717

7. Garrett M, Willinger W (1994) Analysis, Modelling and Generation of
Self-Similar VBR Video Traffic. In: Proc ACM SIGCOMM, August
1994, London, England, 24(4): 269–280

8. Knightly EW, Wrege DE, Liebeherr J, Zhang H (1995) Fundamen-
tal Limits and Tradeoffs of Providing Deterministic Guarantees to
VBR Video Traffic. In: Proc ACM SIGMETRICS, May 1995, Ottawa,
Canada, 23(1): 98–107

9. Krunz M, Hughes H (1995) A Traffic Model for MPEG-Coded VBR
Streams. In: Proc ACM SIGMETRICS, May 1995, Ottawa, Canada,
23(1): 47–55

10. McManus JM, Ross KW (1996) Video on Demand over ATM: Constant
Rate Transmission and Transport. IEEE J Select Areas Commun 14(6):
1087–1098

11. Rexford J, Sen S, Dey J, Feng W, Kurose J, Stankovic J, Towsley D
(1997) Online Smoothing of Live, Variable-Bit-Rate Video. In: Proc
IEEE NOSSDAV, May 1997, St. Louis, Missouri, pp 249–257

12. Rose O (1995) Statistical properties of MPEG video traffic and their
impact on traffic modelling in ATM systems. In: Proc of the 20th An-
nual Conference on Local Computer Networks, October 1995, Min-
neapolis, Minnesota, pp 397–406

13. Salehi JD, Zhang Z-L, Kurose JF, Towsley D (1996) Supporting Stored
Video: Reducing Rate Variability and End-to-End Resource Require-
ments through Optimal Smoothing. In: Proc ACM SIGMETRICS, May
1996, Philadelphia, Pennsylvania, 24(1): 222–231. An extended ver-
sion appears in IEEE/ACM Trans on Networking 6(4): 397–410, 1998

14. Sanjay G (1997) Work-ahead Smoothing of Video Traffic for Inter-
active Multimedia Applications. Bachelor’s Thesis. Indian Institute of
Technology, Madras, India

233

Sanjay G. Rao received a B.Tech de-
gree in Computer Science and Engineer-
ing from the Indian Institute of Technol-
ogy, Madras, in 1997. He is currently a
doctoral candidate at the School of Com-
puter Science, Carnegie Mellon Univer-
sity. His current interests lie in research
related to wide-area networks, including
multicast routing and support for inte-
grated services.

Dr. S.V. Raghavan is a Professor and
the Chair of the Department of Com-
puter Science and Engineering at the
Indian Institute of Technology, Madras.
For the last 20 years, Dr. Raghavan
has been actively involved in research
and development related to performance
evaluation, networks, multimedia, and
protocol engineering. He was one of the
founding members of the Ernet (Edu-
cation and Research in Computer Net-
working) in India, a joint initiative of
Government of India and United Na-
tions Development Program. His current
projects include development of a Multi-
media Integrated Network Environment

(MINE), encompassing issues arising from mobile computing, high-speed
networks, and operating systems and protocol support for handling multi-
media information. Dr. Raghavan has served as Chair for numerous con-
ferences and committees, and on the editorial boards of Computer Com-
munication Journal of IETE. He is a Fellow of IETE and a Governor of
ICCC.

