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Abstract

We study the asymptotic behavior of solid partitions using transition
matrix Monte Carlo simulations. If p3(n) denotes the number of solid parti-
tions of an integer n, we show that limn→∞ n

−3/4 log p3(n) ∼ 1.822±0.001.
This shows clear deviation from the value 1.7898, attained by MacMahon
numbers m3(n), that was conjectured to hold for solid partitions as well.
In addition, we find estimates for other sub-leading terms in log p3(n). In
a pattern deviating from the asymptotics of line and plane partitions, we
need to add an oscillatory term in addition to the obvious sub-leading
terms. The period of the oscillatory term is proportional to n1/4, the natu-
ral scale in the problem. This new oscillatory term might shed some insight
into why partitions in dimensions greater than two do not admit a simple
generating function.
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1 Introduction

The partitions of integers and their higher dimensional generalizations are simple
to define and yet provide a rich structure that continues to fascinate scientists
by appearing in diverse fields. As the dimensionality of the partitions increases,
our understanding progressively gets reduced. The usual (one-dimensional) par-
titions are the best understood with a generating function due to Euler that
has connections with modular forms. There is an elegant exact formula due
to Hardy-Ramanujan-Rademacher (HRR) that has its origins in an asymptotic
formula for partitions of large integers [1]. The generating function of plane
(two-dimensional) partitions, while known, is not a modular form and one can
obtain its asymptotic behavior, for instance, using the Meinardus method [5, 6].
There is an attempt at a HRR-type formula due to Almkvist which has been ex-
tended recently [2–4]. For dimensions greater than two, starting with solid (three-
dimensional) partitions, no formulae for the generating function are known and
we know the number of such partitions for small values of integers. The largest
known is the number of solid partitions of 72 whose enumeration needed about
half a million CPU hours [7]. This paper addresses another aspect of solid parti-
tions by using Monte Carlo methods to obtain the asymptotic behavior of solid
partitions.

Studying partitions of integers has motivations in various scientific fields, no-
tably in physics (e.g., the q →∞ Potts model, directed compact lattice animals,
crystal growth, Bose-Einstein statistics, dimer coverings (a.k.a. perfect match-
ings), as detailed in Reference [8] and references therein). We discuss two other
applications that are of interest to us and have lead to this collaborative effort.

Even though plane or solid partitions where studied by mathematicians since
the early twentieth century [9], the discovery of quasicrystals in 1984 prompted
renewed interest in these fascinating combinatorial objects, because of the connec-
tion between partitions and Penrose-like random tilings, which have themselves
rapidly been identified as simplified atomistic models of quasicrystals [10, 11].
Enumerating plane, solid, or even generalized partitions [12–17] has become a
popular objective because the resulting extensive configurational entropy has
been identified as a serious candidate to account for quasicrystal thermodynamic
stability against competing crystal phases. Stability might also arise from qua-
sicrystal electronic properties, which also motivated the study of quantum trans-
port in random tilings (see Reference [18] and references therein).

The generating function of d-dimensional partitions naturally appears in the
counting of BPS states (and supersymmetric black holes) for type IIA string the-
ory with target space, Cd+1, as shown by Gopakumar and Vafa [19]. These turn
out to be related to the Hilbert scheme of points on Cd+1 with the corresponding
partitions giving the Euler characteristic of the Hilbert scheme. The generating
functions for more general target spaces, in dimensions two and three, appear as
deformations of the generating function by additional parameters corresponding
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to the Kähler moduli of these spaces [19–21]. For target spaces with dimension
four such as C4, where the possibility of solid partitions and its generating func-
tion appearing, the answers are however not well-understood and are of current
research interest.

The lack of any systematic understanding of solid partitions and their higher
dimensional counterparts has been a hurdle in studies of problems where they
appear. A ray of hope appeared in the form of a conjectures of [8, 22] on the
asymptotics of solid and higher-dimensional partitions. The idea was that a for-
mula guessed by MacMahon for the generating function of higher-dimensional
partitions might correctly reproduce the asymptotic behavior even though it has
been proven to be wrong [23]. The work of [14] suggested that a similar con-
jecture for the configurational entropy based on a similar formula, again due to
MacMahon, was incorrect. This work aims at using high quality Monte Carlo
simulations to establish the asymptotic behavior of solid partitions to test the
conjectures of [8, 22].

The paper is organized as follows. Following the introductory section, in
section 2, we briefly provide the necessary background and definitions for our
problem. Section 3 is the main part of the paper, where we discuss the details
of the Monte Carlo simulation that we used, the motivation for the formula
used in the fit and the results of the fit. Section 3.5 is devoted to showing the
unanticipated appearance of oscillatory behaviour at sub-sub-leading order that
is visible due to the high quality of our data. We conclude in section 5 with
a summary and some remarks. Appendix A focuses on the asymptotic of plane
partitions and in appendix B, we discuss the asymptotics of MacMahon numbers.
Finally, in appendix C, we provide some evidence for oscillatory behaviour for
solid partitions that are restricted to a box.

2 Background

A d-dimensional partition of n is a collection (Xk) of integers – where k is a
meta-index running over Nd – which are weakly decreasing in each direction of
space, and such that ∑

k∈Nd

Xk = n. (2.1)

Let pd(n) denote the number of d-dimensional partitions of n. In this notation,
d = 1 corresponds to the usual partitions, d = 2 corresponds to plane parti-
tions and d = 3 corresponds to solid partitions that are the main focus of this
paper. There is a second representation of a d-dimensional partition as a (d+ 1)-
dimensional Ferrers diagram. A Ferrers diagram for a d-dimensional partition of
n is a collection of n points or nodes, λ = (y1, . . . ,yn), in Zd+1

≥0 satisfying the
condition [23]:
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If the node a = (a1, a2, . . . , ad+1) ∈ λ, then so do all the nodes
y = (y1, y2, . . . , yd+1) with 0 ≤ yi ≤ ai for all i = 1, . . . , d+ 1.

For instance, the Ferrers diagram(
0
0
0
0

0
0
1
0

0
1
0
0

1
0
0
0

1
1
0
0

2
0
0
0

)
,

where each column is a node, represents a solid partition of 6.
The generating function of d-dimensional partitions is defined as follows

Pd(q) = 1 +
∞∑
n=1

pd(n) qn . (2.2)

MacMahon conjectured that P3(q) could be generalized from its plane partition
counterpart [9]. This conjecture has later been disproved by exhibiting a counter-
example [23].

Even though the generating function for solid partitions is not known, it has
been shown that n−(d+1)/d log pd(n) has a finite limit [24], that we denote by αd.
It has later been proposed that even though incorrect, MacMahon’s conjecture
might be asymptotically exact, thus providing the Ansatz value α3 ' 1.78982 in
addition to values for coefficients of the sub-leading terms [8,22]. This Ansatz has
been supported by numerical investigations [8]. The goal of this work is to better
establish the asymptotic behavior of solid partitions in addition to obtaining an
improved estimate for α3.

3 The asymptotics of solid partitions

3.1 The solid partition graph

Consider a directed graph whose vertices are solid partitions. Two vertices, say
λ1 and λ2, of the graph are connected by an edge if the Ferrers diagram of the
vertex λ1 can be obtained from the second vertex, λ2 by the addition or deletion
of a single node. Direct the edge towards the solid partition with larger number
of nodes. This is the solid partition graph. The root vertex of the solid partition
graph is the unique partition with one node and the depth of a given vertex is
the number of nodes in the partition. Let Tot(n) denote the total number of
incoming edges at depth n. For instance, one has Tot(2) = 4 as all four solid
partitions of 2 are connected to the root vertex. Define Tot(1) ≡ 1. Table 1 lists
the values of Tot(n) for n ≤ 40 – these were determined numerically using the
Bratley-McKay algorithm to generate all solid partitions of n and then counting
the number of incoming edges for the generated solid partition [25].

Let λ denote a solid partition of n – we denote this symbolically by λ ` n.
Let n+(λ) denote the number of solid partitions that can reached by adding a
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n Tot(n) n Tot(n) n Tot(n)

1 1 16 1100411 31 19625001436
2 4 17 2245118 32 35765137033
3 16 18 4528212 33 64853219808
4 46 19 9038898 34 117031972499
5 128 20 17868025 35 210211082354
6 332 21 35006932 36 375886565558
7 842 22 68008606 37 669232663688
8 2042 23 131083778 38 1186538314110
9 4846 24 250774482 39 2095236499224

10 11146 25 476372848 40 3685445929502
11 25114 26 898837825
12 55310 27 1685107392
13 119662 28 3139812791
14 254354 29 5816015908
15 532784 30 10712596279

Table 1: Exact values of Tot(n) for n ≤ 40.

node to λ (equivalently the number of outgoing edges at the vertex λ in the solid
partition graph) and n−(λ) denote the number of solid partitions that can be
reached by deleting a node from λ (equivalently the number of incoming edges
at the vertex λ in the solid partition graph). Define N±(n) as follows:

N+(n) :=

∑
λ`n n+(λ)∑

λ`n 1
=

∑
λ`n n+(λ)

p3(n)
,

N−(n) :=

∑
λ`n n−(λ)∑

λ`n 1
=

∑
λ`n n−(λ)

p3(n)
.

(3.1)

Thus N+(n) (resp. N−(n)) counts the average number of outgoing (resp. in-
coming) edges at depth n in the solid partition graph. For n ≥ 1, one has the
identity

N−(n) p3(n) = N+(n− 1) p3(n− 1) . (3.2)

The left hand side of the above equation counts the total number of incoming
edges at depth n i.e, Tot(n) while the right hand side counts the number of
outgoing edges at depth (n− 1) – the equality follows since every outgoing edge
at depth (n − 1) is also an incoming edge at depth n. Given N±(n), we can
recursively obtain p3(n) starting from p3(1) = 1. One thus obtains, for n > 1,

p3(n) =
n−1∏
m=1

N+(m)
N−(m+1)

. (3.3)
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Suppose we know the number of solid partitions of n0, then for n > n0, we can
write

p3(n) =

(
n−1∏
m=n0

N+(m)
N−(m+1)

)
× p3(n0) . (3.4)

For instance, we can choose n0 to be 72 which is the largest exactly known number
of solid partitions [7].

3.2 The Monte Carlo Simulation

The transition matrix Monte Carlo technique used in this work is adapted from
Reference [14]. Consider solid partitions that are restricted to fit into a cubical
box of size B (i.e., k ∈ [0, B − 1]3 and Xk ≤ B for all k or, equivalently, all
coordinates of all nodes are ≤ B). This converts the solid partition graph into
one with finite nodes. The solid partition, fitting into the box, and with the
largest number of nodes is the unique one with B4 nodes (i.e., ∀k ∈ [0, B − 1]3,
Xk = B). Define nrest

± (λ) and N rest
± (n) analogous to the unrestricted partitions.

By tuning an abstract “temperature” (see [14] for further details), the Monte
Carlo program traverses the solid partition graph from depth 1 to some maximum
depth, say nmax and then back to depth 1 several times. In the process, we obtain
estimates for N rest

± (n) as follows:

N rest
+ (n) ∼

〈nrest
+ 〉n

hits(n)
and N rest

− (n) ∼
〈nrest
− 〉n

hits(n)
, (3.5)

where
〈nrest
± 〉n =

∑
λ`n

n±(λ) and hits(n) =
∑
λ`n

1 .

with all the above sums running over partitions λ visited during the Monte Carlo
run. Thus, hits(n) count the total number of solid partitions with n nodes visited
during the run.

In order to estimate statistical errors, we carried out several runs with distinct
random seeds and different values of nmax. We carried out 10 runs each for
nmax = 100, 300 and 25 runs each for nmax = 1500, 2700, 5200, 10200, 15100.
The longest runs were for nmax = 10200, 15100 – each run was about 1000 hours.
This was necessary for us to reduce the statistical errors. The data from the
nmax = 15100 was not used to estimate the asymptotic parameters but as an
independent data set to see the goodness of our fits beyond n = 10200. Let
σ±(n) denote standard deviation of N±(n) for the B = 300 dataset. In figure 1,
we see that σ±/N± lies in the range 5× 10−6 (for low n) to 2.5× 10−5 (for large
n). A similar result is obtained for B = 200 as well.

We need to understand the effects of finite size on the estimates for the asymp-
totic behavior. Intuitively, for n � B4, we expect N±(n) ∼ N rest

± (n) since the
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Figure 1: Statistical Errors in N± – this is estimated from the fluctuations in N±
using the independent MC runs. It is easy to see the different data sets used.

number of solid partitions that do not fit into the box are exponentially small
compared to those that fit into the box. In order to quantitatively estimate finite
size effects, we have carried out two sets of runs with B = 200 and B = 300.
Our fits were carried out for nmax = 10100, thus nmax/B

4 < 10−5 is reasonably
small. We find the finite size effects are comparable to the statistical error in the
parameters. This is consistent with our expectation that finite size effects will
not be significant due to the small value of nmax/B

4.
The chosen values of B are also justified by the fact, exemplified later on

Figure 5 (Left), that a typical partition of n ≈ 105 fits into a box of size B ' 100.
For n ≈ 104, the typical box size will be even smaller, and partitions not fitting
in a box of size B = 200 or more will be extremely rare.

We also tested the error estimates by estimating p3(n) for n ∈ [n0 + 1, 72]
assuming a value for n0. For instance, with n0 = 50, using formula Eq (3.4)
we see that the error is given by adding the statistical errors in N±(m) for all
51 ≤ m ≤ n in quadrature. Thus, for n = 72, the statistical error is 1.5× 10−3%
while the actual devation from p3(72) turned out to be 2.3× 10−4%. We obtain

mc3(72) = 3464283075820104704 ,

p3(72) = 3464274974065172792 .

where we have denoted by mc3(n), the Monte Carlo estimate for p3(n) and un-
derlined the number of digits that are expected to agree based on our error
estimates. The statistical errors in mc3(10000) and mc3(15000) are 0.17% and
0.25% respectively. Note that the error in mc3(n) increases with n due to the
cumulative nature of the statistical errors in N±(m) in Eq. (3.4). This is a
drawback if we wish to estimate parameters in an asymptotic formula for p3(n).
However, this is easily addressed as we will see next.

3.3 Fitting the data

The number of solid partitions is a derived quantity not directly computed by
our Monte Carlo program. As the Monte Carlo program computes N±(n), it is
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better to convert the asymptotic formula for p3(n) into one involving N±(n). We
take the log of Eq. (3.2) to obtain

log p3(n)− log p3(n− 1) = logN+(n− 1)− logN−(n) . (3.6)

The right hand side of the above equation is something involving N±(n) as we
wish. We expect that the asymptotic formula for p3(n) will be of the form

log p3(n) ∼ α3 n
3/4 + β3 n

2/4 + γ3 n
1/4 + δ3 log n+ ε3 . (3.7)

The justification of the above form is as follows. From the work of Bhatia et.
al. [24], we know that n−3/4 log p3(n) → α3, a constant. Extending a rigorously
proved result for plane partitions (d = 2) [26], we also anticipate that the four-
dimensional Ferrers diagram of a random solid partition, at large n, will extend
the typical distance ` ≡ n1/4 in all four directions symmetrically.1 Thus, we see
that log p3(n) grows as `3. It is natural to interpret the `3 term as the first term
in a series in `. For the case of partitions as well as plane partitions, a similar
structure holds albeit with the vanishing of the next to leading coefficient. We do
not assume the vanishing of the sub-leading terms in Monte Carlo fits for plane
partitions as that should be borne out by the data. The log term naturally arises
in deriving the asymptotic formula in these cases as well. Since we carry out
fits to the formula for n ∈ [50, 10100] and wish to determine α3 to three decimal
places, given that 50−3/4 ' 0.05, we see that at low values of n, we do need to
include even the constant term. Of course, the accuracy in the determination of
other parameters will be clearly less than the one for α3.

From our form for the asymptotic formula as given in Eq. (3.7), one can show
that for large n, one has

log

[
p3(n)

p3(n− 1)

]
= log

[
N+(n− 1)

N−(n)

]
∼ 3α3

4
n−1/4 + β3

2
n−1/2 + γ3

4
n−3/4 + δ3 n

−1 .

(3.8)

In the above equation, the coefficient of α3 is the leading term in
[
n3/4 − (n− 1)3/4

]
for large n and so on. Further, the constant term ε3 drops out completely and
thus the data for N±(n) can estimate four of five parameters in the asymptotic
formula for solid partitions. However, we will not use the above formula in our
fits as we wish later to go back to the formula for p3(n) to determine the constant
ε3. We use

log

[
N+(n− 1)

N−(n)

]
∼ α3

[
n3/4

]
3

+ β3
[
n2/4

]
3

+ γ3
[
n1/4

]
3

+ δ3
[

log n
]
3
, (3.9)

1More generally, for a d-dimensional partition, the natural scale is ` = n1/(d+1).
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where by
[
h(n)]p, we mean the first p terms in a power series expansion for

h(n)− h(n− 1) at large n, Thus, one has[
n3/4

]
3

= 3
4
n−1/4 + 3

32
n−5/4 + 5

128
n−9/4 , (3.10)

and so on. Note that both equations (3.8) and (3.9) share the same number of
parameters. However, the fit to (3.9) fixing (α3, β3, γ3, δ3) is the one that is better
suited to estimating ε3 using Eq. (3.7) which contributes mostly at small n. We
also find that a plot of n−3/4 log p3(n) vs n reveals that the values given by using
(3.9) leads to tiny shift in the fitted curve from the actual data. This is due to
the different value of ε3 obtained. Of course, it does not matter if we only wish
to estimate α3 and possibly, the other three constants.

3.4 Results

We carry out three types of fits2 in order to get estimates of the errors on the
parameters.

1. Fit data in the range n ∈ [50, 10100] to the four-parameter formula given
in Eq. (3.9). This determines the values of (α3, β3, γ3, δ3) that we will use
along. We quote the result along with statistical errors.

(α3, β3, γ3, δ3) = (1.82228± 0.00004, 0.06136± 0.0008,

0.999± 0.008,−0.828± 0.003) . (3.11)

The quality of the fit is indicated by the smallness of the statistical er-
rors. These error bars were estimated using the Mathematica fit taking
into account the statistical errors estimated for each point.

2. Next we add the term
[
− 1

4
f n−5/4

]
to the asymptotic formula Eq. (3.9)

and carry out a five-parameter fit to see how the four parameters change.3

We obtain

(α3, β3, γ3, δ3, f) = (1.8215± 0.0001, 0.088± 0.004,

0.60± 0.06,−0.51± 0.04, 1.44± 0.19) . (3.12)

Notice that the statistical errors have increased slightly. However, the values
of (α3, β3, γ3, δ3) have changed a lot more than the statistical error. We use
this change in the parameters to set their errors however continuing to use
the values obtained in item 1. We thus conclude that

(α3, β3, γ3, δ3) = (1.822± 0.001, 0.06± 0.03, 1.0± 0.4,−0.8± 0.3) .

(3.13)

2The fits were carried out using Mathematica’s NonlinearModelFit using weights given by
the statistical error when possible. We have also used FindFit for fits without weights.

3This term corresponds to adding f n−1/4 to Eq. (3.7).
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3. By varying the maximum and minimum values of n, i.e., let n ∈ [Nmin, Nmax]
for the estimates, we study the dependence on our estimates for the four
parameters in Eq. (3.9) repeating the fit described in item 1 above. Keep-
ing Nmin = 50 but varying Nmax from 5000 to 10100, we find that the
changes in the parameters are of the same order as the statistical errors
in Eq. (3.11). Next, we fit data in the range [Nmin, 10100] to the four-
parameter formula given in Eq. (3.9) by varying Nmin from 20 to 100. The
so-obtained values of α are given in Figure 2, together with its expected
value if the Ansatz were correct. We then obtain the average and standard
deviation of the various parameters, notably α3 = 1.8220 ± 0.0006. The
errors in the other parameters is also slightly smaller than in item 2 above.
The oscillatory character of the fitted values in Figure 2 deserves special

20 40 60 80 100
Nmin1.78

1.79

1.80

1.81

1.82

Α3

40 60 80 100
Nmin1.816

1.818

1.820

1.822

1.824

Α3

Figure 2: Fitted values of α3, as defined in Eq. (3.9), in function of Nmin (dots),
together with the conjectured value 1.78982 if the Ansatz were correct (red hor-
izontal line). The box-size is B = 300 and Nmax = 10100. The second graph to
the right is for the same data but for a different choice of scale for the y-axis.

attention, because a bad estimate of the actual value of α3 could be at-
tributed to it, even though it weakens as Nmin increases. This oscillatory
character simply comes from the oscillations of the function log p3(n) itself
(as displayed in Figure 3 and discussed below in further detail) which affects
the fitted parameter values because the fitting function does not anticipate
any subdominant oscillatory term. Their nice close-to-periodic character
when plotted in function of n1/4, especially at small values of n, suggests
that these oscillations are not a numerical artifact.

4. We substitute the values of (α3, β3, γ3, δ3) given in Eq. (3.11) in Eq. (3.7)
and then carrying out a one-parameter fit for n ∈ [50, 100] (our best quality
data) to obtain ε3. We obtain ε3 = −2.24385. We then add a term f n−1 to
Eq. (3.7) and use values given in Eq. (3.12) and carry out a one-parameter
fit determine ε3. We obtain ε3 = −3.12961. We thus obtain the estimate

ε3 = −2.2± 0.9 . (3.14)
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3.5 The oscillatory behaviour

In order to better understand the oscillatory behaviour that we observed in Fig-
ure 2, we define

δ := log
[
N+(n−1)
N−(n)

]
−
(
α3

[
n3/4

]
3

+ β3
[
n2/4

]
3

+ γ3
[
n1/4

]
3

+ δ3
[

log n
]
3

)
, (3.15)

with (α3, β3, γ3, δ3) taken to be given by Eq. (3.11). The quantity δ is the residual
as it measures the difference between the data and the fit. In the graph to the
left in Figure 3, we plot nδ vs n1/4. The oscillations are clear to see even when
the noise4 is larger in magnitude near n = 104. We find that the oscillatory part
can be fitted to the function 0.006 cos[2π(1.817n1/4 − 0.29)]. We therefore define
the subtracted residual, δS, as follows:

δS := δ − 0.006
n

cos[2π(1.817n1/4 − 0.29)] . (3.16)

The graph to the right in Figure 3 shows the errors after subtraction. The
subtracted residuals are consistent with, albeit somewhat smaller than, the noise
seen in Figure 1. This clearly indicates that the oscillatory behaviour that we
observe is not a numerical artifact.

4 5 6 7 8 9 10
n1�4

-0.03

-0.02

-0.01

0.01

0.02

0.03
n∆

Figure 3: A plot of the residual δ multiplied by n, as a function of n1/4.
The box-size is B = 300, Nmin = 50 and Nmax = 10000. The black curve,
0.006 cos[2π(1.817n1/4−0.29)], correctly reproduces the periodic character of the
numerical data. The graph on the right is the plot of the subtracted residual
multiplied by n as a function of n1/4.

What do the oscillations mean for the asymptotic formula Eq. (3.7)? It
implies that we need to modify it as follows

log p3(n) ∼ α3 n
3/4 + β3 n

2/4 + γ3 n
1/4 + δ3 log n+ ε3

+ n−1/4
(
f + g sin[2πνn1/4 + ϕ]

)
. (3.17)

4The statistical noise in nδ is given by n times the estimated statistical error given in
Figure 1. Thus it is around 0.13 for n = 104 but around 0.02 for n = 64. For n1/4 < 4.5, the
magnitude of the oscillations is larger than the statistical noise.
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The additional oscillatory term contributes, to leading order at large n,

πgν

2n
cos[2πνn1/4 + ϕ]

to the asymptotic formula given in Eq. (3.9). Thus we estimate g = 0.0021,
ν = 1.817, ϕ = −0.58π. The additional non-oscillatory term contributes −f

4
n−5/4

which is of lower order in formula (3.9). In Figure 4, to the left we plot our data
for p3(n) for n ≤ 15000 (i.e., the full data set) along with our five-parameter
fit. On the right, we plot the residuals, one with no subtractions and the second
after including the two additional terms given in Eq. (3.17). The unsubtracted
residual shows oscillations while we see a distinct smoothening in the subtracted
residual.

Figure 4: On the left is the plot of n−3/4 log p3(n) vs n (as red dots)
along with the five-parameter fit (as a black curve). The statistical error
in n−3/4 log p3(n) is shown as an inset. On the right we plot the resid-
ual (in blue) and the subtracted residual (in red) obtained by removing
n−1

(
−0.0003 + 0.002 sin[2π(1.817n1/4 − 0.29)]

)
.

Discussion on the possible origin of the oscillatory behaviour

Without any ambition to definitely solve this issue, which is out of the scope of
the present work, we propose that the origin of the oscillations of δ might be as
follows. In Figure 5 (Left), we have represented a typical partition by using its
representation as a collection (Xk)k∈N3 of integers, as defined in Eq. (2.1). We first
consider the plane Π perpendicular to the (1, 1, 1) direction passing through M in
the figure; by symmetry, this plane is tangent to the average surface separating
the 0’s and the 1’s. We denote by xn (resp. yn and zn) the coordinate of its
intersection with the x (resp. y and z) axis along this axis. By symmetry again,
xn = yn = zn and xn represents the typical linear size of a partition of n. It scales
like ` = n1/4 (the natural scale of the problem, as discussed above), and we indeed
measure numerically that xn ' 1.88 n1/4. Thus the observation of Figure 3 (Left)
shows that the oscillations are periodic in xn. More precisely, the fitting curve in
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the figure is of the form nδ = const. cos[1.817(2πn1/4 +ϕ], where ϕ is a dephasing
playing no role at this stage, that is to say nδ = const. cos[0.97(2πxn) + ϕ′] =
const. cos[2πxn/λ + ϕ′]. The period in xn is thus λ ' 1/0.97 ' 1. This strongly
suggests that the observed periodicity in fact comes from the periodicity of the
underlying Z3 lattice when the plane Π progresses in the (1, 1, 1) direction as n
increases. Thus, depending on the position of the tangent plane Π with respect
to the lattice vertices, the number of partitions of n seem to deviate weakly from
the average value given by Eq. (3.7).

This phenomenon can also be discussed in the context of random tilings, which
are an alternative representation of solid partitions [14]. Figure 5 (Right) pro-
vides an example. The figure is the 3D analogous of the “amoebae” first explored
in the plane partition (or perfect matchings) context [26, 27]. It is obtained by
removing from the rhombohedra tiling derived from the left-hand-side partition
the “frozen” (or periodic) regions where at least one node coordinate is equal
either to 0 or to B. When n grows, the amoeba expands in a self-similar fashion
and the period of the observed oscillations correspond to a displacement of the
centers of the 4 amoeba faces along the dashed lines (of ei/3). This could be
related to some putative facetting of amoeba faces near their center.

Alternatively, if 3D random tilings are themselves defined through the cut-
and-project method [11,28], this suggests that all cut-hyperplanes perpendicular
to the (1, 1, 1, 1) direction in Z4 do not exactly play the same role, depending
on their position relatively to the lattice vertices. In terms of configurational en-
tropy [29,30], there are some preferred positions of the cut-hyperplanes in Z4. In
appendix C, we indeed observe similar sub-sub-dominant oscillations near the en-
tropy maximum of the boxed solid partition problem (where the amoeba becomes
a regular octahedron), which highlights their potentially ubiquitous significance
in the solid partition context. This point will have to be confirmed in future
studies.

4 Summary and Concluding Remarks

We can also address a question first raised in Atkin et. al. [23]. Is m3(n) > p3(n)
for all n? If not, when does it first fail? Our data indicates that p3(n) goes past
m3(n) near n = 1425. We obtain

logm3(1425) = 421.091 , logmc3(1425) = 422.85± 0.26 . (4.1)

In computing logmc3(1425), we use formula (3.4) with n0 = 72. This doesn’t
depend on the nature of our fits and appears at values where the statistical errors
are small.

Through our transition matrix Monte Carlo simulations, we saw that Eq.
(3.17) provides a form for the asymptotic formula for solid partitions. This can

12



Figure 5: Left: 3D contour-plot representation of a randomly generated solid
partition of n = 135000. As explained in the text [see Eq. (2.1)], an integer Xk

is attached to each vertex of the N3 lattice (k runs over N3); These integers are
(weakly) decreasing in each direction of space, and their sum is equal to n. The
4 colored curved surfaces separate, from left to right, the 80’s from the 81’s, the
40’s from the 41’s, the 20’s from the 21’s and the 0’s from the 1’s [i.e. for any
k ∈ N3 on the right (resp. left) of this last surface, Xk = 0 (resp. Xk > 0)]. These
surfaces are named “de Bruijn surfaces” in the tiling context [14]. The point M
(blue dot) belongs to this latest surface and to the line ∆ of equation x = y = z
(dashed line). The plane Π (in orange) passes through M and is perpendicular
to ∆ (see text for more details). Right: 3D tiling of rhombohedra encoded by
the same partition. Only the randomized part of the tiling is represented, the
“frozen” regions are omitted (see text). The rhombedra edges have unit length
and are collinear to the four unit vectors (ei)i=1,2,3,4 (pointing from the center
of a regular tetrahedron to its vertices, not shown). The figure has an overall
tetrahedral symmetry, highlighted by the 4 dashed lines collinear to the unit
vectors ei. One of these lines is the image of ∆ in the tiling representation.
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be rewritten as follows:

log p3(n) ∼ α3 ξ
3/4 + β3 ξ

2/4 + γ3 ξ
1/4 + δ3 log ξ + ε3

+ ξ−1/4
(
g sin[2πνξ1/4 + ϕ]

)
+ · · · , (4.2)

where ξ = n+ ζ. The constant ζ is equivalent to f in Eq. (3.17) at large n. The
new feature is the appearance of an oscillating term that appears at “sub-sub-
leading order”. In appendix A, we have looked for and not found such oscillations
in the plane partition case, that is to say in log[p2(n)/p2(n−1))], which is another
manifestation that solid and higher-dimensional partitions display fundamentally
different behaviors and cannot be tackled following similar routes (compare for
example Refs. [14, 30]; [31]). Beyond our numerical observations, these oscilla-
tions will have to be understood. They also potentially represent a guide to
future investigations aiming at exactly enumerating solid partitions of an integer
because we now know that an enumerating formula will have to contain an oscil-
lating factor. We also note that no oscillations were observed for the MacMahon
numbers m3(n) discussed in appendix B.

We obtain the following estimates for the various parameters

(α3, β3, γ3, δ3, ε3) = (1.822± 0.001, 0.06± 0.03, 1.0± 0.4,−0.8± 0.3,−2.2± 0.9) .

In particular, we see that α3 clearly deviates from the Ansatz value of 1.7898
thus disproving the conjectures in [8, 22]. Our value for α3 is within 30σ of the
number quoted in [8]. The deviation is around 1.77% which is smaller than the
4.1% deviation observed in the configuration entropy of partitions restricted to a
box in [14]. The value of β3 is significantly different from the value 0.33 obtained
for the MacMahon numbers m3(n) (see appendix B). The values for the other
parameters are:

(ζ, g, ν, ϕ) = (−0.000226, 1.817, 0.00209,−0.268) . (4.3)

We have not determined the errors in any of them. How good is our asymptotic
formula? Since the above parameters really modify the behavior at small n,
in Figure 6, we plot the percentage error with the exact values of p3(n) for
n ∈ [50, 72] along with Monte Carlo estimates for, i.e., mc3(n) for n ∈ [73, 100]
(this is our best data). We do it with and without the addition of the oscillatory
term and the ζ-shift. Taking these sub-sub-dominant corrections into account
clearly improves the fit quality. The unexpected oscillatory term might shed
some insight in future works into why partitions in dimensions greater than two
do not admit a simple generating function.

Concerning this sub-sub-dominant oscillatory terms, note that if the partitions
are represented as Ferrer diagrams in Z4, we can demonstrate in a similar way as
above that the periodicity of nδ originates from the periodicity of the Z4 lattice in
the (1, 1, 1, 1) direction. If the partitions are now seen as 3D random tilings [14],
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Figure 6: The blue points are the relative error (in our estimate for p3(n)) with
ζ = 0 and no oscillatory piece. The red points clearly show the improvement
obtained on adding the oscillatory term as well as non-zero ζ.

themselves defined through the cut-and-project method [11, 28], this original re-
sult suggests that all cut-hyperplanes perpendicular to the (1, 1, 1, 1) direction in
Z4 do not exactly play the same role, depending on their position relatively to
the lattice vertices. Continuous limit (or coarse-grained) approaches [29, 30] do
not anticipate this fact.

A particularly striking feature of our numerical data, which we have excluded
due to statistical errors, is the occurrence of a maximum of n−3/4 log p3(n) near
n = 104 in Figure 4 (left). Such a break in monotonicity is not exceptional in the
context of random tilings, see e.g. [17]. Having underestimated its role might be
at the origin of erroneous conjectures in earlier numerical works.

Acknowledgments: SG would like to thank Intel India for financially support-
ing the numerical study of solid partitions.

A Asymptotics of Plane Partitions

The asymptotics of plane plane partitions as follows from an application of
Meinardus’ formula is [5, 6]

p2(n) ∼ (2ζ(3))7/36√
6π

n−25/36 exp
(

3
2
(2ζ(3))1/3n2/3 + ζ ′(−1)

)
Thus, one has

n−2/3 log p2(n) ∼ 3
2
(2ζ(3))1/3 + n−2/3

(
− 25

36
log n+ log (2ζ(3))7/36√

6π
+ ζ ′(−1)

)
∼ 2.00945− 0.694444n−2/3 log n− 1.4631n−2/3 (A.1)

The goal of the Monte Carlo simulation is to reproduce the above formula. In
particular, we should see if we can match the constant term to one part in 103.
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Results from Monte Carlo simulations

The Monte Carlo simulations for plane partitions are used to estimate the num-
bers of plane partitions, say, in the range [1, Nmax]. We then compare these
numbers to the exact numbers and see how the numbers improve with increasing
the statistics by increasing the number of flips. Let mc2(n) be the values ob-
tained from the Monte Carlo simulation. We also fit n−2/3 log p2(n) in the range
[50, 2000] with the following formula:

n−2/3 log p2(n) ∼ α2 + β2 n
−1/3 + δ2 n

−2/3 log n+ ε2 n
−2/3 . (A.2)

Since our Monte Carlo simulations estimate N±(n), we use

log
[N+(n−1)

N−(n)

]
∼ α2

[
n2/3

]
2

+ β2
[
n1/3

]
2

+ δ2
[

log n
]
2
, (A.3)

to extract three of the four parameters (α2, β2, δ2, ε2) and then determine ε2 using
Eq. (A.2).

1. Fit data in the range n ∈ [50, 2000] to the three-parameter formula given in
Eq. (A.3). This determines the values of (α2, β2, δ2) that we will use along.
We obtain

(α2, β2, δ2) = (2.00998,−0.0194366,−0.663683) . (A.4)

2. Next we add the term
[
− 1

3
f n−4/3

]
to the asymptotic formula Eq. (A.3)

and carry out a four-parameter fit to see how the three parameters change.5

We obtain

(α2, β2, , δ2, f) = (2.00923,+0.0120124,−0.731848,−0.41608). (A.5)

We take the average of the two sets of numbers and use one half of the
difference as an estimate of the error.

(α2, β2, δ2, f) = (2.0096±0.0004,−0.004±0.02,−0.70±0.03,−0.21±0.21) .
(A.6)

3. We substitute the values of (α2, β2, δ2) given in Eq. (A.4) in Eq. (A.2) and
then carrying out a one-parameter fit for n ∈ [50, 100] to determine ε3. We
obtain ε2 = −1.44372. We then add a term f n−1 to Eq. (A.2) and use
values given in Eq. (A.5) and carry out a one-parameter fit determine ε2.
We obtain ε2 = −1.39798. We thus obtain the estimate

ε2 = −1.423± 0.025 . (A.7)

The error estimates for the four parameters through the Monte Carlo simulations
are consistent with the deviation from the exact values. This provides some
validation for the methods that we used for solid partitions.

5This term corresponds to adding f−1/3 to Eq. (A.2).
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No oscillations for plane partitions

In order to see if the oscillations that we observe are special to solid partitions,
we study the residual in the Monte Carlo data for plane partitions. Since our
Monte Carlo simulations did not give us estimates for the statistical errors, we
used the difference of the exact numbers for plane partitions from the numbers
from our Monte Carlo simulations to provide an estimate of the statistical error.
In Figure 7, we observe that both the residual and our estimated statistical errors
have similar behaviour that is consistent with no oscillations.

Figure 7: On the left is the plot of n times the estimated statistical error vs n1/3.
On the right we plot the n times the residual (in blue) to the fit. There are no
oscillations to be seen and the residual is comparable to the statistical error.

A similar study on exactly enumerated plane partitions (through Mac Mahon’s
formula) led us to the same conclusion.

B Asymptotics of MacMahon numbers

Recall that the formula that MacMahon guessed for the generating function of
solid partitions gives rise to a series of number that we call MacMahon numbers,
m3(n). One has

∞∏
n=1

(1− qn)−
n(n+1)

2 :=
∞∑
n=0

m3(n) qn . (B.1)

In this section, we briefly discuss the asymptotics of these numbers in order to
compare with our results for solid partitions. While these numbers do not have
any relation to solid partitions, we can derive their asymptotics from the above
product formula using Meinardus’ method. One obtains [22]

n−3/4 logm3(n) ∼ 1.78982+
0.333546

n1/4
− 0.0414393√

n
+

(−1.54436− 0.635417 log n)

n3/4

(B.2)
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Assuming that their asymptotic behavior is similar to that of solid partitions,
one can see how well fits to, say the first 1000 MacMahon numbers, agree with
the exact asymptotic formula. The accuracy of these fits will provide some hints
towards the quality of the fits that one may expect for fits using Monte Carlo
data. The fit has five parameters given by the formula

n−3/4 logm3(n) ∼ a+
b

n1/4
+

c√
n

+
(e+ d log n)

n3/4
(B.3)

We observe that the the first 2000 numbers reproduce the leading constant in

a b c d e
Fit to m3[1000] 1.78909 0.348826 −0.348826 −0.584995 −1.42659
Fit to m3[2000] 1.78938 0.343525 −0.142208 −0.598023 −1.4531

Exact 1.78982 0.333546 −0.0414393 −0.635417 −1.54436

Table 2: Results of the fit to the exact MacMahon numbers m3(n) in the range
[50, Nmax]. In column 1, we indicate the value of Nmax in square brackets.

the asymptotic formula with an error of 0.0005. Our numerical study of solid
partitions has used data corresponding to the first 10200 numbers but achieves a
slightly lower accuracy.

C Oscillations of boxed solid partitions near the

entropy maximum

So far we essentially focussed on unbounded partitions of an integer, in other
words partitions restricted to a box of lateral size B � n1/4. We needed to
have a box for computational reasons, but we have discussed that the box has
essentially no incidence. In this context, we have identified original oscillations
of the residuals δ, with a period proportional to the natural scale n1/4, which we
have related to the unexpected sensibility to the underlying lattice. Anticipating
that the same phenomenon might have a similar signature for bounded partitions
[i.e. partitions restricted to a box of size B = O(n1/4)], we have re-examined the
numerical data form Reference [14] as follows. For given values of B and of
n, there are p3(B, n) partitions of n such that all coordinates of all nodes are
≤ B. We then define the partial entropy S(n) ≡ log p3(B, n) and we explore its
behavior near its maximum (at n = B4/2), by opposition to the limit n � B4

(or by symmetry B4 − n � B4) studied so far. Near this maximum, it has
been conjectured that the amoeba of Figure 5 (Right) becomes a regular “arctic”
octahedron [14,32].

The asymptotic expansion, Eq. (3.7), is replaced by the fit of S(n) near its
maximum by a (somewhat arbitrarily) fourth-order polynomial, and the resulting
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Figure 8: Residuals between the numerical entropy S(n) and its fourth-order fit
on the interval [3000, 7000] for B = 10; the black sinusoid is a guide for eyes and
has period 2B3/3 ' 667. Numerical data were kindly provided by the authors of
Reference [14].

residual is displayed in Figure 8 for B = 10. Even though it will have to be
confirmed in future studies, this figure suggests they there exist oscillations. By
analogy with our above findings, we anticipate that there period should be 2B3/3.
Indeed, as discussed in [14], near the entropy maximum, the values of k for
which the integers Xk (as defined in sections 2 and 3.2) are generically non-
vanishing define a finite subset of [0, B − 1]3 (called the “slab” in Reference [14])
of cardinality 2B3/3. This “slab” is the projection of the “arctic” octahedron
on [0, B − 1]3. Increasing (resp. decreasing) all the integers Xk in the slab by
1 thus leads to an increase (resp. decrease) of n ≡

∑
k∈[0,B−1]3 Xk by 2B3/3.

The signature of the underlying lattice is thus expected in this case to lead to a
sub-sub-dominant correction of period 2B3/3 to the entropy S(n), what is indeed
suggested by the figure.

References

[1] G. E. Andrews, The theory of partitions, vol. 2, Cambridge University Press,
1998.

[2] G. Almkvist, Cont. Math. 145 , 21 (1993).

[3] G. Almkvist , J. Exp. Math. 7, 343 (1998).

[4] S. Govindarajan and N. S. Prabhakar.“A superasymptotic formula for the
number of plane partitions”, arXiv preprint arXiv:1311.7227 (2013).

19

http://arxiv.org/abs/1311.7227


[5] L. Mutafchiev and E. Kamenov, Compt. Rend. Acad. Bulg. Sci., 59 No 4,
361 (2006).

[6] E. M. Wright, Quart. J. Math. Oxford, Ser. 2, 177 (1931).

[7] S. Govindarajan and S. Balakrishnan, The Solid Partitions Project,
http://boltzmann.wikdot.com/solid-partitions.

[8] V. Mustonen and R. Rajesh, J. Phys. A: Math. Gen. 36, 6651 (2003).

[9] P. A. MacMahon, Combinatory Analysis (Cambridge University Press, Cam-
bridge, 1916).

[10] D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984).

[11] V. Elser, Phys. Rev. Lett. 54, 1730 (1985).

[12] R. Mosseri and F. Bailly, Int. J. Mod. Phys. B 6&7, 1427 (1993).

[13] N. Destainville, R. Mosseri and F. Bailly, J. Stat. Phys. 102, 147 (2001).

[14] M. Widom, R. Mosseri, N. Destainville and F. Bailly, J. Stat. Phys. 109,
945 (2002).

[15] N. Destainville, R. Mosseri and F. Bailly, Theor. Comp. Sc. 319, 71 (2004).

[16] N. Destainville, M. Widom and R. Mosseri, F. Bailly, J. Stat. Phys. 120,
799 (2005).

[17] M. Hutchinson and M. Widom, arXiv:1306.5977 [math.CO] (2013).

[18] J. Vidal, N. Destainville and R. Mosseri, Phys. Rev. B 68, 172202 (2003).

[19] R. Gopakumar and C. Vafa, ariXiv:hep-th/9809187 (1998).

[20] R. Gopakumar and C. Vafa, arXiv:hep-th/9812127 (1998).

[21] K. Behrend, J. Bryan and B. Szendroi, Inv. Math. 192 111 (2013),

[22] S. Balakrishnan, S. Govindarajan and N. S. Prabhakar, J. Phys. A 45,
055001 (2012).

[23] A.O.L. Atkin, P. Bratley, I.G. MacDonald and K.S. McKay, Proc. Cambridge
Philos. Soc., 63, 1097 (1967).

[24] D.P. Bhatia, M.A. Prasad and D. Arora, J. Phys. A: Math. Gen. 30, 2281
(1997).

[25] P. Bratley and J. K. S. McKay, Commun. ACM 10, 666 (1967) .

20

http://arxiv.org/abs/1306.5977
http://arxiv.org/abs/hep-th/9809187
http://arxiv.org/abs/hep-th/9812127


[26] R. Cerf and R. Kenyon, Comm. Math. Phys. 222, 147 (2001).

[27] R. Kenyon, A. Okounkov and S. Sheffield, Ann. Math. 163, 1019 (2006).

[28] N.G. de Bruijn, Neder. Akad. Wetensch. Indag. Math. 43, 39 (1981); N.G.
de Bruijn, Neder. Akad. Wetensch. Indag. Math. 43, 53 (1981).

[29] C. L. Henley, Random tiling models, in Quasicrystals, the State of the Art,
D. P. Di Vincenzo and P. J. Steingart, eds. (World Scientific, Singapore,
1991 ), p. 429.

[30] N. Destainville, J. Phys. A: Math. Gen. 31 6123 (1998).

[31] A. Björner and R.P. Stanley, A combinatorial miscellany, L’enseignement
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