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We demonstrate a fundamental principle of disturbance tradeoff for quantummeasurements, along
the lines of the celebrated uncertainty principle: The disturbances associated with measurements
performed on distinct yet identically prepared ensembles of systems in a pure state cannot all be
made arbitrarily small. Indeed, we show that the average of the disturbances associated with a set
of projective measurements is strictly greater than zero whenever the associated observables do not
have a common eigenvector. For such measurements, we show an equivalence between disturbance
tradeoff measured in terms of fidelity and the entropic uncertainty tradeoff formulated in terms of
the Tsallis entropy (T2). We also investigate the disturbances associated with the class of non-
projective measurements, where the difference between the disturbance tradeoff and the uncertainty
tradeoff manifests quite clearly.

The uncertainty principle, which is one of the corner-
stones of quantum theory, has had a long history. In its
original formulation by Heisenberg for canonically con-
jugate variables [1], the uncertainty principle was stated
as an effect of the disturbance caused due to a measure-
ment of one observable on a succeeding measurement of
another. However, the subsequent mathematical formu-
lation due to Robertson [2] and Schrödinger [3] in terms
of variances departed from this original interpretation.
Rather, they obtained a non-trivial lower bound on the
product of the variances associated with the measure-
ment of a pair of incompatible observables, performed on
distinct yet identically prepared copies of a given system.
The Robertson-Schrödinger inequality thus expresses a
fundamental limitation as regards the preparation of an
ensemble of systems in identical states, and is therefore a
manifestation of the so-called preparation uncertainty [4].

Along the same lines, the more recent entropic formu-
lations of the uncertainty principle [5] also demonstrate
the existence of a fundamental tradeoff for the uncer-
tainties associated with independent measurements of in-
compatible observables on identically prepared ensemble
of systems. Entropic uncertainty relations (EURs) have
been obtained for specific classes of observables for both
the Shannon and Rényi entropies [6–14], as well as for
the Tsallis entropies [15–17].

Here, we prove the existence of a similar principle of
tradeoff for the disturbances associated with the measure-
ments of a set of observables. It is a fundamental feature
of quantum theory that when an observable is measured
on an ensemble of systems, the density operator of the
resulting ensemble is in general different from that prior
to the measurement. The distance between these two
density operators is indeed a measure of the disturbance
due to measurement. Different measures of distance be-
tween density operators [18] give rise to different mea-
sures of disturbance. We are thus lead to a class of dis-
turbance measures which have been used recently in the
context of quantifying incompatibility of a pair of observ-

ables [19]. In terms of this class of disturbance measures,
we demonstrate the existence of a fundamental tradeoff
principle for the disturbances associated with quantum
measurements performed on distinct yet identically pre-
pared copies of a pure state.

For the class of projective measurements considered in
standard quantum theory, we show that the average of
the disturbances associated with a set of such measure-
ments is strictly greater than zero whenever the associ-
ated set of observables do not have a common eigenvec-
tor. In the particular case when the disturbance is char-
acterized by the square of the fidelity function, we show
a mathematical equivalence between the disturbance due
to the measurement of an observable on a pure state and
the uncertainty as quantified by the Tsallis entropy (T2)
of order 2 of the probability distribution over the out-
comes of such a measurement. Our work thus provides
a new operational significance to the T2 entropy in the
context of quantum information theory. We make use of
some of the known results on EURs to obtain disturbance
tradeoff relations for specific classes of observables. We
also prove an optimal disturbance tradeoff relation for a
pair of qubit observables, which is based on a new, tight
T2 EUR.

When we consider the general class of observables given
by positive operator valued measures (POVMs), the as-
sociated measurements are characterized by completely
positive (CP) instruments. For this general class of non-
projective measurements we show that the disturbance
and uncertainty tradeoffs are significantly different; they
seem to capture different aspects of the mutual incom-
patibility of a set of measurements.

It may be noted that uncertainty relations have also
been studied in the successive measurement scenario,
both in the form of entropic relations [20, 21], and in
the form of error-disturbance relations [4, 22–24] that are
in line with Heisenberg’s original interpretation of the
uncertainty principle. In contrast, here we look at the
disturbances associated with distinctmeasurements of in-
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compatible observables on identically prepared ensembles
of systems. Our work thus brings to light a completely
novel aspect of measurement-induced-disturbance: quan-
tum theory places a fundamental constraint on these dis-
turbances even when the corresponding measurements
are made on distinct copies of a state.
The rest of the paper is organized as follows. We define

the class of disturbance measures in Sec. I and derive the
tradeoff principle for projective measurements in Sec. II.
We discuss the equivalence between the fidelity-based
measure and the T2 entropy in Sec. II A, using which
we obtain fidelity-based disturbance tradeoff relations for
specific classes of observables in Sec. II B. In Sec. III we
prove an optimal tradeoff relation for a pair of qubit ob-
servables. Finally, we discuss the disturbance tradeoff
principle for non-projective measurements in Sec. IV.

I. DISTURBANCE MEASURES FOR

QUANTUM MEASUREMENTS

We begin with a brief review of the mathematical for-
malism of quantum measurements with a discrete set
of outcomes. In standard quantum theory, they cor-
respond to observables which are self-adjoint operators
with purely discrete spectra. Any such observable A has
a spectral resolution A =

∑

i aiP
A
i , where {PAi } are or-

thogonal projectors. Measurement of such an observable
A transforms the state ρ, as per the von Neumann-Lüders
collapse postulate, to ΦA(ρ) =

∑

i P
A
i ρP

A
i .

More generally, a quantum observable A with discrete
outcomes is described by a collection of positive opera-
tors {0 ≤ Ai ≤ I} that satisfy

∑

iAi = I. The probabil-
ity of obtaining outcome i when measuring observable A
in state ρ is given by tr[ρAi]. For such general observ-
ables given by positive operator valued (POV) measures
A ∼ {Ai}, there is no canonical specification of the post-
measurement state; the associated measurement trans-
formation can now be chosen as any CP instrument ΦA

implementing the POVM A [25].
A CP instrument ΦA is a collection of completely posi-

tive linear maps ΦA
i such that the probability of realizing

outcome i is given by tr[ΦA
i (ρ)] = tr[ρAi], for all states ρ.

The overall transformation of state ρ by instrument ΦA

is described by a quantum channel, that is, a completely
positive trace-preserving (CPTP) map (also denoted by
ΦA):

ΦA(ρ) =
∑

i

ΦA
i (ρ).

It is well known that any CPTP channel can be repre-

sented in the form ΦA(ρ) =
∑

iKiρK
†
i , where the Kraus

operators {Ki} satisfy
∑

iK
†
iKi = I.

The same observable can indeed be implemented by
several different instruments. One simple implemen-
tation of a measurement of observable A ∼ {Ai} is
given by the Lüders instrument ΦA

L , in which the post-
measurement state after a measurement of observable A

on state ρ is given by

ΦA
L (ρ) =

∑

i

A
1/2
i ρA

1/2
i .

For a general quantum measurement on an ensemble of
systems in state ρ, the post-measurement state ΦA(ρ) of
the ensemble is thus described via the action of a CPTP
map ΦA, often called the measurement channel. The
distance between the states ρ and ΦA(ρ) is a valid mea-
sure of the disturbance caused to state ρ by a measure-
ment of A. The disturbance due to the measurement A
on ρ can therefore be estimated by any of the follow-
ing measures [18, 19]: the trace-distance D1

(

ΦA(ρ), ρ
)

,

the fidelity-based distance DF (Φ
A(ρ), ρ), or the operator

norm ‖ ΦA(ρ)− ρ ‖. We formally define the correspond-
ing disturbance measures here.

D1(A; ρ) ≡
1

2
tr
∣

∣ΦA(ρ)− ρ
∣

∣

DF (A; ρ) ≡ 1− F 2[ΦA(ρ), ρ]

D∞(A; ρ) ≡ ‖ ΦA(ρ)− ρ ‖ . (1)

Note that all three disturbance measures satisfy 0 ≤
Dα(A; ρ) ≤ 1, α ∈ {1, F,∞}, and that Dα(A; ρ) = 0
iff ΦA(ρ) = ρ.
In the following Lemma, we state, for different classes

of measurements, the necessary and sufficient conditions
for a pure state to be left undisturbed by a given mea-
surement.

Lemma 1 (Zero-disturbance conditions for pure states). (a)
For a projective measurement associated with a
self-adjoint operator A with a purely discrete
spectrum, Dα(A; |ψ〉) = 0 (α ∈ {1, F,∞}) if and
only if |ψ〉 is an eigenstate of A.

(b) If A ∼ {Ai} is a POVM implemented by the Lüders
channel ΦA

L , Dα(A; |ψ〉) = 0 (α ∈ {1, F,∞}) if and
only if |ψ〉 is a common eigenstate of the operators
{Ai}.

(c) If A is a POVM implemented by a general CP

instrument ΦA(ρ) =
∑

iKiρK
†
i , Dα(A; |ψ〉) =

0 (α ∈ {1, F,∞}) if and only if the state |ψ〉 satis-
fies

∑

i

|〈ψ|Ki|ψ〉|
2 = 1.

Proof. Let A be a projective measurement. By defini-
tion, Dα(ρ, σ) = 0 if and only if ρ = σ. Therefore,
Dα(A; |ψ〉) = 0 if and only if ΦA(|ψ〉〈ψ|) = |ψ〉〈ψ|. This
is equivalent to

∑

i〈(ψ|P
A
i |ψ〉)2 = 1, which proves the

part (a) of the Lemma.
For a POVM A ∼ {Ai} which is implemented by a

Lüders instrument ΦA
L , the disturbance vanishes if and

only if,
∑

i

A
1/2
i |ψ〉〈ψ|A

1/2
i = |ψ〉〈ψ|.
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This is equivalent to the condition that [Ai, |ψ〉〈ψ|] = 0
for all Ai [26, 27]. Therefore, Dα(A; |ψ〉) = 0 iff the state
|ψ〉 is a common eigenstate of all the Ai’s.
Finally, for a POVM A implemented by a general CP

instrument ΦA, the disturbance Dα(A; |ψ〉) = 0 iff

∑

i

Ki|ψ〉〈ψ|K
†
i = |ψ〉〈ψ|

⇔
∑

i

|〈ψ|Ki|ψ〉|
2 = 1. (2)

�

II. DISTURBANCE TRADEOFF PRINCIPLE

FOR PROJECTIVE MEASUREMENTS

In this and the following section we restrict our atten-
tion to projective measurements that are associated with
self-adjoint operators with purely discrete spectra. We
first note the following property of the average distur-
bance of a pair of observables.

Lemma 2. For a pair of observables A and B with purely
discrete spectra, define the quantity

dα(A,B) ≡ inf
|ψ〉

1

2
[Dα(A; |ψ〉) +Dα(B; |ψ〉)] . (3)

Then, 0 ≤ dα(A,B) ≤ 1 (α ∈ {1, F,∞}), with
dα(A,B) = 0 if and only if A and B have a common
eigenvector.

Proof. The first part simply follows from the fact that
0 ≤ Dα(X ; |ψ〉) ≤ 1 for X = A,B, for α ∈ {1, F,∞}.
Next, we know from Lemma 1 that the individual distur-
bances vanish only for eigenstates of the corresponding
observables. Therefore the average vanishes if and only
if there exists a common eigenvector of A and B. �

This implies the following disturbance tradeoff principle:
For any two observables A and B with purely discrete
spectra which do not have any common eignevector, there
exists a quantity dα(A,B) > 0, such that for any pure
state |ψ〉, the average of the disturbances due to measure-
ments of A and B (performed independently, on identi-
cally prepared copies of |ψ〉) is greater than or equal to
dα(A,B).
In other words, the disturbances due to measurements

of incompatible observables A and B on any pure state
cannot both be made arbitrarily small; if one is small, the
other must necessarily be of the order of dα(A,B), even
though the measurements are performed independently,
on identically prepared copies of any given pure state.
Mathematically, this may be stated as,

1

2
[Dα(A; |ψ〉) +Dα(B; |ψ〉)] ≥ dα(A,B) > 0, (4)

for all pure states |ψ〉 and observables A and B which do
not have any common eigenvector.

More generally, a disturbance relation for a set of ob-
servables {A1, A2, . . . , AN} is a state-independent lower
bound of the form

1

N

N
∑

i=1

Dα(Ai; |ψ〉) ≥ dα(A1, . . . , AN ), ∀|ψ〉.

A simple extension of Lemma 2 proves that
dα(A1, . . . , AN ) > 0 for a set of observables that
do not have any common eigenvector.
It should be noted that the above disturbance tradeoff

principle holds only for pure state ensembles. If we take
into consideration mixed states as well, then we have for
instance the maximally mixed state I

d in d-dimensions,
which is not disturbed by the measurement of any ob-
servable! This would be so whatever be the measure of
disturbance that one employs.
Finally, we note that though we have formulated the

tradeoff principle using a specific class of distance mea-
sures Dα, such a tradeoff principle holds for any distur-
bance measure which is based on a distance D(ρ, σ) sat-
isfying D(ρ, σ) = 0 iff ρ = σ.
The disturbance tradeoff principle demonstrated above

for projective measurements seems to bear a close resem-
blance to the well known uncertainty tradeoff principle,
especially since the lower bounds in both cases vanish iff
the set of observables under consideration have a com-
mon eigenvector. Here, it should first be noted that the
disturbance associated with a measurement as defined in
Eq. (1) does not involve the probabilities for obtaining
different outcomes in the measurement. On the other
hand, the various entropies which are used to quantify
uncertainty measure the spread in the probability distri-
bution over the outcomes. Thus, there is no obvious rela-
tion between the disturbance caused by a measurement
and the uncertainty or the “spread” in the probability
distribution over its outcomes.
In the case of projective measurements, it so happens

that the eigenstates of the osbervable are the states which
are left undisturbed by the measurement, and, they are
also the states in which the spread of the probability dis-
tribution is zero. In other words, for projective measure-
ments, the pure states with zero disturbance are also the
states of zero uncertainty. We shall later see that there is
no such relation between the disturbance and uncertainty
for general, non-projective measurements.
For the case of projective measurements, we now show

that there is in fact a mathematical equivalence between
a specific disturbance measureDF (A; |ψ〉) and the Tsallis
entropy T2(A; |ψ〉) which is one of the standard measures
of uncertainty.

A. Fidelity-based Disturbance and T2 Entropic

Uncertainty

It is easy to see that there is a mathematical relation
between the disturbance caused by a measurement of ob-
servable A =

∑

i aiP
A
i on state |ψ〉, as quantified by the
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fidelity-based measure DF , and the spread of the prob-
ability distribution over the outcomes of a measurement
of A on |ψ〉. From Eq. (1), we have,

DF (A; |ψ〉) = 1− F 2[ΦA(|ψ〉〈ψ|), |ψ〉〈ψ|]

= 1−
∑

i

(

pA|ψ〉(i)
)2

, (5)

where pA|ψ〉(i) ≡ 〈ψ|PAi |ψ〉 is the probability of obtaining

outcome i.
Recall that the Tsallis entropy [15] Tβ({p(i)}) of a dis-

crete probability distribution {p(i)}, for any real β > 0
(β 6= 1), is defined as:

Tβ({p(i)}) =
1

1− β

(

∑

i

p(i)β − 1

)

. (6)

In the limit β → 1 the Tsallis entropy T1 is the same
as the Shannon entropy: T1({p(i)}) = −

∑

i p(i) log p(i).
For d-dimensional distributions the Tsallis entropies sat-
isfy,

0 ≤ Tβ({p(i)}) ≤
d1−β − 1

1− β
.

In particular,

0 ≤ T2({pi}) ≤ 1−
1

d
,

where the lower bound is attained for pi = δik for some
k, and, the upper bound, when pi =

1

d , ∀i.
The Tβ entropy defined in Eq. (6) is a non-extensive

entropy originally developed by Tsallis in the context of
statistical physics [15]. The Tsallis entropies are con-
cave for the entire range of β ∈ (0,∞) [28]. Similar to
the Shannon and Rényi entropies, the Tsallis entropies
Tβ(A; |ψ〉) of the probability distribution pAψ(i) over the
outcomes of a measurement of an observable A have been
widely used to quantify the uncertainty associated with
the outcome of a measurement of A in state |ψ〉. For
instance, the uncertainty principle for canonically conju-
gate observables has been reformulated in terms of the
Tsallis entropies [16]. More recently, Tsallis entropic un-
certainty relations have been obtained for specific classes
of observables in finite dimensions [17, 29–31].
It is easy to see from Eq. (5), that the disturbance mea-

sure DF (A; |ψ〉) is indeed the same as the T2-entropy of
the probability distribution of the outcomes of a mea-
surement of observable A on state |ψ〉:

DF (A; |ψ〉) = 1−
∑

i

(pA|ψ〉(i))
2 = T2(A; |ψ〉). (7)

Both the disturbance DF (A; |ψ〉) and the uncertainty
T2(A; |ψ〉) vanish when |ψ〉 is an eigenstate of A. For a
non-degenerate observable A in d-dimensions, both the
disturbance and the uncertainty attain the maximum
value

(

1− 1

d

)

when |ψ〉 is mutually unbiased with respect
to the eigenstates of A.

It may however be noted that this interesting equiva-
lence between the fidelity-based measure of disturbance
and the uncertainty measure given by the T2 Tsallis en-
tropy holds only for pure states. For mixed states, it
follows from Eqs. (1) and (5) that the disturbance is in
general less than the corresponding T2 entropy.

B. Disturbance Tradeoffs for specific classes of

observables

Using the equivalence in Eq. (7), we can directly ob-
tain disturbance tradeoff inequalities for those classes of
observables for which a T2 EUR can be obtained. In par-
ticular, here we show disturbance tradeoff relations for
(a) a set of N mutually unbiased bases (MUBs), and, (b)
a set of dichotomic anti-commuting observables.
(a) Let Bm ≡ {|im〉, i = 1, . . . , d} (m = 1, . . . , N) de-

note a set of N MUBs in d-dimensions. Recall that two
bases Bm,Bn are said to be mutually unbiased if their
respective basis vectors satisfy,

|〈im|jn〉|
2 =

1

d
, ∀i, j.

Let pBm

|ψ〉(i) = |〈im|ψ〉|2 denote the probability of obtain-

ing the ith outcome while measuring Bm on a pure state
|ψ〉. Then, Wu et al. show that [32],

d
∑

i=1

N
∑

m=1

(

pBm

|ψ〉 (i)
)2

≤ 1 +
N − 1

d
. (8)

This immediately implies the following disturbance
tradeoff relation for a set of N MUBs in d-dimensions:

1

N

N
∑

m=1

DF (Bm; |ψ〉) ≥

(

1−
1

N

)(

1−
1

d

)

. (9)

In dimensions where a complete set of (d+1) MUBs exist,
it is known that Eq. (8) is in fact an exact equality for
the full set of (d + 1) MUBs [10, 33]. Correspondingly,
the disturbance tradeoff relation in Eq. (9) becomes an
exact equality for a complete set of (d+ 1) MUBs.
(b) Let {A1, A2, . . . , AN} be a set of pairwise anticom-

muting operators with eigenvalues {±1}:

{Aj , Ak} = 0 ∀j 6= k, (Ai)
2 = I ∀i = 1, . . . , N. (10)

Let P+

i and P−
i denote the projectors onto the posi-

tive and negative eigenspaces respectively, of observable
Ai. Correspondingly, pAi

|ψ〉(±) = 〈ψ|P±
i |ψ〉 are the prob-

abilities of obtaining values ±1 while measuring Ai in
state |ψ〉. We obtain a disturbance tradeoff relation for
such a set of dichotomic, anticommuting observables. We
merely state the relation here and refer to the appendix
(Sec. B) for the proof.
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Theorem 3. For a set of N anticommuting observables
{A1, A2, . . . , AN} defined in Eq. (10),

1

N

N
∑

i=1

DF (Ai; |ψ〉) ≥
1

2

(

1−
1

N

)

. (11)

As a particular instance of Eq. (9) and Eq. (11), we
have the elegant tradeoff relation for the disturbances
associated with measurements of the spin components
σX , σY and σZ in d = 2:

DF (σX ; |ψ〉) +DF (σY |ψ〉) +DF (σZ ; |ψ〉) = 1. (12)

The corresponding T2 EUR has been derived in [17].
Finally, we note that the disturbance tradeoff rela-

tions for the fidelity-based disturbance measure DF im-
ply similar disturbance tradeoff relations for the D1 mea-
sure. This follows from the fact that for pure states,
D1(A; |ψ〉) ≥ DF (A; |ψ〉) [18], so that the lower bound
(4) for the average fidelity-based disturbance is also a
lower bound on the average D1 disturbance.

III. OPTIMAL DISTURBANCE TRADEOFF

RELATION FOR A PAIR OF QUBIT

OBSERVABLES

We demonstrate the following optimal disturbance
tradeoff relation for any pair of observables in a two-
dimensional Hilbert space.

Theorem 4. For a pair of qubit observables A,B
with discrete spectra A =

∑2

i=1
ai|ai〉〈ai|, B =

∑2

j=1
bj|bj〉〈bj |, and any pure state |ψ〉 ∈ C2,

1

2
[DF (A; |ψ〉) +DF (B; |ψ〉)] ≥

1

2
(1− c2), (13)

where c ≡ maxi,j=1,2 |〈ai|bj〉|.

The problem of finding the lower bound on the aver-
age disturbance simplifies considerably once we use the
Bloch sphere representation for qubit observables. In
other words, we parameterize A and B in terms of unit

vectors ~a,~b ∈ R3 and real parameters {αi, βi} as follows:

A = α1I+α2~a.~σ and B = β1I+ β2~b.~σ. The quantity c is
then given by

c =

√

1 + ~a.~b

2
, (~a.~b > 0); c =

√

1− ~a.~b

2
, (~a.~b < 0) .

A similar approach has been used to obtain optimal
entropic uncertainty relations for a pair of qubit observ-
ables, both in the case of the Shannon entropy [12, 34]
and the collision entropy [35]. Further details of our proof
can be found in the appendix (Sec. A).
We also show that the bound in Eq. (13) is tight. When

(~a.~b)2 = 1, c = 0; A and B commute and the RHS of
(13) reduces to 0. This lower bound is attained for the

common eigenstates of A,B. When ~a.~b = 0, c = 1√
2
;

A and B are mutually unbiased. The bound in (13) is
1

4
, which is attained for any eigenstate of A or B. For

any other value of ~a.~b, the lower bound is attained for
the states whose Bloch vectors bisect the angle between

~a and ~b. The minimizing states are thus given by

|ψ±〉〈ψ±| =
1

2

(

I+

[

~a±~b

2c

]

.~σ

)

. (14)

Since our disturbance measure DF (A; |ψ〉) is in fact
the same as the entropy T2(A; |ψ〉), the tradeoff relation
in Eq. (13) is nothing but a tight entropic uncertainty
relation for the T2 entropy:

1

2
[T2(A; |ψ〉) + T2(B; |ψ〉)] ≥

1

2
(1− c2), (15)

Our result for T2 assumes importance in the light of the
fact that such optimal analytical bounds are known only
for a handful of entropic functions, namely, the Rényi en-
tropies H2 [35], H1/2, and the Tsallis entropy T1/2 [31].
For the Shannon entropy, there is in general only a nu-
merical estimate of the bound [12, 34].

IV. DISTURBANCE TRADEOFF AND

UNCERTAINTY TRADEOFF FOR

NON-PROJECTIVE MEASUREMENTS

We now consider the general discrete observables char-
acterized by POV measures and associated measurement
transformations characterized by CP instruments. For
this general class of measurements, we show that while
the uncertainty and disturbance tradeoffs are both oper-
ative, they significantly differ from each other. We first
note the following necessary and sufficient condition for
zero uncertainty tradeoff for a pair of POVMs. The well
known Shannon EUR lower bound for POVMs [36] is
consistent with this condition.

Lemma 5. Let A ∼ {Ai} and B ∼ {Bi} be two POVMs.
If S is any suitable entropy measure, S(A; |ψ〉) =
S({〈ψ|Ai|ψ〉}) and S(B; |ψ〉) = S({〈ψ|Bi|ψ〉}) are the
corresponding uncertainties of A and B in state |ψ〉.
Then, the lower bound on the average uncertainty,

cS(A,B) = inf
|ψ〉

1

2
[S(A; |ψ〉) + S(B; |ψ〉)] ,

vanishes iff there exists a state |ψ〉 such that Ak|ψ〉 =
Bl|ψ〉 = |ψ〉, for some k, l.

Proof. By the standard property of any entropic measure
S, cS(A,B) = 0 iff 〈ψ|Ai|ψ〉 = δik and 〈ψ|Bj |ψ〉 = δjl
for some k, l. The above result then follows from the
property of POVMs that 0 ≤ Ai, Bj ≤ I and

∑

iAi =
∑

j Bj = I. �
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While the uncertainty tradeoff for a pair of POVM ob-
servables depends only on the positive operators char-
acterizing the observables, the associated disturbance
tradeoff crucially depends on the CP instruments which
implement the measurements of these observables. We
now state the basic result concerning the disturbance
tradeoff principle for such observables.

Theorem 6. For a pair of discrete POVMs A ∼ {Ai}
and B ∼ {Bj}, whose measurements are implemented
by appropriate CP instruments ΦA and ΦB, the average
disturbance

dα(A,B) ≡ inf
|ψ〉

1

2
[Dα(A; |ψ〉) +Dα(B; |ψ〉)] , (16)

satisfies 0 ≤ dα(A,B) ≤ 1 (α ∈ {1, F,∞}). Further, if
the measurements of A and B are implemented by Lüders
channels ΦA

L and ΦB
L, then,

(i) dα(A,B) = 0 if and only if all the positive operators
{A1, A2, . . . , B1, B2, . . .} have a common eigenvec-
tor.

(ii) For any suitable entropy measure S, cS(A,B) =
0 ⇒ dα(A,B) = 0, but not vice-versa.

Proof. The fact that 0 ≤ dα(A,B) ≤ 1 follows from
the fact that 0 ≤ Dα(X ; |ψ〉) ≤ 1 for X = A,B, for
α ∈ {1, F,∞}. For POVMs realized by Lüders chan-
nels, we know from Lemma 1 that their individual dis-
turbances vanish only in a common eigenstate of the POV
elements. Hence, dα(A,B) = 0 if and only if there ex-
ists a common eigenvector of all the positive operators
{A1, A2, . . . , B1, B2, . . .}.
From Lemma 5 we know that cS(A,B) = 0 iff there

exists a state |ψ〉 such that Ak|ψ〉 = Bl|ψ〉 = |ψ〉, for
some k, l. From the definition of POVMs this implies
that Ai|ψ〉 = δik|ψ〉 and Bj |ψ〉 = δjl|ψ〉. In other
words, |ψ〉 is a common eigenvector of all the positive
operators {A1, A2, . . . , B1, B2, . . .}. Thus for a pair of
Lüders instruments we see that cS(A,B) = 0 implies that
dS(A,B) = 0.
However, dα(A,B) can vanish even when the uncer-

tainty tradeoff is strictly positive. We demonstrate this
with an example in the appendix (Sec. C). �

We have shown above that the disturbance tradeoff for
a pair of Lüders POVMs vanishes whenever the corre-
sponding entropic uncertainty tradeoff vanishes, but not
vice-versa. We can illustrate this further by comparing
the fidelity-based disturbance measure DF (A; |ψ〉) for a
POVM A implemented by a Lüders channel ΦA mea-
sured on state |ψ〉, with the T2 entropy of the corre-
sponding probability distribution. Unlike in the case of

projective measurements, the fidelity-based disturbance
is less than or equal to the Tsallis T2 entropy.

DF (A; |ψ〉) = 1− F 2[
∑

i

A
1/2
i |ψ〉〈ψ|A

1/2
i , |ψ〉〈ψ|]

= 1−
∑

i

〈ψ|A
1/2
i |ψ〉2

≤ 1−
∑

i

〈ψ|Ai|ψ〉
2 = T2(A; |ψ〉). (17)

Thus for any state |ψ〉, T2(A; |ψ〉) = 0 implies
DF (A; |ψ〉) = 0.

Furthermore, using non-projective measurements
which are more general than the Lüders class, we can con-
struct examples where the uncertainty tradeoff cS(A,B)
vanishes for a particular state |ψ〉, but the disturbances
Dα(A; |ψ〉) and D(B; |ψ〉) are both strictly positive.

Thus we see that for non-projective measurements, the
disturbance and uncertainty measures behave very dif-
ferently. Hence, the disturbance tradeoff and the uncer-
tainty tradeoff are two independent principles which re-
flect different aspects of incompatibility of quantum mea-
surements.

V. CONCLUDING REMARKS

To summarize, we demonstrate a fundamental prin-
ciple of disturbance tradeoff for incompatible quantum
measurements. The existence of such a tradeoff prin-
ciple implies that quantum theory places a fundamental
restriction on the disturbances associated with a set of in-
compatible measurements, even when they are performed
on distinct, identically prepared copies of a pure state.

Though disturbance and uncertainty are operationally
very different concepts, for the class of projective mea-
surements we prove a mathematical equivalence between
the fidelity-based disturbance measure and the T2 Tsallis
entropy for pure states. Our work thus provides a new
operational significance to the Tsallis entropy in the con-
text of quantum foundations and quantum information
theory. We also demonstrate a disturbance tradeoff prin-
ciple for non-projective measurements and show how it is
distinct from the uncertainty tradeoff for such measure-
ments.

Our results thus bring to light an interesting aspect
of incompatibility in quantum theory, namely, that over
and in addition to the tradeoff in uncertainties, there is a
tradeoff in the measurement-induced-disturbances also.
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Appendix A: Proof of optimal T2 EUR for qubit

observables

The proof of Theorem 4 is based on the following opti-
mal entropic uncertainty relation (EUR) in terms of the
Tsallis entropy T2, for a pair of qubit observables. Op-
timal EURs for the Tsallis entropies Tα have only been
obtained for α = 1

2
, 1 [12, 31, 34] thus far.

Theorem 7. For a pair of qubit observables A,B
with discrete spectra A =

∑2

i=1
ai|ai〉〈ai|, B =

∑2

j=1
bj |bj〉〈bj |, and any state ρ,

inf
ρ

1

2
[T2(A; ρ) + T2(B; ρ)] ≥

1

2
(1− c2), (A1)

where c ≡ maxi,j=1,2 |〈ai|bj〉|.

Proof. Since the T2 entropy is concave, it suffices to min-
imize the sum of entropies over pure states. Thus, the
quantity we seek to evaluate is:

c(A,B) ≡
1

2
inf
|ψ〉

[T2(A; |ψ〉) + T2(B; |ψ〉)] (A2)

= inf
|ψ〉

[

1−
1

2

(

∑

i

(

pA|ψ〉(i)
)2

+
∑

i

(

pB|ψ〉(i)
)2

)]

Let A and B have an associated Bloch sphere repre-

sentation in terms of unit vectors ~a,~b ∈ R3. Specifically,

A = α1I+ α2~a.~σ; B = β1I+ β2~b.~σ,

where, {αi, βi} are real parameters and ~σ = (σX , σY , σZ)
denote the Pauli matrices and I denotes the 2×2 identity
matrix. Any pure state can similarly be denoted in terms
of a unit vector ~r ∈ R3, as |ψ〉〈ψ| = 1

2
(I+ ~r.~σ).

Rewriting the probabilities in terms of the vectors ~a,~b
and ~r, the quantity in Eq. (A2) becomes,

c~a,~b =
1

2
inf
~r

[

1−
1

2

(

(~a.~r)2 + (~b.~r)2
)

]

=
1

2
inf
~r
F~a,~b(~r)

Thus, the average disturbance function we seek to min-
imize is of the form

F~a,~b(~r) =

[

1−
1

2

(

(~a.~r)2 + (~b.~r)2
)

]

Closely following the earlier work of Ghirardi et al [34]
and Bosyk et al [35], we first argue that the minimizing

vector ~r must be coplanar with ~a and~b. Let P denote the

plane determined by the vectors ~a and ~b. Given any unit
vector ~v⊥ in a plane P⊥ perpendicular to P , there exists
a vector vc in the intersection of P and P⊥, such that

|~a.~v⊥| ≤ |~a.~vc|. Now, note that the function f(x) = 1− x2

2

is monotonically decreasing for x ∈ [0, 1]. Thus, for every
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vector ~v⊥ ∈ P⊥ in a plane perpendicular to P , there
exists a coplanar vector ~vc ∈ P ∩ P⊥ such that

1−
(~a.~vc)

2

2
≤ 1−

(~a.~v⊥)2

2
.

Making a similar argument for the vector ~b, we see that
the minimum value F~a,~b(~r) is attained for a vector ~r ∈ P .

Coplanarity of ~a,~b and ~r, implies that if θ = cos−1(~a.~b)

and α = cos−1(~a.~r), then ~b.~r = cos(θ−α). Therefore, we
can rewrite the function F~a,~b(~r) as

Fθ(α) = 1−
1

2

[

cos2 α+ cos2(θ − α)
]

, (A3)

reducing the problem to a minimization over a single vari-
able α. Since Fθ(α) is periodic in α, it suffices to min-
imize over the interval α ∈ [0, π]. Differentiating with
respect to α and setting the first derivative to zero, we
see that the extremizing values of α satisfy

sin(2α∗) = sin 2(θ − α∗)

⇒ α∗ =
θ

2
+ k

π

2
, k = 0, 1, 2, . . . (A4)

Thus, α+ = θ
2
and α− = θ

2
+ π

2
are the two relevant

solutions in the interval α ∈ [0, π]. By explicitly evalu-
ating the function Fθ(α) at α±, we can check that α+

indeed corresponds to a minimum for 0 ≤ θ ≤ π
2
and α−

corresponds to a minimum for π
2
≤ θ ≤ π.

The minimum value of the average disturbance func-
tion is therefore,

cθ =
1

2
inf
α

Fθ(α) =

{

1

2
(1− cos2 θ

2
) for 0 ≤ θ ≤ π

2
1

2
(1− sin2 θ

2
) for π

2
≤ θ ≤ π

}

(A5)
To realize the minimum value in terms of the overlap

between the eigenstates of A and B, recall that A =
α1I+ α2~a.~σ; B = β1I+ β2~a.~σ. Then,

|〈ai|bj〉|
2 =

{

1+~a.~b
2

for i = j
1−~a.~b

2
for i 6= j

}

Therefore, in terms of the angle θ between ~a and ~b,

|〈ai|bj〉| =

{

cos θ
2

for i = j

sin θ
2

for i 6= j

}

(A6)

In particular, defining c ≡ maxi,j |〈ai|bj〉|, we see that,

c = max
i,j

|〈ai|bj〉| =

{

cos θ
2

for 0 ≤ θ ≤ π
2

sin θ
2

for π
2
≤ θ ≤ π

}

(A7)

Putting together equations Eq. (A5) and Eq. (A7), we
see that

1

2
[T2(A; |ψ〉) + T2(B; |ψ〉)] ≥ cθ =

1

2
(1− c2). (A8)

The minimizing Bloch vector ~r+ corresponding to the
solution α+ = θ

2
satisfies

~a.~r+ = ~b.~r+ = cos
θ

2
.

Thus, ~r+ = ~a +~b up to normalization, and is the vector

that bisects the interior angle between ~a and ~b. The
vector ~r− corresponding to the other solution α− = θ

2
+ π

2

satisfies

~a.~r− = cos(
θ

2
+
π

2
), ~b.~r− = cos(

θ

2
−
π

2
).

Therefore, ~r− = ~a − ~b, upto normalization; it is the ex-
terior angle bisector and is perpendicular to ~r+. Both
minimizing vectors satisfy |~r+| = |~r−| = 2c. In summary,
the Bloch vectors corresponding to the minimizing states
are:

~r± =

{

~b+~a
2c for 0 ≤ θ ≤ π

2
~b−~a
2c for π

2
≤ θ ≤ π

}

�

Appendix B: Proof of Theorem 3

Here we seek to prove the disturbance tradeoff relation
in Eq. (11)for a set of pairwise anticommuting observ-
ables {A1, A2, . . . , AN} with eigenvalues {±1}:

{Aj, Ak} = 0 ∀j 6= k, (Ai)
2 = I ∀i = 1, . . . , N.

Proof. For any pure state |ψ〉, the expectation values of
such a set of N dichotomic anticommuting observables
are known to satisfy the following relation [14, 30]:

N
∑

i=1

(〈ψ|Ai|ψ〉)
2 ≤ 1. (B1)

Corresponding to a measurement of observable Ai in
state |ψ〉, the probabilities of obtaining outcomes ±1 are
related to the expectation value 〈ψ|Ai|ψ〉, as follows:

pAi

|ψ〉(±1) = 〈ψ|P±
i |ψ〉 =

1± 〈ψ|Ai|ψ〉

2
. (B2)

Thus the relation Eq. (B1) above implies the following
upper bound on the sums of the probabilities:

N
∑

j=1

[

(pAi

|ψ〉(+))2 + (pAi

|ψ〉(−))2
]

=
N
∑

j=1

1 + (〈ψ|Ai|ψ〉)
2

2

≤
N + 1

2
. (B3)

The disturbance tradeoff relation (11) follows immedi-
ately. �
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Appendix C: Example illustrating

dα(A,B) = 0 ; cS(A,B) = 0

Let |φ1〉, |φ2〉, |φ3〉 ∈ H3 be an orthonormal basis for
a three-dimensional Hilbert space H3. Consider the
POVM A described by the following positive operators:

A1 =
1

6
|φ1〉〈φ1|+

1

2
(|φ2〉〈φ2|+ |φ3〉〈φ3|),

A2 =
2

3
|φ1〉〈φ1|+

1

2
(|φ2〉〈φ2|+ |φ3〉〈φ3|),

A3 =
1

6
|φ1〉〈φ1|.

Consider a different POVM B which is constructed
with vectors {|φ1〉, |φ

′
2〉, |φ

′
3〉}, which form another or-

thonormal basis for H3.

B1 =
1

6
|φ1〉〈φ1|+

1

2
(|φ′2〉〈φ

′
2|+ |φ′3〉〈φ

′
3|),

B2 =
2

3
|φ1〉〈φ1|+

1

2
(|φ′2〉〈φ

′
2|+ |φ′3〉〈φ

′
3|),

B3 =
1

6
|φ1〉〈φ1|.

The state |φ1〉 is a common eigenvector of all the opera-
tors {Ai, Bj, i, j = 1, 2, 3}. Hence measurements of A,B
via Lüders instruments lead to a zero disturbance tradeoff
in state |φ1〉. However, since none of the POV elements
{Ai, Bj , i, j = 1, 2, 3} has eigenvalue 1, there is no state
with a zero uncertainty tradeoff. A,B is thus an exam-
ple of a pair of POVMs which have a zero disturbance
tradeoff, but at the same time, a non-zero uncertainty
tradeoff. Hence, dα(A,B) = 0 ; cS(A,B) = 0.


