
Deterministic Identity Based Signature Scheme and its
Application for Aggregate Signatures

S. Sharmila Deva Selvi, S. Sree Vivek!, C. Pandu Rangan!

Theoretical Computer Science Laboratory,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras,
Chennai, India.

{sharmila,svivek}@cse.iitm.ac.in, prangan@iitm.ac.in.

Abstract. The revolutionary impact offered by identity based cryptography is phenomenal. This novel
mechanism was first coined by Adi Shamir in 1984. Since then, several identity based signature schemes
were reported. But surprisingly, none of the identity based signature scheme is having the property of
determinism and does rely on bilinear pairing. We think positively in answering this long standing
question of realizing deterministic identity based signature in composite order groups and we succeed
in developing a signature scheme based on RSA assumption and is deterministic. It is indeed helpful in
devising variants of signature primitive. Fully aggregateable identity based signature schemes without
prior communication between the signing parties is an interesting issue in identity based cryptography.
It is easy to see that deterministic identity based signature schemes lead to full aggregation of signatures
without the aforementioned overhead. The major contribution of this paper is a novel deterministic
identity based signature scheme whose security relies on the strong RSA assumption and random
oracles. Based on this newly proposed deterministic identity based signature scheme, we design an
identity based aggregate signature scheme which achieves full aggregation in one round. We formally
prove the schemes to be existentially unforgeable under adaptive chosen message and identity attack.

Keywords: Identity Based Deterministic Signature, Aggregate Signature, Full Aggregation, Random Oracle
Model, Provable Security.

1 Introduction

The concept of Identity Based Cryptography(IBC) was introduced by Adi Shamir [23] in 1984. The distin-
guishing characteristic of identity based cryptography is the ability to use any string, that uniquely identifies
a user in the system as the public key. In particular, this string may be the email address, telephone number,
or combination of any of these parameter that is unique to that user. The corresponding private key can only
be derived by a trusted Private Key Generator (PKG) who uses a master secret key, for deriving the private
key of users. Identity based cryptosystem removes the need for senders to verify the receiver’s public key
before sending out an encrypted message or verifying a signature. It provides a more convenient alternative
to conventional Public Key Infrastructure (PKI) based system. Since 1984, several identity based signature
(IBS) schemes have been proposed [24] [10] [26] [16]. Different variations such as proxy, group, ring, threshold
signatures, have been proposed in the identity based settings depending on various practical applications.

In several real-life situations, it is advantageous to handle a collection of signed documents together rather
than handling them in isolation. In applications such as e-Banking, legal document processing (archiving
and communicating) in a legal firm, digital attestation related application and so on. In all the above
applications, generating, storing and transmitting a large number of signed documents arise naturally. An
Aggregate Signature Scheme combines several signed documents, say σ1, . . . , σt on messages m1, . . . ,mt by
users U1, . . . , Ut and produces a single signed document σagg where size of σagg is expected to be substantially
smaller than sum of the sizes of σi’s. Thus, the communication cost can be significantly reduced if we transmit
σagg instead of transmitting σ1, . . . , σt individually. A similar remark holds good even for storage requirements
when we archive σagg (instead of σ1, . . . , σt). In identity based systems, the PKG generates the private key
! Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Com-

putation sponsored by Department of Information Technology, Government of India

Table 1. Existing Identity Based Schemes

Scheme Master Public and Private Key Signature Assumption
Private Key

Cha-Cheon [10] MPK = 〈P, sP 〉 DA = sQA U = rQA GDH
MSK = 〈s〉 h = H1(m, U)

V = (r + h)DA

Barreto [2] MPK = 〈P, sP 〉 DA = sQA U = rP GDH
MSK = 〈s〉 H = H2(m, U)

V = rH + DA

Sakai [21] MPK = 〈P, sP 〉 DA =
1

s + qA
U = rP q-SDH

MSK = 〈s〉 h = H1(m, U)
V = (r + h)DA

Galindo [12] MPK = 〈P, sP 〉 DA = U1 = rP, U2 = XA DL
MSK = 〈s〉 〈XA = xAP, h = H1(m, U)

dA = xA + sqA〉 V = xA + dAh
Herranz [15] MPK = 〈P, sP 〉 DA = U1 = XA CDH

MSK = 〈s〉 〈XA = xAP, H = H2(m)
dA = xA + sqA〉 V = dAH

Sharmila [22] MPK = 〈P, P1 = s1P DA = U1 = XA CDH
P2 = s2P 〉 〈YA = xAP2, HA = H3(IDA, YA) U2 = YA

MSK = 〈s1, s2〉 XA = xAHA, qA = H1(IDA, YA), H = H2(m, IDA)
dA = s2xA + s1qA〉 V = dAH

Shamir [23] MPK = 〈N, e〉 HA = H3(IDA) U1 = Re RSA
MSK = 〈d〉 DA = Hd

A H = H1(m)
V = R + Dh

A

and hands over the same to the user. Users use the private key to generate signature on messages. In real
world scenario, a signature or signed document is the message with sign of the user. Even if the same message
is signed multiple times, the signature will be same. This property makes it deterministic. But in the digital
scenario, it is not true always because of the random seed involved in generating the signature. BLS short
signature using bilinear pairing and based on GDH assumption[9], FDH signature without bilinear pairing
based on RSA assumption [4] are examples of deterministic signature in PKI based setting. In the identity
based setting, there are several signature schemes using bilinear pairing namely [10], [2], [21], [15]. The
only non-pairing based scheme in identity based setting is given by Galindo [12]. Among all identity based
signature schemes, only the scheme [15] proposed by Herranz et al. is deterministic. This scheme is based
on GDH assumption and uses bilinear pairing. The idea behind the scheme by Herranz is to use Schnorr
signature for generation of private key of a user by PKG and BLS for generation of signature on message by
user. Because of the randomness involved in private key, this is formally proved to be secure in the random
oracle model with the aid of forking lemma. We summarize the properties of existing well known identity
based signatures in Table-1 and Table-2. Determinism and tight reduction are among the most desirable
properties that a signature scheme should possess so that it can be used efficiently for aggregation. From
Table-1 and Table-2 it is clear that none of the existing signature schemes offer this property. Also, we
give a first realization for achieving this idealistic property without pairing, based on RSA assumption. the
private key produced by the PKG itself is a signature of the PKG on the identity (or the hash of the identity)
of the user. Thus, if PKG has used some random nonce then the private key will have a generic form (K, P),
where K is a random value depending on the nonce and P is a value depending on the identity of the user.
When a user uses such a private key and a random value to generate a signature on a message m, then the
signature σ may have a generic form (K, R,M), where K is the ‘private key’ part, R is the ‘random’ part
depending on the randomness used in the generation of the signature and M is the message part depending
on the message m that is signed. We shall use the notation discussed above to describe informally on the
nature and for of aggregate signatures.

Table 2. Properties of Existing Identity Based Schemes

Scheme PKI Signature PKI Signature Without Proof Deterministic
Used For Used For Bilinear Without

Identity Based Identity Based Pairing Forking
Private Key Signing Lemma

Cha-Cheon [10] BLS Custom No No No
Barreto [2] BLS Custom No Yes No
Sakai [21] Sakai Custom No No No
Galindo [12] Schnorr Schnorr Yes No No
Herranz [15] Schnorr BLS No No Yes
Sharmila [22] Custom [22] BLS No Yes Yes
Shamir [23] RSA Custom Yes - No
Ours FDH-RSA Custom Yes Yes Yes

Let α = |K|, β = |R| and γ = |M |, where |X| denotes the size of X. Let σagg = (Kagg, Ragg,Magg)
denote the aggregation of t signatures σi = (Ki, Ri,Mi) generated by user Ui for 1 ≤ i ≤ t for the messages
{m1, . . . ,mt} respectively. We let |{U1, . . . , Ut}| = u, where 1 ≤ u ≤ t, to allow the possibility of some users
generating more than one signed document. We further assume that |{K1, . . . ,Kt}| = u (The number of
random values used in generating the private keys of the u distinct users participating in the aggregation
process). Note that |{R1, . . . , Rt}| = t because for generating each signed document a distinct random value
might have been used. Further note that |{M1, . . . ,Mt}| = t, and |{m1, . . . ,mt}| = k, for 1 ≤ k ≤ t, to allow
the possibility of same message being signed by different users. For the specific case where k = 1, all users
produce signature on one single message and this is referred to as multi-signature.

A naive and direct clubbing of all these signed documents will result in σagg = (Kagg, Ragg,Magg), where
|Kagg| = uα, |Ragg| = tβ and |Magg| = tγ and hence |σagg| = O(uα + tβ + tγ). Now consider that an
aggregate signature σagg of σi = 〈Ki, Ri,Mi〉, for 1 ≤ i ≤ t is in one of the the following forms:

– σagg = 〈K1, . . . Ku, R1, . . . , Rt,Magg〉 - The random values Ki’s and Ri’s are propagated in full without
any compression but the third components are all combined to form Magg. The size of the aggregate
signature is |σagg| = O(uα + tβ + γ). That is, the size of the aggregate signature is dependent on the
number of users u and the number of signatures aggregated but independent of the number of message
parts.

– σagg = 〈Kagg, R1, . . . , Rt,Magg〉 - That is, Ri’s are propagated in full without any compression but the
Ki’s as well as Mi’s are all combined to form Kagg and Magg. The size of the aggregate signature is
|σagg| = O(α + tβ + γ).

– σagg = 〈K1, . . . ,Kt,Magg〉 - This form of aggregation will result if users use deterministic signature
schemes to produce individual signatures. Thus R1, . . . , Rt will not be present in such schemes. Here,
|σagg| = O(uα + γ). That is the size of the aggregate signature depends on the number of distinct users
and not on the number of signatures or messages. The scheme described in [15] produces this kind of
aggregation.

In all the cases mentioned above the non-deterministic aggregate signature scheme is said to achieve partial
aggregation.
Ordered Sequential vs Sequential vs General: Apart from the above classification, aggregate signatures can
be classified into three further subtypes, namely Ordered Sequential, Sequential and General aggregate
signatures. An Ordered Sequential aggregation is a type of aggregation where, the signatures from different
signers are aggregated one by one and the order of the signer in the list of signers play a role in the
verification of the signature. The aggregate signature will not be valid if the order of the signers is not
considered during generation/verification. This type of aggregate signature can be used to find the path
travelled by the data packets from source to destination in routing by using a single aggregate signature.
In sequential aggregation, the signature is aggregated in any order but the aggregation process is carried
out by aggregating the signatures one after the other, where each signer aggregates his signature to the

previously aggregated signature. Here, the order of the signer have no role to play during the signature
generation/verification process. General aggregation is the most common way of aggregating signatures,
which is done by any user called the aggregator (one of the signers or any third party). The aggregator
collects the signature from all the signers and generates the aggregate signature. The second and third type
of aggregate signatures find applications in wireless network, where the major constraint is communication
complexity, the use of efficient aggregate signature helps in reducing the amount of data to be communicated.

If there is no randomness used in private key generation, then a generic form of the signature in an
identity based system may be written as (R,M), where R is the random part depending on the random
value used during the production of signature and M is the message part depending on the message. If σagg

is aggregation of t signatures σi = (Ri,Mi), for 1 ≤ i ≤ t and if |σagg| depends either on the number of
messages or the number of signatures (or both) then it will be referred as partial aggregation. The scheme
described in [25] produces this kind of aggregation. Since Ri’s are sent without any compression, there is
no need for the signers to communicate the individual random values prior to the generation of individual
signatures. The notion of round is used to measure the communication done among signers. Thus, the scheme
in [25] does not involve any rounds of communication. If |σagg| is independent of the number of messages
and number of signatures it will be referred as full aggregation. The schemes described in [11], [13], [6]
and [1] produces this kind of aggregation. Here since all Ri’s are compressed to form RAgg, the signers
have to communicate among themselves to agree upon a common randomness, prior to the generation of
individual signatures. Thus one round of communication is required before aggregating the signatures. When
the aggregation is done in a sequential order, the number of rounds (interaction) between the signers is linear
in the number of signers participating in the aggregation. This is because, the aggregation is done linearly,
i.e. the ith signer signs the ith message and aggregates it with the signature aggregated so far by i − 1
signers and sends the newly formed aggregate signature to the i + 1th signer, for 1 ≤ i ≤ t. The situation in
general aggregation is slightly different. Here, the signature is aggregated by an aggregator after collecting
all the individual signatures. The interaction between the signers and the aggregator is not counted to be
a round in general aggregation. However, if there is any sort of communication between the signers before
generating the individual signature, then they are counted as rounds in the protocol. Since there are no,
general aggregation schemes without any communication among the signers in the identity based setting (to
the best of our knowledge), it is an interesting issue to look at.

As stated before, for deterministic schemes, no random value is used either in private key generation
for users or during signature generation by users. Thus, the signature σ = (M) consists of just message
dependent part. Let σagg be the aggregation of t signatures σi = (Mi), for 1 ≤ i ≤ t. If |σagg| depends
on the number of signatures or number of messages (or both) it is called partial aggregation and if |σagg|
is independent of both the number of messages and signatures, then it is called full aggregation. As there
are no random values involved in deterministic signatures, prior communication is not required to generate
aggregate signatures.

Related Work: Many well known PKI based aggregate signatures are available in the literature [8, 18, 3, 19,
20]. However, as the focus of this paper is on identity based aggregate signature scheme, we will not compare
the PKI based schemes with ours. Most of the efficient aggregate signature schemes in the PKI setting are
deterministic [8, 3, 19]. The first identity based aggregate signature scheme that achieves full aggregation was
proposed in [11] by Cheng et al. Their scheme uses bilinear pairing and requires large setup cost because
the signers essentially broadcast their individual random values to form a single random value. Moreover,
the fact that the signature cannot be generated until all of the signers contribute in the first round, makes
the scheme less practical. Gentry et al. proposed another scheme in [13], based on bilinear maps and the
security of the scheme relies on the Gap Diffie Hellman problem. The weakness of the scheme is that, the
signers of a given aggregate signature must agree on a common random value which was never used by
any of the users before to generate a signature. If the signer ever re-uses a random value in two different
aggregate signatures, a total break (private key of the users are revealed) of the system is possible. Recently,
Boldyreva et al. [6] proposed a sequential aggregate signature scheme (in-fact, the security of their original
schemes [5] and [7] were flawed due to the assumption used to prove them was actually not hard to solve in
polynomial time, as pointed out by Hwang et al. [17]). Their new scheme [6] was based on the hardness of
a CDH-type problem that raised from their scheme and uses bilinear pairings. The first RSA based identity

based aggregate signature scheme was proposed by Bagherzandi et al. [1]. This scheme uses two rounds of
communication between the signers to generate a full aggregate signature, where the first round is to commit
the random value shares (again by broadcasting the individual commitments as in [11]) and the second round
is the aggregate signature generation round. Their scheme uses equivocable commitments and hence looses
its generality and becomes less practical because of the overhead involved in broadcasting the commitments.

Our contribution: The major contribution of this paper is a secure identity based deterministic signature
scheme, proved secure in the random oracle model. That is, there is no randomness deployed either in the
private key generation process for the users or the signature generation process by the user. Thus, these
kinds of signatures can be efficiently aggregated without any prior communication among signers and this
settles an open problem posed in [17]. Moreover, our scheme is more efficient than the scheme in [1], because
aggregation can be done in a single round in our schemes where as the scheme in [1] requires two rounds of
communication between the signers.

Summary of State of the Art: In summary, aggregate signature schemes can be classified based on their
attributes and properties as follows:

{
Deterministic

Non−Deterministic

}
×

{
Partial

Full

}

The following table summarizes the current state of the art in the research of identity based aggregate
signatures which achieves full aggregation and are provably secure in the random oracle model. The table
includes the communication and computational complexity of our new scheme IBAS along with the other
existing schemes. The terms used in Table-3 are explained here. ND - Nondeterministic Signature, D-

Table 3. State of the art survey of IBAS schemes

Agg Sign Agg Hard Sign Rounds Agg
Schemes Sign Cost Verify Prob Type Mode

Len (/ user) (t users) (D/ND) (G/S)

[11] 2|G| 3[M] 2[P]+t[M] CDH ND 2 G
[1] 2|Z∗

n| + |κ| 2[E] t[E] RSA ND 2 G
+|log(l)|

[6] 3|G| 7[M] 6[P]+t[M] CDH-type ND - S
[13] 2|G|+|Z∗

q | 5[M] 3[P]+t[M] GAP-DH ND - S
IBAS |Z∗

n| 2[E] (2t + 1)[E] strong RSA D 1 G

Deterministic Signature, G- General aggregation, S- Sequential Signature, κ is the security parameter of the
scheme, [E]-Exponentiation in Z∗

n, [M]- Scalar Point Multiplication in G, [P]- Bilinear Pairing Operation,
Gap-DH- Gap-Diffie-Hellman, [GT M]- Exponentiation in GT .

Computational Assumption: We review the computational assumption related to the protocols we dis-
cuss.

The Strong RSA Problem: Given a randomly chosen RSA modulus n and a random c ∈ Z∗
n, finding

b > 1 and a ∈ Z∗
n, such that c ≡ ab mod n is the strong RSA problem.

The Strong RSA Assumption: The advantage of any probabilistic polynomial time algorithm F in solving
the strong RSA problem in Z∗

n is defined as:

AdvsRSA
F = Pr

[
F(n, c) → {a, b} | (a ∈ Z∗

n, b > 1) ∧ (c ≡ ab mod n)
]

The strong RSA Assumption is that, for any probabilistic polynomial time algorithm F , the advantage
AdvsRSA

F is negligibly small.

2 Generic Model

In this section, we describe the generic frame work for a identity based signature scheme and an aggregate
signature scheme. An identity based aggregate signature scheme (IBAS) consists of following six algorithms.
The framework for a deterministic identity based signature scheme (D-IBS) consists of the first four algo-
rithms described below, namely Setup, Extract, Sign and Verify. If the signature scheme is deterministic
the signature for a message is always the same for every of invocation of the sign algorithm.

Setup: The private key generator (PKG) provides the security parameter κ as the input to this algorithm,
generates the system parameters params and the master private key msk. PKG publishes params and keeps
msk secret.

Extract: The user provides his identity ID to the PKG. The PKG runs this algorithm with identity ID,
params and msk as the input and obtains the private key D. The private key D is sent to user through a
secure channel.

Sign: For generating a signature on a message m, the user provides his identity ID, his private key D,
params and the message m as input. This algorithm generates a valid signature σ on message m by the user.

Verify: This algorithm on input a signature σ on message m by the user with identity ID, checks whether
σ is a valid signature on message m by ID. If true it outputs “V alid”, else it outputs “Invalid”.

AggregateSign: On receiving the various signatures (σi)i=1 to t from different users (Ui)i=1 to t, any third
party or one of the signers can run this algorithm and generate the aggregate signature σagg for the set of
〈message, identity〉 pairs (mi, IDi)i=1 to t.

Note: For sequential aggregation, each user contribute in the generation of aggregate signature by aggre-
gating his own signature to the aggregate signature generated by the signers so far.

AggregateVerify: This algorithm on input of an aggregate signature σagg, the list for (mi, IDi)i=1 to t and
the params checks whether σagg is a valid aggregate signature on mi by IDi for all i = 1 to t. If true, it
outputs “V alid”, else outputs “Invalid”.

3 Security Model

3.1 Existential Unforgeability of D-IBS

We define the security model for the existential unforgeability of a deterministic identity based signature
scheme under adaptive chosen identity and message attack in this section. A D-IBS scheme is secure against
existential forgery, under adaptive chosen identity and message attack if no probabilistic polynomial time
forger F has non-negligible advantage in the following game:

Setup phase: The challenger C runs the setup algorithm and generates the system parameters params and
the master secret key msk. Now, C gives params to the forger F and keeps msk secret.

Training phase: After the setup is done, F starts interacting with C by querying the various oracles provided
by C in the following way:

– Extract oracle: When F makes a query with an identity ID as input, C outputs D, the private key of
ID to F .

– Signing oracle: When F makes a signing query with identity ID and message m, C outputs a valid
signature σ on m by ID.

Forgery phase: F outputs a signature σ, with IDS as signer, and on a message m∗. F wins the game if σ
is a valid signature and F has not queried for the signature corresponding to (IDS ,m∗) pair from the sign
oracle and private key corresponding to IDS . The advantage of F is given by,

AdvD−IBS
F = {Pr[F(V erify(σ) = valid)}

3.2 Existential Unforgeability of IBAS

We define the security model for the existential unforgeability of an IBAS scheme under adaptive chosen
identity and message attack in this section. An IBAS scheme is secure against existential forgery under
adaptive chosen identity and message attack if no probabilistic polynomial time algorithm F has non-
negligible advantage in the following game.
Setup phase: The challenger C runs the setup algorithm and generates the system public parameters
params and the master secret key msk. Now, C gives params to the forger F and keeps msk secret.
Training phase: After the setup is done, F starts interacting with C by querying the oracles provided by
C in the following way:

– Extract oracle: When F makes a query with an identity ID as input, C outputs D, the private key of
ID to F .

– Signing oracle: When F makes a signing query with identity ID and message m, C outputs a valid
signature σ on m by ID.
Note: It should be noted that Aggregate sign oracle is not required for the adversary because aggregation
is a public process and any third party who has t signatures can combine all the signatures to form an
aggregate signature. Thus, the forger F can always generate the aggregate signature after querying t
individual signatures. However, in a sequential aggregation F sends a so far aggregated signature σagg

along with a message, identity pair (mi, IDi) and requests for the aggregate signature. C generates the
current aggregate signature σagg and sends it to F .

Forgery phase: F outputs an aggregate signature σagg for signatures (σi)i=1 to t from the users (IDi)i=1 to t

on messages (mi)i=1 to t where, at least one identity in the list of identities is the say IDS ∈ {IDi}i=1 to t, for
which the private key was not queried by F and let mS the message corresponding to IDS . The forger F
wins the game if σagg is a valid aggregate signature and F has not queried for the signature corresponding
to (IDS ,mS) pair from the sign oracle.

AdvIBAS
F = {Pr[F(V erify(σagg) = valid)}

4 Deterministic Identity Based Signature Scheme (D-IBS)

In this section, we propose a new deterministic identity based signature scheme and also prove the scheme
to be existentially unforgeable under adaptive chosen message and adaptive chosen identity attack in the
random oracle model. The deterministic identity based signature scheme consists of the following algorithms:

– Setup(κ): Given κ as input, the PKG generates params and msk by performing the following:
• Chooses two primes p and q of size κ, such that p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are also

primes.
• Computes n = pq and the Euler’s totient function φ(n) = (p − 1)(q − 1). Therefore |n| = 2κ and
|φ(n)| = 2κ.

• Chooses e, such that |e| = κ/4 and computes d such that ed ≡ 1 mod φ(n).
• It also chooses three cryptographic hash functions H0 : {0, 1}∗×{0, 1} → Z∗

n, H1 : {0, 1}lm×{0, 1}l1×
{0, 1} → {0, 1}κ/2 and H2 : {0, 1}lm × {0, 1}l1 × {0, 1} → {0, 1}κ/2. Here lm is the size of message
and l1 is the size of identity of a user.

• Now, PKG publicizes the system parameters, params = 〈κ, n, e,H0,H1,H2〉 and keeps the factors
of n, namely p, q and the secret inverse d as the master secret key msk.

– Extract(ID): The user provides his identity ID to PKG. The PKG performs the following to find out
the private key of the corresponding user:
• Compute g0 = H0(ID, 0) and g1 = H0(ID, 1).
• Compute d0 = (g0)d mod n and d1 = (g1)d mod n.
• The private key D = 〈d0, d1〉 is sent to the corresponding user through a secure and authenticated

channel.
– Sign(m, ID, D): To generate a deterministic signature on a message m, the user with identity ID

performs the following:

• Picks β ∈R {0, 1}
• Computes h1 = H1(m, ID, β) and h2 = H2(m, ID, β).
• Computes σ = (d0)h1(d1)h2 mod n.

Now, 〈σ, β〉 is the signature on m by user with identity ID.
It should be noted that β is random from others view but fixed with respect to the signer. As in [14], in
order to avoid maintaining a record of all previous message/signature pairs, the signer can generate β
as β = PRF (D, ID,m), where PRF () is a private random function (private to the signer). Thus, for a
corresponding private key D, identity ID and message m, there is only one possibility of β.

– Verify(m,σ, β, ID): In order to verify the validity of a signature 〈σ, β〉 with respect to the identity ID
and message m, the verifier performs the following:
• Computes g0 = H0(ID, 0) and g1 = H0(ID, 1).
• Computes h′1 = H1(m, ID, β) and h′2 = H2(m, ID, β).
• Checks whether σe mod n

?= (g0)h′1(g1)h′2 mod n
• If the above check holds, outputs “V alid”, otherwise outputs “Invalid”.

Correctness of verification:

L.H.S = σe= ((d0)h′1(d1)h′2)e = ((gd
0)h′1(gd

1)h′2)e = (g0)h′1(g1)h′2 = R.H.S

4.1 Existential Unforgeability of D-IBS:

Theorem 1. The identity based signature scheme (D-IBS) is EUF-D-IBS-CMA secure in the random oracle
model under adaptive chosen message and adaptive chosen identity attack, if the strong RSA problem is
assumed to be hard in Z∗

n, where n = pq, and p, q, (p− 1)/2 and (q − 1)/2 are large prime numbers.

Proof: Suppose a forger F is capable of breaking the EUF-D-IBS-CMA security of the D-IBS scheme and a
challenger C is challenged with an instance of the strong RSA problem say 〈n, c ∈ Z∗

n〉, where n is a composite
number with two big prime factors p and q, such that (p− 1)/2 and (q − 1)/2 are also primes. C can make
use of F to compute a and b such that c ≡ ab mod n, by playing the following interactive game with F .
(Note that if mod operation is not specified then the computation is pure integer computation.)
Setup: C begins the game by setting up the system parameters as in the D-IBS scheme. C takes n from the
instance of the strong RSA problem, chooses e such that |e| = κ/4, e = xy for some arbitrary x and y, and
|x| = |y| = κ/8. C chooses w such that |w| = κ/8. C sends the public parameters params = 〈n, e〉 to F . C
stores w, x and y for future use in OH0 and OH2 oracles. C also designs the three hash functions H0, H1 and
H2 as random oracles OH0 , OH1 and OH2 . C maintains three lists LH0 , LH1 and LH2 in order to consistently
respond to the queries to the random oracles OH0 , OH1 and OH2 respectively.
Training Phase: F performs a series of queries to the oracles provided by C. The descriptions of the oracles
and the responses given by C to the corresponding oracle queries by F are described below. For the sake of
simplicity, we assume that OH0(.) oracle is queried with ID and both 0 and 1 as inputs, before any other
oracle is queried with the corresponding identity as the input parameters.
Oracle OH0(ID, l ∈ {0, 1}): We make a simplifying assumption that A queries the OH0 oracle with distinct
inputs in each query. If the oracle was queried with ID as input for l = 0 first, the next query with the same
identity can be made with l = 1. There is no loss of generality due to this assumption, because, if the an
identity is repeated with the same l value, by definition the oracle consults the list LH0 and gives the same
response. Thus, we assume that A asks 2qH0 distinct queries for qH0 distinct identities. Among these qH0

identities, a random identity has to be selected as target identity and it is done as follows.
C selects a random index T , where 1 ≤ T ≤ 2qH0 . C does not reveal T to A. When A generates the T th

query on IDT , C decides to fix IDT as target identity for the forgery phase. Moreover, C responds to A as
follows:

– If a tuple of the form 〈ID, l, dl, gl, ∗〉 exists in list LH0 , then it returns gl as response.
– If the tuple of the form 〈ID, l, dl, gl, ∗〉 does not exist in list LH0 , then it does the following.

• If it is not the T th query i.e. i += T , then C performs the following:
∗ Chooses d0, d1 ∈R Z∗

n and sets H0(ID, j) = gj = (dj)e mod n for j=0,1.

∗ Stores the tuple 〈IDi, j, dj , gj ,−〉(for j=0,1) to list LH0 and returns gl as the response.
• If it is the T th query i.e. i = T , then C performs the following:

∗ Chooses r0 and r such that |r0| = κ/2 and |r| = κ/4.
∗ Sets H0(IDT , 0) = g0 = cxw mod n
∗ Sets H0(IDT , 1) = g1 = cx+re mod n

Note: c is taken from the strong RSA instance, x is chosen by C during setup.
∗ Here d0, d1 are not known to C and hence C sets dj = ”− ” for j=0,1.
∗ Stores the tuples 〈ID, j,−, gj ,−〉 (for j=0,1) to list LH0 and returns gl as the response.

Remark: Note that C has not computed the private keys for IDT , but this will not cause any problem as C
need not hand over the private keys of IDT to F . For all other identities, C has mathematically consistent
private and public key.
Note: For λ ∈ {0, 1}, λ̄ represents the negation of λ.
Oracle OH1(m, ID, β): When this query is made by F , C does the following:

– If a tuple of the form 〈m, ID, λ, useful, s(m)
λ1 , t(m)

λ1 , u(m), h(m)
1λ 〉, where λ = β exists in the list LH1 then

return h(m)
1λ .

– If a tuple of the form 〈m, ID, λ̄, useful, s(m)
λ̄1

, t(m)
λ̄1

, v(m), h(m)
1λ̄
〉, where λ̄ = β exists in the list LH1 then

return h(m)
1λ̄

.
– Else, performs the following:

• Chooses λ ∈R {0, 1}.
• For λ, perform the following:

∗ Choose s(m)
λ1 , t(m)

λ1 , s(m)
λ2 , t(m)

λ2 , u(m) ∈R {0, 1}κ/4.
∗ Compute h(m)

1λ = u(m) + s(m)
λ1 e + t(m)

λ1 y.
∗ Compute h(m)

2λ = −u(m)w + s(m)
λ2 e + t(m)

λ2 y + 1.
∗ Set useful = 1.
∗ Store the tuple 〈m, ID, λ, useful, s(m)

λ1 , t(m)
λ1 , u(m), h(m)

1λ 〉 in list LH1 .
∗ Store the tuple 〈m, ID, λ, useful, s(m)

λ2 , t(m)
λ2 , u(m), h(m)

2λ 〉 in list LH2 .
• For λ̄, where λ̄ = ¬λ perform the following:

∗ Choose s(m)
λ̄1

, t(m)
λ̄1

, s(m)
λ̄2

, t(m)
λ̄2

, v(m) ∈R {0, 1}κ/4.
∗ Compute h(m)

1λ̄
= v(m) + s(m)

λ̄1
e + t(m)

λ̄1
y.

∗ Compute h(m)
2λ̄

= −v(m)w + s(m)
λ̄2

e + t(m)
λ̄2

y.
∗ Set useful = 0.
∗ Store the tuple 〈m, ID, λ̄, useful, s(m)

λ̄1
, t(m)

λ̄1
, u(m), h(m)

1λ̄
〉 in list LH1 .

∗ Store the tuple 〈m, ID, λ̄, useful, s(m)
λ̄2

, t(m)
λ̄2

, u(m), h(m)
2λ̄
〉 in list LH2 .

• If β = λ, output h1λ.
• If β = λ̄, output h1λ̄.

Oracle OH2(m, ID, β): When this query is made by F , C does the following:

– If a tuple of the form 〈m, ID, λ, useful, s(m)
λ2 , t(m)

λ2 , u(m), h(m)
2λ 〉, where λ = β exists in the list LH2 then

return h(m)
2λ .

– If a tuple of the form 〈m, ID, λ̄, useful, s(m)
λ̄2

, t(m)
λ̄2

, v(m), h(m)
2λ̄
〉, where λ̄ = β exists in the list LH2 then

return h(m)
2λ̄

.
– Else, perform the following:

• Chooses λ ∈R {0, 1}.
• For λ, perform the following:

∗ Choose s(m)
λ1 , t(m)

λ1 , s(m)
λ2 , t(m)

λ2 , u(m) ∈R {0, 1}κ/4.
∗ Compute h(m)

1λ = u(m) + s(m)
λ1 e + t(m)

λ1 y.
∗ Compute h(m)

2λ = −u(m)w + s(m)
λ2 e + t(m)

λ2 y + 1.
∗ Set useful = 1.

∗ Store the tuple 〈m, ID, λ, useful, s(m)
λ1 , t(m)

λ1 , u(m), h(m)
1λ 〉 in list LH1 .

∗ Store the tuple 〈m, ID, λ, useful, s(m)
λ2 , t(m)

λ2 , u(m), h(m)
2λ 〉 in list LH2 .

• For λ̄, where λ̄ = ¬λ perform the following:
∗ Choose s(m)

λ̄1
, t(m)

λ̄1
, s(m)

λ̄2
, t(m)

λ̄2
, v(m) ∈R {0, 1}κ/4.

∗ Compute h(m)
1λ̄

= v(m) + s(m)
λ̄1

e + t(m)
λ̄1

y.
∗ Compute h(m)

2λ̄
= −v(m)w + s(m)

λ̄2
e + t(m)

λ̄2
y.

∗ Set useful = 0.
∗ Store the tuple 〈m, ID, λ̄, useful, s(m)

λ̄1
, t(m)

λ̄1
, u(m), h(m)

1λ̄
〉 in list LH1 .

∗ Store the tuple 〈m, ID, λ̄, useful, s(m)
λ̄2

, t(m)
λ̄2

, u(m), h(m)
2λ̄
〉 in list LH2 .

• If β = λ, output h2λ.
• If β = λ̄, output h2λ̄.

Remark: From the definition of H0, it is clear that the oracle OH0() must output a random element in Z∗
n.

The OH0() oracle indeed returns a random value of Z∗
n because d0 and d1 are randomly chosen from Z∗

n. The
definition of the oracles OH1() and OH2() suggest that, when we model them as random oracles, we must
use κ/2 bits of randomness for the output values. However, in the construction defined above, both OH1()
and OH2() use only κ/4 bits of randomness. This imperfect and slightly weak simulation would reduce the
reliability factor by 1/2κ/4, which, for sufficiently large κ, is negligible. Hence, we ignore this factor even in
the probability analysis.
Oracle OExtract(ID): C checks whether tuples of the form 〈ID, 0, d0, g0,−〉 and 〈ID, 1, d1, g1, r〉 exists in
the list LH0 , if so returns the corresponding d0 and d1 as the private keys corresponding to the identity ID.
However, if ID = IDT , C aborts.
Oracle OSign(m, ID): C checks whether ID

?= IDT and performs the following to generate the signature on
m by ID:

– If ID += IDT , then C knows the private key corresponding to ID, so C chooses β ∈R {0, 1} and performs
the signing as per the protocol and generates σ, after querying OH1(m, ID, β) and OH2(m, ID, β).

– If ID = IDT , then C checks whether a tuple corresponding to (m, IDT ,−) is found in LH1 and HH2 .
If it does not exist, C invokes the OH1(m, IDT , 0) and OH2(m, IDT , 0) oracles. Then, C simulates the
signing algorithm as follows: (because, C does not know the private key corresponding to IDT):
• C retrieves the tuples corresponding to m, IDT from the lists LH1 and LH2 , for which the flag
useful=0. Let 〈m, ID, γ, useful = 0, s(m)

γ1 , t(m)
γ1 , v(m), h(m)

1γ 〉 be the tuple in list LH1 and 〈m, ID, γ, useful =
0, s(m)

γ2 , t(m)
γ2 , v(m), h(m)

2γ 〉 be the tuple in list LH2 .
• Set β = γ.
• Computes σ = cxws(m)

γ1 cwt(m)
γ1 cxs(m)

γ2 ct(m)
γ2 c−rv(m)wcrs(m)

γ2 ecrt(m)
γ2 y mod n.

– Sends σ, β as the signature on the message m by identity IDT .

The verification of a signature is done by checking whether σe ?= (g0)h1(g1)h2 . We need to verify only the
case when ID = IDT because in other cases, the signature is generated as per the protocol.

Since C choosed the tuple corresponding to m, IDT from LH1 and LH2 such that useful = 0, h1 =
h(m)

1γ = v(m) + s(m)
γ1 e + t(m)

γ1 y and h2 = h(m)
2γ = −v(m)w + s(m)

γ2 e + t(m)
γ2 y. The simulated signature generated

by the OSign oracle passes the verification test as shown below:

R.H.S= (g0)h1(g1)h2 = (g0)h(m)
1γ (g1)h(m)

2γ

= (cxw)h(m)
1γ (cx+re)h(m)

2γ

= cxw(v(m)+s(m)
γ1 e+t(m)

γ1 y)cx+re(−v(m)w+s(m)
γ2 e+t(m)

γ2 y)

= c(xwv(m)+xws(m)
γ1 e+xwt(m)

γ1 y)c(−xv(m)w+xs(m)
γ2 e+xt(m)

γ2 y)c(−rev(m)w+res(m)
γ2 e+ret(m)

γ2 y)

= c(xwv(m)+xws(m)
γ1 e+wt(m)

γ1 e)c(−xv(m)w+xs(m)
γ2 e+t(m)

γ2 e)c(−rev(m)w+res(m)
γ2 e+ret(m)

γ2 y) (Since xy = e)
= c(xwv(m)+xws(m)

γ1 e+wt(m)
γ1 e−xwv(m)+xs(m)

γ2 e+t(m)
γ2 e−rev(m)w+res(m)

γ2 e+ret(m)
γ2 y)

= c(xws(m)
γ1 e+wt(m)

γ1 e+xs(m)
γ2 e+t(m)

γ2 e−rev(m)w+res(m)
γ2 e+ret(m)

γ2 y)

= (c(xws(m)
γ1 cwt(m)

γ1 cxs(m)
γ2 ct(m)

γ2 c−rv(m)wcrs(m)
γ2 ecrt(m)

γ2 y))e

= σe = L.H.S

Since R.H.S = L.H.S, the simulated signature is a valid signature on m by identity IDT .
Forgery Phase: At the end of the Training Phase , F produces a forged signature σ∗, β∗ on the message
m∗ as if signed by the user with identity IDS . If σ∗ is a valid signature on m∗ and if σ∗ satisfies all the
constraints given below, then C can solve the hard problem.

– IDS = IDT

– Private key of IDT is not queried to Extract oracle.
– Signature on m∗, IDT is not queried to Sign Oracle. (This is forbidden in the model because it is a

deterministic signature scheme).
– The tuple 〈m∗, IDT , β∗, useful, s(m∗)

β∗1 , t(m
∗)

β∗1 , v(m∗), h(m∗)
1β∗ 〉 corresponding to m∗, IDT , in list LH1 and the

tuple 〈m∗, IDT , β∗, useful, s(m∗)
β∗2 , t(m

∗)
β∗2 , v(m∗), h(m∗)

2β∗ 〉 corresponding to m∗, IDT , in list LH2 has the flag
“useful=1”.

Now, if the above constraints are satisfied, then C obtains a and b such that c = ab mod n by performing
the following:

– The public keys corresponding to IDT , i.e. H0(IDT , 0) and H0(IDT , 1), are set to be 〈g0 = cxw and
g1 = cx+re〉 by C while F performed the OH0(IDT , .) queries (Note that c was taken from the strong
RSA problem instance).

– Let d be such that d ≡ e−1 mod φ(n), where e is the master public key.
Note: Now, in terms of the public keys and the value d, the private keys corresponding to IDT are
d0 = gd

0 = cxwd and d1 = gd
1 = cxd+r, implicitly. However, these values cannot be computed explicitly

by C, because C has no way of computing d. That is why C has set ” − ” for these unknowns in OH0

oracle queries. Thus, the values d0 and d1 used in the proof are only hypothetical.

– Since we have the condition that “useful=1”, C should have set the h(m∗)
1β∗ =OH2(m∗, IDT , β∗) =u(m∗) +

s(m∗)
β∗1 e + t(m

∗)
β∗1 y and h(m∗)

2β∗ =OH2(m∗, IDT , β∗)=u(m∗)w + s(m∗)
β∗2 e + t(m

∗)
β∗2 y + 1 respectively.

– Now, σ∗ = (d0)h(m∗)
1β∗ (d1)h(m∗)

2β∗ = (cxwd)h(m∗)
1β∗ (cxd+r)h(m∗)

2β∗ and hence the signature verification holds good

for a proper forgery, because (σ∗)e = ((cxwd)h(m∗)
1β∗ (cxd+r)h(m∗)

2β∗)e = (cxw)h(m∗)
1β∗ (cx+re)h(m∗)

2β∗ = g
h(m∗)
1β∗

0 g
h(m∗)
2β∗

1 .
– Hence, the forgery σ∗, submitted by F is of the following form. Now, for the sake of simplicity, we rename

the values v(m∗) = v, s(m∗)
β∗1 = s1, t(m

∗)
β∗1 = t1, s(m∗)

β∗2 = s2 and t(m
∗)

β∗1 = t2 in the following equations.

σ∗= (d0)h(m∗)
1β∗ (d1)h(m∗)

2β∗ = (cxwd)h(m∗)
1β∗ (cxd+r)h(m∗)

2β∗

= (cxwd)(v
(m∗)+s(m∗)

β∗1 e+t(m∗)
β∗1 y)(cxd+r)(−v(m∗)w+s(m∗)

β∗2 e+t(m∗)
β∗2 y+1)

= (cxwd)(v+s1e+t1y)(cxd)(−vw+s2e+t2y+1)(cr)(−vw+s2e+t2y+1)

= c(xwdv+xwds1e+xwdt1y)c(−xdvw+xds2e+xdt2y+xd)c(−rvw+rs2e+rt2y+r)

= c(xwdv+xwds1e+wdt1e)c(−xwdv+xds2e+dt2e+xd)c(−rvw+rs2e+rt2y+r) (Since xy = e)
= c(xwds1e+wdt1e+xds2e+dt2e−rvw+rs2e+rt2y+r)cxd

= c(xws1+wt1+xs2+t2−rvw+rs2e+rt2y+r)cxd (Since ed ≡ 1 mod φ(n))

– Let, z = c(xws1+wt1+xs2+t2−rvw+rs2e+rt2y+r) and z can be computed by C because C knows the values
r, s1, s2, t1, t2, v, w, x and y.

– Therefore, σ∗ = zcxd ⇒ cxd = σ∗/z ⇒ cxd = cx(x−1y−1) = cy−1 ⇒ σ∗ = zcy−1
. Thus, C can obtain the

solution for the equation c = ab mod n with a = σ∗/z and b = y.

Probability Analysis: The following are the three events during which C aborts the game.

1. E1 - The event in which IDS += IDT .
2. E2 - The event in which the private key of IDT is queried to the Extract oracle.
3. E2 - The event in which the tuples in LH1 and LH2 corresponding to the pair (m∗, IDT) has an entry

for the flag useful = 0.

Let us consider that F has made qH0 , H0 oracle queries and qe extract oracle queries. Then the probability
of the three aborting events E1, E2 and E3 are:

Pr[E1] =
(
1− 1

qH0−qe

)
, Pr[E2] =

(
qe

qH0

)
and Pr[E2] = 1

2

Let ε′ be the advantage of A in breaking the unforgeability of the scheme. We compute ε′ as the probability
of C proceeding the game with out aborting. Therefore,

ε′= ¬E1 ∨ ¬E2 ∨ ¬E3 =
(
1−

(
1− 1

qH0−qe

)) (
1− qe

qH0

) (
1− 1

2

)

=
(
1− 1 + 1

qH0−qe

) (
1− qe

qH0

) (
1
2

)
=

(
1

qH0−qe

) (
qH0−qe

qH0

) (
1
2

)

=
(

1
2qH0

)

Thus, the forgery σ∗ submitted by the forger F can be used by C to successfully solve the strong RSA
problem with an advantage ε ≥

(
ε′

2qH0

)
. !

5 Identity Based Aggregate Signature scheme from RSA (IBAS)

We propose the new identity based aggregate signature (IBAS) scheme in this section and prove the existential
unforgeability of the scheme.
Intuition behind the scheme: Our identity based aggregate signature scheme is motivated from Boneh
et al.’s aggregate signature [8]. Their scheme is in the PKI settings and the signature is deterministic in
nature. A deterministic signature does not have a randomization component and therefore, the signature
becomes short. Gentry et al.’s [13] scheme was non-deterministic and uses random values for each signature.
In order to establish a common random value, the signers have to participate in a communication round
before generating an aggregate signature. If the signature scheme does not have random values, then the
signature can be easily aggregated, which we learn from [8]. Thus, we tried to instantiate a deterministic
identity based signature scheme and extend it to aggregate signature scheme to achieve full aggregation.
Naturally, RSA based constructs suit well in the design of deterministic identity based signature scheme. We
have constructed one in the preceding section.
Deterministic General IBAS: Our scheme is a deterministic identity based aggregate signature scheme,
which supports full aggregation, i.e. the size of the aggregate signature is one group element along with the
message and the list of identities. The scheme consists of six algorithms, out of which Setup, Extract, Sign
and Verify are identical to that of D-IBS scheme. We explain the AggregateSign and AggregateVerify
algorithms below:

– AggregateSign: This algorithm takes as input a set of t signatures {σi, βi}i=1 to t and the corresponding
message identity pairs 〈mi, IDi〉, such that ∀i = 1 to t, 〈σi, βi〉 is the valid signature by the user with
identity IDi on message mi. The aggregation is done as follows:

σagg =
t∏

i=1

σi

The identity based aggregate signature is σagg and the corresponding list of message, identity and β’s is
L = {mi, IDi, βi}i=1 to t.

– AggregateVerify: This algorithm takes the identity based aggregate signature σagg and the correspond-
ing list of message identity pairs, L = {mi, IDi, βi}i=1 to t and performs the verification as follows:
• For all i=1 to t

Compute gi0 = H0(IDi, 0)
Compute gi1 = H0(IDi, 1)
Compute h′i1 = H1(mi, IDi, βi) and
Compute h′i2 = H2(mi, IDi, βi)

• If σe
agg

?=
t∏

i=1
((gi0)h′i1(gi1)h′i2), then outputs “V alid” else outputs “Invalid”.

The correctness of verification is straight forward.

Security Proof for IBAS:
In this section, we prove the security of our identity based aggregate signature scheme. We show that if

a polynomial time bounded forger exists, who can break our scheme with non-negligible advantage ε, then
it is possible to construct an algorithm that solves the strong RSA problem with the same advantage.
Existential Unforgeability of IBAS:

Theorem 2. Our identity based aggregate signature scheme (IBAS) is EUF-IBAS-CMA secure in the ran-
dom oracle model under adaptive chosen message and adaptive chosen identity attack, if the strong RSA
problem is assumed to be hard in Z∗

n, where p, q, (p− 1)/2 and (q − 1)/2 are large prime numbers.

Proof: The proof of this scheme is some what similar to that of the EUF-D-IBS-EUF proof. The major
difference between the proofs of a deterministic identity based signature scheme and an identity based
aggregate signature scheme is the aggregate signature oracle. Aggregate oracle is trivial in the case of general
aggregation. The adversary obtains the individual signatures from the sign oracle and aggregates all the
signature to form an aggregate signature. Below, we provide the sketch of the proof for IBAS scheme.

The EUF-IBAS-CMA game is an interactive game between the challenger C and a forger F . The setup
and training phases are same as that of the EUF-D-IBS-EUF proof. At the end of the training phase, the
forger F generates the aggregate signature σ∗agg for signatures (σi)i=1 to t from the users (IDi)i=1 to t on
messages (mi)i=1 to t where, at least one identity in the list of identities is the target identity, i.e. IDT ∈
{IDi}i=1 to t, for which the private key was not queried by F and the corresponding message is m∗.

It is to be noted that all the signatures except the signature corresponding to IDT in the aggregate
signature σ∗agg can be generated by C, since C knows the private keys corresponding to those identities. Thus,
C generates all other signatures and divides them from σ∗agg. The resulting value along with the value of
master public key set by C will be the solution for the strong RSA problem similar to that of EUF-D-IBS-EUF
proof. !

6 Conclusion

In this paper, we have proposed the first deterministic identity based signature scheme, whose security is
based on strong RSA assumption. Our scheme proposed in this paper achieves full aggregation and thus the
result is attractive. Our IBAS addressed the open problem posed by Hwang et al. in [17], which is to design
an identity based aggregate signature scheme where the signers need not have to agree on a common random
value. Gentry et al.’s identity based aggregate signature scheme in [13] had the weakness where in if a signer
tactfully re-uses the random value used for signing a message, a total break of the scheme is possible. Our
scheme does not show the weakness of [13]. We have formally proved the security of our scheme in the random
oracle model. We have summarized the current state of the art in the research of identity based aggregate
signatures which achieves full aggregation and showed the communication and computational complexity of
our new scheme IBAS along with the other existing schemes in Table-3.

References

1. Ali Bagherzandi and Stanislaw Jarecki. Identity-based aggregate and multi-signature schemes based on rsa.
In Public Key Cryptography - PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages 480–498.
Springer, 2010.

2. Paulo S. L. M. Barreto, Benôıt Libert, Noel McCullagh, and Jean-Jacques Quisquater. Efficient and provably-
secure identity-based signatures and signcryption from bilinear maps. In Advances in Cryptology - ASIACRYPT
2005, volume 3788 of Lecture Notes in Computer Science, pages 515–532. Springer, 2005.

3. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures. In Automata,
Languages and Programming, 34th International Colloquium, ICALP 2007, volume 4596 of Lecture Notes in
Computer Science, pages 411–422. Springer, 2007.

4. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures - how to sign with rsa and rabin. In
EUROCRYPT, Lecture Notes in Computer Science, pages 399–416. Springer, 1996.

5. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisignatures and identity-
based sequential aggregate signatures, with applications to secure routing. In ACM Conference on Computer and
Communications Security, CCS 2007, pages 276–285. ACM, 2007.

6. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisignatures and identity-
based sequential aggregate signatures, with applications to secure routing. Cryptology ePrint Archive, Report
2007/438, 2007, Revised on 21-Feb-2010. http://eprint.iacr.org/.

7. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. New multiparty signature schemes for
network routing applications. ACM Transactions on Information and System Security (TISSEC), vol.12(no.1):1–
39, 2008.

8. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures from
bilinear maps. In Advances in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 416–432. Springer, 2003.

9. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. Journal of Cryptology,
vol.17(no.4):297–319, 2004.

10. Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap diffie-hellman groups. In Public Key
Cryptography - PKC 2003, volume 2567 of Lecture Notes in Computer Science, pages 18–30. Springer, 2002.

11. Xiangguo Cheng, Jingmei Liu, and Xinmei Wang. Identity-based aggregate and verifiably encrypted signatures
from bilinear pairing. In Computational Science and Its Applications - ICCSA 2005,, volume 3483 of Lecture
Notes in Computer Science, pages 1046–1054. Springer, 2005.

12. David Galindo and Flavio D. Garcia. A schnorr-like lightweight identity-based signature scheme. In In Proceedings
of 2nd African International Conference on Cryptology, AfricaCrypt 2009, volume 5580 of Lecture Notes in
Computer Science, pages 135–148. Springer, 2009.

13. Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Public Key Cryptography - PKC
2006, volume 3958 of Lecture Notes in Computer Science, pages 257–273. Springer, 2006.

14. Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature schemes with tight reductions
to the diffie-hellman problems. Journal of Cryptology, Vol.20(No.4):493–514, 2007.

15. Javier Herranz. Deterministic identity-based signatures for partial aggregation. The Computer Journal, vol-
49(no-3):322–330, 2006.

16. Florian Hess. Efficient identity based signature schemes based on pairings. In Selected Areas in Cryptography,
volume 2595 of Lecture Notes in Computer Science, pages 310–324. Springer, 2003.

17. Jung Yeon Hwang, Dong Hoon Lee, and Moti Yung. Universal forgery of the identity-based sequential aggregate
signature scheme. In Computer and Communications Security, ASIACCS 2009, pages 157–160. ACM, 2009.

18. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate signatures
and multisignatures without random oracles. In Advances in Cryptology - EUROCRYPT 2006, volume 4004 of
Lecture Notes in Computer Science, pages 465–485. Springer, 2006.

19. Di Ma. Practical forward secure sequential aggregate signatures. In Proceedings of the 2008 ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2008, pages 341–352. ACM, 2008.

20. Gregory Neven. Efficient sequential aggregate signed data. In Advances in Cryptology - EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 52–69. Springer, 2008.

21. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In The 2000 Symposium on Cryptography
and Information Security, Okinawa, Japan, January, pages 135–148, 2000.

22. S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan. Identity-based deterministic signature scheme
without forking-lemma. In Advances in Information and Computer Security, IWSEC-2011, volume 7038 of
Lecture Notes in Computer Science, pages 79–95. Springer, 2011.

23. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO - s4, Lecture Notes in Computer
Science, pages 47–53. Springer, 1984.

24. Zhu Wang, Huiyan Chen, Ding feng Ye, and Qian Wu. Practical identity-based aggregate signature scheme from
bilinear maps. Journal of Shangai Jiatong University, vol-13(no-6):684–687, 2008.

25. Jing Xu, Zhenfeng Zhang, and Dengguo Feng. Id-based aggregate signatures from bilinear pairings. In Cryptology
and Network Security, CANS-2005, volume 3810 of Lecture Notes in Computer Science, pages 110–119. Springer,
2005.

26. Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An efficient signature scheme from bilinear pairings
and its applications. In Public Key Cryptography - PKC 2004, volume 2947 of Lecture Notes in Computer Science,
pages 277–290. Springer, 2004.

