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Abstract

Data reconciliation (DR) and Principal Component Analysis (PCA) are two popular data analysis tech-

niques in process industries. Data reconciliation is used to obtain accurate and consistent estimates of

variables and parameters from erroneous measurements. PCA is primarily used as a method for reducing

the dimensionality of high dimensional data and as a preprocessing technique for denoising measurements.

These techniques have been developed and deployed independently of each other. The primary purpose of

this article is to elucidate the close relationship between these two seemingly disparate techniques. This

leads to a unified framework for applying PCA and DR. Further, we show how the two techniques can

be deployed together in a collaborative and consistent manner to process data. The framework has been

extended to deal with partially measured systems and to incorporate partial knowledge available about the

process model.

Keywords: Data reconciliation, Principal component analysis, Model identification, Estimation, Denoising

1 Introduction

Data Reconciliation (DR) is a technique that was proposed in the early 1950s to derive accurate and consis-

tent estimates of process variables and parameters from noisy measurements. This technique has been refined
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and developed over the past fifty years. Several books and book chapters have been written on this and re-

lated techniques [Romagnoli and Sanchez(1999), Veverka and Madron(1997), Narasimhan and Jordache(2000),

Hodouin(2010), Bagajewicz(2001)]. The technique is now an integral part of simulation software packages such

as ASPEN PLUSr and several standalone software packages for data reconciliation such as VALI, DATACONr,

etc., are also available and deployed in chemical and mineral process industries. The main benefit derived from

applying DR are accurate estimates of all process variables and parameters which satisfy the process constraints

such as material and energy balances. The derived estimates are typically used in retrofitting, optimization and

control applications. In order to apply DR, the following information is required.

(i) The constraints that have to be obeyed by the process variables and parameters must be defined. These

constraints are usually derived from first principles model using process knowledge, and consist of material and

energy conservation equations including property correlations, and can also include equipment design equations,

and thermodynamic constraints.

(ii) The set of process variables that are measured must be specified. Additionally, inaccuracies in these

measurements must be specified in terms of the variances and covariances of errors. This information is usually

derived from sensor manuals or from historical data.

Another multivariate data processing technique that has become very popular in recent years is Principal

Component Analysis (PCA) [Jolliffe(2002)]. This method is primarily used for reducing the dimensional-

ity of data and to denoise them. It is also used in developing regression models, when there is collinearity

in the regressors variables [Davis et al.(1999)Davis, Piovoso, Kosanovich and Bakshi]. In chemical engineer-

ing, it has been used for process monitoring and fault detection, and diagnosis [Kourti and MacGregor(1995),

Yoon and MacGregor(2001)]. Generally, PCA has been regarded as a data-driven multivariate statistical tech-

nique. In a recent paper, PCA was interpreted as a model identification technique that discovers the linear

relationships between process variables [Narasimhan and Shah(2008)]. This interpretation of PCA is not well

known, although other authors have previously alluded to it.

The purpose of this article is to establish the close connection between PCA and DR. Specifically, it is shown

that PCA is a technique that discovers the underlying linear relationships between process variables while

simultaneously reconciling the measurements with respect to the identified model. Exploring this connection

further, it is shown that Iterative PCA is a method which simultaneously extracts the linear process model,

error-covariance matrix and reconciles the measurements [Narasimhan and Shah(2008)]. Several benefits accrue

from this interpretation:
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(i) It shows that data reconciliation can be applied to a process purely using measured data, even if it is difficult

to obtain a model and measurement error variances using a priori knowledge. It thus expands the applicability

of data reconciliation and related techniques.

(ii) PCA and IPCA can be used as techniques for obtaining a process model and measurement error-covariance

matrix from data. Since these are the two essential information required to apply DR, it is now possible

to apply the rigorous and well developed companion technique such as gross error detection (GED) for fault

diagnosis. This will eliminate the difficulties and deficiencies present in the current approach of using PCA for

fault diagnosis.

Additional useful results presented in this paper include the interpretation of the process model obtained using

PCA, when only a subset of the process variables are measured. Modification of the PCA and IPCA techniques

to incorporate partial knowledge of some of the process constraints is also proposed. The impact of incorrectly

estimating the model order (the actual number of linear constraints) on the reconciled estimates is also discussed,

leading to a recommendation for practical application of PCA and combining it with tools of DR and GED.

The paper is organized as follows. Sections 2 and 3 introduce the background on DR and PCA, respectively.

Model identification and data reconciliation using PCA for the case of known error-covariance matrix is described

in Section 4. For unknown error-covariances case, Section 5 describes a procedure for simultaneous model

identification, estimation of error-covariances, and data reconciliation using IPCA. Section 6 extends PCA

(IPCA) to partially measured systems, and known constraint matrix. Further, it discusses selection criteria of

model order when the model order is not known. Section 7 concludes the paper. The developed concepts are

illustrated via a simulated flow process.

2 Basics of Data Reconciliation

In this section, the application of DR to linear steady–state processes is discussed, including the case when a

subset of the process variables is measured (also known as partially measured systems).

2.1 Linear steady–state processes

The objective of data reconciliation is to obtain better estimates of process measurements by reducing the

effect of random errors in measurements. For this purpose, the relationships between different variables as
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defined by process constraints are exploited. We restrict our attention to linearly constrained processes which

are operating under steady state. An example of such a process is a water distribution network, or a steam

distribution network with flows of different streams being measured. We first describe the data reconciliation

methodology for the case when the flows of all streams are measured.

Let x(j) ∈ Rn be an n-dimensional vector of the true values of the n process variables corresponding to a

steady-state operating point for each sample j. The samples x(j), j = 1, 2, . . . , N can be drawn from the same

steady state or from different steady states. These variables are related by the following linear relationships:

Ax(j) = 0m×1 (1)

where A is an (m × n)-dimensional matrix, and 0 is an m-dimensional vector with elements being zero. In

data reconciliation, A is labelled as a “constraint matrix”. Note that the rows of A span an m-dimensional

subspace of Rn, while x(j) lies in an (n−m)-dimensional subspace (orthogonal to the row space of A) of Rn.

Let y(j) ∈ Rn be the measurements of the n variables. The measurements are usually corrupted by random

errors. Hence, the measurement model can be written as follows:

y(j) = x(j) + ε(j), (2)

where ε(j) is an n-dimensional random error vector at sampling instant j. The following assumptions are made

about the random errors:

(i) ε(j) ∼ N (0,Σε)

(ii) E [ε(j)ε(k)T] = 0, ∀ j 6= k

(iii) E [x(j)ε(j)T] = 0 (3)

where E [·] denotes the expectation operator. If the error variance-covariance matrix Σε is known, then the

reconciled estimates for x(j) (denoted as x̂(j)) can be obtained by minimizing the following objective function:

min
x(j)

(y(j)− x(j))TΣ−1ε (y(j)− x(j))

s.t. Ax(j) = 0. (4)
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The reconciled values of the variables are given by:

x̂(j) = y(j)−ΣεA
T(AΣεA

T)−1Ay(j) = Wy(j), (5)

where W = I −ΣεA
T(AΣεA

T)−1A. Under the assumptions made regarding the measurements errors, it can

be shown that the reconciled estimates obtained using the above formulation are maximum likelihood estimates.

It can also be verified that the estimates x̂(j) satisfy the imposed constraints and are normally distributed with

mean, x(j), and covariance, WΣεW
T.

If all the measured samples are drawn from the same steady state operating point, then DR can be applied

to the average of the measured samples. However, if the samples are from different steady states, then DR is

applied to each sample independently. For ease of comparison with PCA, we consider a set of N samples (which

could correspond to different steady state operating periods) to which DR is applied. The set of N samples is

arranged in the form of an (n×N)−dimensional data matrix, Y as

Y = [y(1),y(2), . . . ,y(N)] = X + E, (6)

where X and E are (n×N)−dimensional matrices of the true values and the errors, respectively. The matrix

X̂ of reconciled estimates for the N samples is given by

X̂ = WY. (7)

The following example illustrates DR on the flow process shown in Figure 1.

Example 1

The flow process consists of six flow variables and four balance equations, i.e., n = 6 and m = 4. The flow
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balance equations for this process can be written as follows:

AF = 0, with (8)

A =



1 1 −1 0 0 0

0 0 1 −1 0 0

0 0 0 1 −1 −1

0 −1 0 0 0 1


, (9)

F =

[
F1 F2 F3 F4 F5 F6

]T

. (10)

In order to demonstrate the utility of DR in reducing noise in measurements, we assume that flows of all six

streams are measured and noisy measurements are simulated as follows. First noise-free values (true flow rates)

that satisfy the constraints are generated, followed by addition of noise to generate the noisy measurements.

1. The flow variables F1 and F2 are chosen as independent variables and base values are specified for these

variables. For simulating data corresponding to different steady states, normally distributed random

fluctuations are added to the base values of flow variables F1 and F2.

2. The true values of the dependent flow variables, F3, F4, F5, and F6 are computed using four flow balance

equations in Eq. (8) for all steady states.

3. Noisy measurements are simulated by adding normally distributed random errors to the true values cor-

responding to different steady states.

The base values, standard deviations of fluctuations for generating different steady states, and the standard

deviations of measurement errors are given in Table 1.

Table 1: Base values, standard deviation of fluctuation (SDF), and standard deviations of error (SDE) for the
flow data.

Variable Base values SDF SDE

F1 10 1 0.1
F2 10 2 0.08
F3 Eq. (8) 0.15
F4 Eq. (8) 0.2
F5 Eq. (8) 0.18
F6 Eq. (8) 0.1

A sample of 1000 measurements are simulated and DR is applied to obtain the reconciled estimates corresponding

to each sample. The root mean square error (RMSE) values between reconciled and true values over all the
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Figure 1: Schematic of a flow process

1000 samples for each flow variable is computed and reported in Table 2. The RMSE in the measurements of

variables are also reported in the table for a comparison. The RMSE values in the estimates of all variables are

less than the RMSE values in the corresponding measurement, clearly indicating that reconciled estimates of

variables are more accurate than the measurements.

Table 2: Root mean square errors in measurements and reconciled estimates of flow variables for Example 1

Variable RMSE before DR RMSE after DR

F1 3.2177 2.3318
F2 2.5750 1.6669
F3 4.8292 2.5180
F4 6.5358 2.5180
F5 5.8500 2.3318
F6 2.7261 1.6669

2.2 Partially measured systems

For reasons of cost and feasibility, in most processes only a subset of variables is measured. We refer to

such a system as a partially measured system. Application of DR to a partially measured system provides
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reconciled values of measured variables and estimates for unmeasured variables. DR also provides diagnostics

on which of the measured variables can be reconciled (known as redundant measured variables) and which of the

unmeasured variables can be uniquely estimated (also known as observable unmeasured variables). The details

of the redundant and observable variables concepts can be found in [Mah(1990)]. The method for applying DR

to a partially measured system is described below.

The constraints for a partially measured system, Eq. (1), can be rewritten in terms of the measured variables

(labelled as xk) and the unmeasured variables (labelled as xu) as:

Akxk + Auxu = 0, (11)

where Ak and Au are the partitions of A matrix corresponding to xk and xu, respectively. Then, by constructing

a projection matrix P such that PAu = 0, and multiplying Eq. (11), we can get a reduced set of constraints

involving only the measured variables as [Crowe et al.(1983)Crowe, Garcia Campos and Hrymak]:

PAkxk = 0. (12)

Then, the reduced data reconciliation problem is to find the minimum of the objective defined in Eq. (4) subject

to the constraints defined by Eq. (12). The reconciled values x̂k(j) obtained from the measurement yk(j) are

given as follows:

x̂k(j) = yk(j)−Σε(PAk)T(PAkΣε(PAk)T)−1(PAk)yk(j) (13)

The estimates for the unmeasured variables can be obtained by substituting for the estimates of the measured

variables in Eq. (11) and solving these equations. The conditions under which unique estimates for the un-

measured variables can be obtained and the identification of redundant and observable variables using linear

algebraic techniques are more completely described in the book by [Narasimhan and Jordache(2000)]. Alterna-

tively, for flow processes, a graph-theoretic approach can be used for obtaining the reduced constraint matrix,

and for determining the redundant measured variables and the observable unmeasured variables.

Example 2

The following example illustrates the application of DR to a partially measured flow process. The graph

theoretical approach is used for observability and redundancy classification of variables, because it aids in

visualization and ease of understanding. Consider again the flow process given in Figure 1, with only the flows

of streams 1, 2, and 5 being measured. In order to apply the graph theoretic procedure, the process is represented

as a graph shown in Figure 2(b), in which an environment node is added to which all process inflows (stream
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1) and process outflows (stream 5) are connected. In order to obtain the graph corresponding to the reduced

reconciliation problem, we merge nodes which are connected by streams whose flows are not measured. Thus,

merging nodes 1 and 4, 2 and 3, 3 and 4, we get the reduced graph shown in Figure 2(c). The reduced graph

contains only streams 1 and 5 (whose flows are measured) for which one flow balance can be written (either

around node 1 or node E). The reduced DR problem is to obtain reconciled estimates of these two flows subject

to the flow balance constraint. The same reduced reconciliation problem can be obtained using the projection

technique described earlier. The measurements of streams that appear in the reduced graph are redundant,

while the measured flow of stream 2 that was eliminated during the merging process is non-redundant. It can

also be deduced that the flows of streams 3, 4, and 6 are observable because the original process graph does not

contain any cycle which consists solely of unmeasured flows.

The RMSE values in all the variables after DR are reported in Table 3. It shows that the reconciled estimates of

the redundant variables F1 and F5 are more accurate than the measurements even with the partial measurements,

while there is no improvement in the non-redundant flow F2. Compared with the RMSE values of estimates

reported in Table 2 for the fully measured case, the estimates of all variables obtained are less accurate due to

reduced information available about the process.

Table 3: Root mean square errors in the reconciled estimates of flow variables for Example 2

Variable RMSE after DR

F1 2.7899
F2 2.5750
F3 3.9033
F4 3.9033
F5 2.7899
F6 2.5750

3 Basics of Principal Component Analysis

Principal component analysis (PCA) is one of the widely used multivariate statistical techniques. The traditional

view of PCA as a technique for dimensionality reduction is explained for the sake of continuity, before we describe

how PCA can be used as a technique for identifying a steady state linear model from the data.

PCA is a linear transformation of a set of variables to a new set of uncorrelated variables called principal

components (PCs) [Jolliffe(2002)]. The first PC is a new variable with the highest variance among all linear

transformations of the original variables. The second PC is a new variable orthogonal to the first PC (and
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Figure 2: Flow network after merging variables for Example 2

hence uncorrelated with it) that has the next highest variance among all linear transformations of the original

variables and so on. For reducing the dimensionality of multivariate data, the PCs with the highest variances

are retained while the remaining PCs are discarded. The PCs can be obtained from the eigenvectors of the

covariance matrix of the data for the given set of variables. The eigenvectors of the covariance matrix of the

data can in turn be obtained using the singular value decomposition (SVD) of the data matrix as described

below.

As defined in the preceding section, let Y be the (n×N)−dimensional data matrix. Let Sy be the covariance

matrix of Y defined by

Sy =
1

N
YYT. (14)

The SVD of the scaled data matrix can be written as

svd(
Y√
N

) = U1S1V
T

1 + U2S2V
T

2 , (15)

where U1 are the orthonormal eigenvectors corresponding to the p largest eigenvalues of Sy while U2 are the

orthonormal eigenvectors corresponding to the remaining (n − p) smallest eigenvalues of Sy. The matrices

S1 and S2 are diagonal matrices, whose diagonal elements are the square root of the eigenvalues of Sy. It is
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assumed that the eigenvalues and corresponding eigenvectors are ordered in decreasing order of the magnitudes

of the eigenvalues. It can be proved that the first p PCs are given by UT
1y(j), and the variances of these PCs

are the corresponding eigenvalues.

If the objective is to reduce the dimensionality of the data, then the values of the first p PCs only need to be

computed corresponding to each observation y(j) and stored. Several heuristics have been suggested in the

literature to choose the number of PCs p to be retained, such as percentage of total variance in data captured,

or the SCREE plot which looks for sharp changes in the eigenvalues. More details on such heuristics can be

found in the book by [Jolliffe(2002)].

Alternatively, PCA can be used as a denoising technique. The denoised estimates of the measurements obtained

using PCA corresponding to p retained PCs are given by

X̂ =
√
NU1S1V

T

1 . (16)

4 Model Identification and Data Reconciliation using PCA

The viewpoint that is of importance in this article is that PCA is a method for discovering the underlying

linear relationships between variables, while at the same time obtaining the reconciled estimates of variables

that satisfy the identified linear relations. The use of PCA as a method for identifying a linear model is less well

known although it has been alluded to by different authors [Gertler et al.(1999)Gertler, Li, Huang and McAvoy,

Huang(2001), Jolliffe(2002)]. This viewpoint is explored thoroughly in this work. We first analyze the case when

all the process variables are measured and the measurement error-covariance matrix is known. The generalization

to partially measured systems and estimation of error-covariance matrix simultaneously along with the linear

constraint model from data will be elucidated in the following sections. We also make the following additional

assumptions regarding the observations. The reasons for these additional assumptions will be explained later

in this section.

(A1) The data are drawn from at least n distinct steady states.

(A2) The data used for model building do not contain any outliers or gross errors.

If there are m linear relations between the measured process variables as defined by Eq. (1), then as stated

earlier, the true values of variables lie in an Rn−m dimensional subspace of Rn. Therefore, the denoised estimates
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of variables are also chosen to lie in an (n−m) dimensional subspace. If we assume that the number of linear

constraints m relating the variables is known a priori, then we can apply PCA, choose the number of retained

PCs p to be equal to n−m, and obtain the estimates X̂ given by Eq. (16). Based on the orthogonality of the

PCs, it immediately follows that the eigenvectors corresponding to the smallest m eigenvalues are orthogonal to

these estimates, and therefore they provide an estimate of the rows of the constraint matrix A (whose m rows

lie in an Rm dimensional subspace orthogonal to the true values of process variables), that is, the estimate of

the constraint matrix is given by

Â = UT

2 . (17)

While data compression and denoising focuses on the eigenvectors corresponding to the largest eigenvalues

that need to be retained, model identification is concerned with the eigenvectors corresponding to the smallest

eigenvalues. The main questions to be answered are whether the estimate of the constraint matrix obtained

using PCA is optimal, and whether the number of constraints can also be estimated from data, without any

prior knowledge.

The estimates of process variables (that lie in a p-dimensional subspace) obtained using Eq. (16) and the

corresponding estimate of the constraint matrix (orthogonal to the estimates) obtained using Eq. (17), can be

shown to be optimal in the least-squares sense [Rao(1964)]. In other words, given a sample of observations, PCA

identifies an optimal p-dimensional subspace in which the estimates lie such that the sum squared differences

between measured and estimated values is minimum. If we assume that the errors in measurements obey the

assumptions listed in Eq. (3) with the additional condition that the error-covariance matrix is a scale of the

identify matrix, i.e., Σε = σ2I, then the following result can be proved

ΣY|X,N = E[Sy|X, N ] = Mx + σ2I, (18)

where Mx = 1
NXXT is an (n×n)−dimensional matrix, and I is an n-dimensional identity matrix. Note that the

notation E[Sy|X, N ] is used to emphasize that the expected value of the sample covariance matrix is considered

under the assumption that the samples are drawn from the same set of steady states X, and the only variability

in Sy is due to the measurement errors. Eq. (18) leads to the following properties:

Property 1

The eigenvectors of ΣY|X,N and Mx are identical.

Property 2

The smallest m eigenvalues of ΣY|X,N are all equal to σ2.
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Assumption (A2) made regarding the observations implies that the observations do not contain any systematic

error, and, therefore, the true values corresponding to each sample must satisfy the true process constraints.

Furthermore, Assumption (A1) ensures that observations from different steady states are obtained. If data

corresponding to (n − m) linearly independent steady states are obtained, then the rank of the matrix Mx

will be (n − m) with the last m eigenvalues being equal to zero.1 The eigenvectors corresponding to the m

zero eigenvalues will be orthogonal to the true values and is a basis for the row space of the constraints. We

can therefore use Property 1 to conclude that the eigenvectors corresponding to the m smallest eigenvalues of

ΣY|X,N is a basis for the row space of the constraint matrix. Furthermore, Property 2 clearly provides a way of

identifying the number of constraints, without any a priori knowledge by examining the eigenvalues of ΣY|X,N .

The number of constraints (also referred to model-order) is estimated to be equal to the number of small

eigenvalues all of which should be equal. Thus, if ΣY|X,N is known, we can derive the number of constraints

and the constraint matrix by applying PCA to this matrix. However, we can only obtain an unbiased estimate of

ΣY|X,N from the sample covariance matrix Sy. It has been proved that the eigenvectors of Sy are asymptotically

unbiased estimates of the eigenvectors of ΣY|X,N , if the errors and (hence the measurements) are normally

distributed [Jolliffe(2002)]. Using this result, we can therefore conclude that if the errors in all measurements

are normally distributed with identical variances (homoscedastic errors) and are mutually independent, then

PCA can be used to derive an asymptotically unbiased estimate of the constraint matrix. It should be noted

that the estimate of the constraint matrix derived using PCA can differ from the true constraint matrix form

(we may desire) by a rotation matrix. In other words, the estimated and true constraint matrices are related

as

Â = QA, (19)

where Q is some non-singular matrix.

It can also be shown that the denoised estimates obtained using PCA given by Eq. (16) are the reconciled values

of the data matrix Y corresponding to the constraint matrix Â identified using PCA, under the assumption

that Σε = σ2I. By substituting the estimated constraint model given by Eq. (17) in Eq. (5), we obtain

X̂ = (I−U2(UT

2U2)−1UT

2 )Y. (20)

Substituting for the SVD of the data matrix and using the property that the eigenevctors are orthonormal, we

get

X̂ =
√
N(I−U2U

T

2 )(U1S1V
T

1 + U2S2V
T

2 ). (21)

1Since the number of constraints may not be known a priori, it is recommended that data be obtained from as many distinct
steady state operating conditions as the number of variables n.
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Expanding the above equation and using the orthonormal property of the eigenvectors we finally get

X̂ =
√
NU1S1V

T

1 . (22)

Based on the above analysis, it can be concluded that PCA is a method that simultaneously identifies the

constraint model and obtains reconciled estimates with respect to the identified model purely from data under

the assumption that measurement errors in different variables are independent and have the same variance.

The number of constraints can also be obtained purely from data. It should, however, be noted that while the

estimates obtained using PCA satisfy the identified constraint matrix, they will not satisfy the true process

constraints due to inaccuracies in the estimated constraint matrix. The larger the sample size of the data set,

the more accurate will be the estimated constraint matrix, and more closely will the PCA estimates match the

reconciled estimates derived by applying DR using the true process constraints. It may also be verified that

the reconciled estimates are invariant to a rotation of the constraint matrix. Thus, the fact that the constraint

matrix estimated using PCA differs from the desired form of the true constraint matrix (derived from first

principles) by a rotation, will not have an effect on the reconciled estimates.

4.1 Error-covariance matrix known

The results in the preceding subsection were obtained under the assumption that the errors in measurements of

different variables have identical variances. In this subsection, we describe the identification of constraint model

using PCA when the measurement errors have different variances and may also, in general, be correlated. It is

however assumed that the error-covariance matrix Σε is known. Furthermore, the errors in measurements of

different samples are assumed to be independent and identically distributed with the same known covariance

matrix. It may be noted that these assumptions regarding the measurement errors are the same as those made

in DR.

Narasimhan and shah[Narasimhan and Shah(2008)] described an approach for applying PCA for model identi-

fication from data when the error-covariance matrix is known. This approach is based on transforming the data

using an appropriate matrix before applying PCA. The measurement errors corrupting the transformed data

are independent and identically distributed (i.i.d.), and PCA can be applied to the transformed data matrix.

The approach is as follows:
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The Cholesky decomposition of Σε is given by

Σε = LLT, (23)

where L is an (n × n)−dimensional lower triangular matrix. Then, the noisy data matrix can be transformed

as follows:

Ys = L−1Y = L−1X + L−1E, (24)

where E is an (n × N)−dimensional error matrix. Let Sys is the covariance matrix of the transformed data

defined by

Sys =
1

N
YsY

T

s (25)

By taking expectation we can show that

ΣYs|X,N = E[Sys |X, N ] = Mxs + I, (26)

where Mxs = 1
NL−1XXTL−T. Eq. (26) is similar Eq. (18) and Properties 1 and 2 hold for the matrix ΣYs|X,N .

Therefore, PCA can be applied to the transformed data in order obtain the constraint model and reconciled

estimates corresponding to the transformed data. The reconciled estimates and constraint model corresponding

to the original data can be derived using an inverse transformation as described below. Let the SVD of Ys be

decomposed corresponding to the first largest n−m singular values and remaining m singular values as

Ys =
√
NU1sS1sV

T

1s︸ ︷︷ ︸
X̂s

+
√
NU2sS2sV

T

2s. (27)

The first part on the right-hand side of above equation corresponds to the reconciled estimates of the trans-

formed data, while the second part contains the information about the constraints which relate the transformed

variables. The reconciled estimates and the constraint matrix corresponding to the original data are given by

X̂ = LX̂s (28)

Â = UT

2sL
−1. (29)

Since the smallest m eigenvalues of Sys matrix are all equal to 1, it provides a systematic method to determine

the constraint model order. Due to finite sample sizes and numerical inaccuracies, the equality of smallest m

eigenvalues can be numerically checked by testing whether the average of the smallest m eigenvalues approxi-

mately equals unity.
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Example 3

The flow process of Example 1 is again considered along with the simulated data set of 1000 samples. We

assume that the error-covariance matrix (used to simulate the measurements) is known, but neither the number

of constraints nor the constraint matrix is assumed to be known. It may be noted that the error-covariance

matrix is diagonal, with the diagonal elements being the error variances as given in Table 1. The data matrix

is transformed as defined by Eq. (24) and its SVD obtained. The six ordered singular values obtained are

263.16, 21.83, 1.05, 1.04, 1.01, and 0.98. Examination of the singular values clearly indicates that there are

four constraints, because the smallest four singular values are all nearly equal. The denoised estimates of the

transformed data are obtained using the first two PCs, and the reconciled estimates of the original data are

obtained using Eq. (28). The RMSE in reconciled estimates of each variable is computed and reported in

Table 4. Comparing the RMSE of estimates obtained using PCA with those reported in Table 2 which are

obtained by applying DR using the known process model, it is clear that they are nearly equal. Although the

PCA estimates do not exactly satisfy the true flow balances given by Eq. (8), the maximum constraint residual

is of the order of 10−12. These indirectly indicate that the constraint model obtained using PCA is a good

estimate of the true process constraints.

Table 4: Root mean square errors in the reconciled estimates of flow variables using PCA for Example 3

Variable RMSE using PCA

F1 2.3383
F2 1.6758
F3 2.5225
F4 2.5288
F5 2.3290
F6 1.6682

4.2 Comparison of PCA estimated constraint model and true process constraint

model

In Example 3, the eigenvectors of the transformed data covariance matrix corresponding to the smallest four

eigenvalues are used to derive an estimate of the process constraint matrix using Eq. (29), and is given below

Â =



−2.4832 0.2270 −2.4441 4.3450 0.5926 −2.1390

1.5738 −5.0224 1.4541 1.4337 −4.4687 2.1376

5.3860 6.5976 −2.9594 −0.3256 −2.0764 −3.3396

2.9833 −3.4863 −3.8879 −0.1440 1.0598 7.5021


. (30)
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The elements of the estimated constraint matrix do not seem to correspond with those of the constraint matrix

derived from the first principles given by Eq. (9). However, it should be noted that an element by element

comparison between the estimated and true constraint matrices cannot be done, because the estimated constraint

matrix may differ from the first principles model by a rotation matrix (see Eq. (19)). Thus, only the row

spaces of the estimated and true process constraint matrices can be compared. Two criteria were proposed by

[Narasimhan and Shah(2008)] for making such a comparison (i) the subspace angle between the row subspaces

of the estimated and true constraint matrices, and (ii) the sum of orthogonal distances of the row vectors of the

estimated constraint matrix from the subspace defined by the rows of the true constraint matrix. This metric

(denoted by ‘α’) is computed as follows:

α = Σiαi, with (31)

αi = ‖Âi. − Âi.A
T(AAT)−1A‖, (32)

where Âi. are the rows of the estimated constraint matrix. Hence, α value near to zero indicates that Â is a

good approximation of A.

For Example 3, the subspace angle between the row spaces of estimated and true constraint matrices is 0.2377

degrees and α = 0.0555. These values suggest that a good estimate of the constraint matrix has been obtained

using PCA. Our experience with larger examples indicates that subspace angle is not a good criteria for com-

parison, because it does not clearly indicate the quality of the estimated constraint matrix, especially as the

number of constraints increases.

A practically useful method for comparing the estimated and true constraint matrix is proposed in this work. For

this purpose, the process variables are partitioned into a set of dependent variables xD and a set of independent

variables xI , based on process knowledge. The number of dependent variables should be chosen equal to the

number of constraints. The constraints given by Eq. (1) can be rewritten as

ADxD + AIxI = 0, (33)

where AD and AI are the sub-matrices of A corresponding to dependent and independent variables, respectively.

From Eq. (33), the regression matrix relating the dependent variables to the independent variables can be

obtained as

xD = −(AD)−1AIxI = RxI . (34)
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In a similar manner, the estimated regression matrix can be obtained from the estimated constraint matrix as

R̂ = −Â−1D ÂI (35)

An element by element comparison can be made between R and R̂.

For Example 3, if the flow variables F3 to F6 are chosen as the dependent variables, then the true regression

matrix and the estimated regression matrix derived from the estimated constraint matrix are given by

R =



1 1

1 1

1 0

0 1


(36)

R̂ =



1.0057 0.9936

1.0013 0.9988

1.0013 −0.0022

0.0013 0.9991


. (37)

An element by element comparison between the two regression matrices shows that the maximum absolute

difference between the elements is 0.0064. This again clearly shows that an accurate estimate of the constraint

matrix is obtained using PCA.

5 Model Identification, Error Variance Estimation and Data Rec-

onciliation using IPCA

In Section 4.1, it was established that PCA is a technique for obtaining the steady-state constraint model and

reconciled estimates from measured data when the error-covariance matrix is known. In practice, the error

variances and covariances are not easily available and may also change with time. If replicate measurements

are available corresponding to one or more steady states, then the error-covariance matrix can be directly

estimated from the data, provided the measurements corresponding to each steady state operating period are

clearly identified. However, identification of steady operating periods from data is itself a challenging problem.

Given these practical difficulties, the question is whether it is possible to simultaneously estimate the error-

18



covariance matrix, the process constraint model, and the reconciled estimates purely from data, without the

need for replicate measurements corresponding to a steady state. Surprisingly, it is possible to extract all this

information from data. A method for this purpose known as iterative PCA (IPCA) was recently proposed by

[Narasimhan and Shah(2008)]. A brief description of this method follows.

In Section 4.1, it was shown how PCA can be used to obtain an estimate of the constraint matrix and reconciled

estimates if the error-covariance matrix is given. In IPCA, this approach is iteratively combined with an

algorithm for estimating the error-covariance matrix from data, given the constraint matrix, by solving the

following optimization problem.

min
Σε

N log |ÂΣεÂ
T|+

N∑
k=1

[rT(k)(ÂΣεÂ
T)−1r(k)] (38)

Under the assumptions made regarding the measurement errors Eq. (3), the objective function used for the

estimating the error-covariance matrix is identical to maximizing the likelihood function of the constraints

residuals r(k) defined by

r(k) = Ây(k) (39)

An updated estimate of the constraint matrix can be obtained using the estimated error-covariance matrix

as described in Section 4.1, and the procedure repeated until the estimates of the error variance matrix (and

constraint matrix) converges. At convergence, the smallest m eigenvalues should be all equal to unity. Thus,

the convergence test can be applied to check if the average of the smallest m eigenvalues is close to unity.

The method described in this section for estimating the measurement error-covariance matrix from constraints

residuals is known as an indirect method in the area of data reconciliation. Using indirect methods, the max-

imum number of elements of the symmetric error-covariance matrix that can be estimated is m(m + 1/2).

Almasy et al. [Almasy and Mah(1984)] were the first to propose an indirect method, and obtained a solu-

tion which minimizes the sum of the off-diagonal elements of the error-covariance matrix. Later, Keller et

al[Keller et al.(1992)Keller, Zasadzinski and Darouach] obtained an analytical solution for the least squares so-

lution for the elements of error-covariance matrix. A robust indirect approach for estimating the error variances

was also proposed by [Chen et al.(1997)Chen, Bandoni and Romagnoli]. The approach described in this section

is a maximum likelihood estimation procedure. Besides, a significant difference between the procedure described

here and other indirect approaches proposed earlier in the field of DR, is that the constraint matrix is assumed

to be known in earlier approaches, whereas the procedure described here is combined with PCA for simulta-

neous estimation of the constraint matrix and error-covariance matrix. The reconciled estimates of variables
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corresponding to these estimated constraint and error-covariance matrix are also simultaneously obtained using

Eq. (28).

Example 4

The flow process of Example 1 is considered to demonstrate IPCA. It is assumed that the error-covariance matrix

is diagonal, but its elements are unknown. We need to estimate six elements of Σε, along with the constraint

matrix and reconciled estimates. The number of constraints for this example is four, and it is possible to

estimate a maximum of 4(4 + 1)/2 = 10 elements of the error-covariance matrix. Since we are estimating only

6 diagonal elements of Σε, the problem is identifiable. IPCA is applied to the data matrix and the estimated

standard deviations of errors are given in Table 5. The results show that IPCA provides accurate estimates

of error variances. Further, the six ordered singular values obtained are 258.47, 21.53, 1.02, 1, 0.99, and 0.99,

which clearly indicates that there are four constraints. The reconciled values and the constraint matrix can be

estimated using Eqs. (28) and (29). The subspace angle between the row spaces of estimated and true constraint

matrices is 0.2373 degrees and α = 0.0509. The maximum constraint residual is of the order of 10−12. The

estimated regression matrix (R̂ipca) computed by considering the flow variables F3 to F6 as dependent variables

is as follows:

R̂ipca =



1.0056 0.9937

1.0012 0.9990

1.0012 −0.0022

0.0012 0.9993


. (40)

The maximum absolute difference between the elements of R and R̂ipca is 0.0063. The comparison of the

estimated constraint matrix using the subspace angle (α), and R̂ipca shows that IPCA provides an accurate

estimate of the constraint matrix without knowledge of the error-covariance matrix. Further, the RMSE values

in the reconciled estimates of each variable are computed and reported in Table 5. The RMSE values show that

the reconciled estimates are comparable to the one obtained by applying DR using the known constraint model.

The simulation results shows that IPCA is a reliable data-driven method for obtaining the reconciled values, a

constraint matrix, and estimates of standard deviations from the data without any a priori knowledge.
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Table 5: Standard deviation (SD) and root mean square errors in the reconciled estimates of flow variables
using IPCA (Example 4)

Variable Estimated SD RMSE using IPCA

F1 0.1006 2.3439
F2 0.0848 1.6753
F3 0.1507 2.5246
F4 0.2128 2.5309
F5 0.1873 2.3344
F6 0.0866 1.6689

6 Extensions to PCA based Data Reconciliation

6.1 Partially measured systems

In the preceding sections, the close link between DR and PCA was established. Further, we have demonstrated

that it is possible to identify the constraint model and error-covariance matrix, if required, from data using

PCA (or IPCA). The estimated model and error-covariance matrix can be subsequently used for obtaining

more accurate estimates of variables, by reconciling the measurements with respect to the identified model. In

deriving these results, it was assumed that all process variables are measured, which is not valid in general. The

connection between PCA and DR applied to a partially measured system is elucidated in this section.

We consider a process defined in Section 2.2. Let np be the number of measured variables out of n process vari-

ables, and let yp(j) be measurements of np variables at the jth sample, where j = 1, . . . , N . The corresponding

(np×N)−dimensional measurement matrix Yp can be obtained by collating yp(j) for all N samples. Then, the

objective is to identify a linear model relating the measured variables and obtain reconciled estimates of these

variables.

If the measurement error-covariance matrix is known, then we can apply PCA as described in Section 4.1 to

the data matrix Yp and estimate the number of constraints, linear constraint matrix and reconciled values of

the measured variables. On the other hand, if the measurement error-covariance matrix is unknown, then we

can apply IPCA as described in Section 5 to simultaneously estimate the error-covariance matrix, constraint

matrix and reconciled values. The key question is how these estimates derived using PCA or IPCA are related

to the estimates obtained by applying DR to the partially measured system described in Section 2.2, which uses

knowledge of the true process constraints and error-covariance matrix. It may be noted that by applying PCA or

IPCA to the data matrix Yp, it is possible to identify the linear constraints relating only the measured variables.

The constraints relating only the measured variables can also be derived using a projection matrix on the known
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true process constraints as described in Section 2.2. The reduced data reconciliation problem obtained after

projecting out the unmeasured variables is identical to the DR problem for the completely measured process,

with the only difference being that the constraint matrix relating the measured variables is the reduced balance

matrix PAk. Therefore, using similar arguments as described in Sections 4.1 and 5, we can derive the following

result

U2p = QPAx, (41)

where U2p are the eigenvectors of the covariance matrix of Yp corresponding to the smallest mp eigenvalues,

Q is an arbitrary non-singular rotation matrix and PAx is the reduced constraint matrix. The number of

constraints in the reduced reconciliation problem mp can be shown to be equal to (m − t) where t is the rank

of Au [Narasimhan and Jordache(2000)]. The number of constraints mp can also be obtained from the data

because the smallest mp eigenvalues should all be equal. The reconciled estimates corresponding to the identified

model are given as before by

X̂p = U1pS1pV1p. (42)

While the above discussion brings out the relationship between PCA and DR as applied to a partially measured

system, it should be pointed out that because there is no information regarding the unmeasured variables, PCA

(or IPCA) can be used to estimate only the reduced constraint matrix that relate the measured variables. The

true constraint matrix that relates both the measured and unmeasured variables cannot obviously be estimated

from measured data. Furthermore, using the first principles model, it is also possible to classify unmeasured

variables as observable or unobservable based on the given measurement structure, which cannot be derived

using the data driven approach. The classification of measured variables as redundant or non-redundant can,

however, be performed using the data driven approach, by examining the columns of the estimated reduced

constraint matrix. If all the elements of a column of Âp are close to zero, then the corresponding measured

variable does not participate in any of the reduced constraints and is therefore a non-redundant measured

variable. The following example illustrates the application of PCA to a partially measured flow process.

Example 5

The flow process of Example 2 is considered here. We assume that the error-covariances for these variables are

known. Then, PCA approach described in Section 4.1 can be applied to the available flow measurements. The

three ordered singular values obtained are 169.84, 18.96, and 1.03. This indicates that there is one constraint

among the measured variables. The estimated constraint row is [−4.8612, 0.0107, 4.8549]. The estimated

constraint is a scale of the projected constraint obtained from first principles obtained in Example 2. Note that

the coefficient corresponding to the flow F2 is almost zero, which indicates that F2 is a non-redundant variable
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and its measurement cannot be reconciled. Comparing the RMSE values of estimates obtained using PCA in

Table 6 with the RMSE values of measurements reported in Table 2, it is clear that PCA reconciles the flow

variables F1 and F5, but not F2. The maximum constraint residual is of the order of 10−13 which indicates that

the identified model is close to the true one.

Table 6: Root mean square errors in the reconciled estimates of flow variables for the partially measured system
in Example 5

Variable RMSE using PCA with the known SD

F1 2.7951
F2 2.5749
F5 2.7873

6.2 Partially known constraint matrix

In Section 4, it was shown how PCA can be used for simultaneous model identification and data reconciliation

when no knowledge of the constraint matrix is available. In some cases, a subset of constraint matrix (or linear

relationships) may be known. In such a situation, it is required to identify only the remaining constraints that

relate the measured variables. In this subsection, we extend the approach of PCA and IPCA so that the partial

knowledge available about the process constraints can be fully exploited.

Let Ag be the (mg × n)−dimensional known constraint matrix. For simplicity we assume that the error-

covariance matrix is known and is an identity matrix. The procedure described in this section can be generalized

using the approach described in Sections 4 and 5, if the error-covariance matrix is not an identity matrix, or if

it is unknown. We are interested in identifying from the measured data only the linear constraints other than

those that are specified. We ensure that none of the given constraints or any linear combination of these can be

identified by first determining the component of the measured data that is orthogonal to the given constraints.

The orthogonal component of the data is given by

Yproj = [I−AT

g (AgA
T

g )−1Ag]Y. (43)

PCA is applied using Yproj to estimate the remaining (m−mg) constraints. In order to identify the remaining

constraints from the SVD of the projected data matrix, it should be first noted that the projected data matrix

satisfies the given constraints and will therefore have a rank equal to (n − mg). The smallest mg singular

values of the data matrix will be equal to zero and the corresponding left singular vectors (eigenvectors of the

covariance matrix of the projected data matrix) will be exact linear combinations of the given constraints. Out
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of the non-zero singular values, we consider the smallest (m−mg) singular values (all of which should be almost

equal). The SVD of the projected data matrix is therefore partitioned corresponding to the largest (n −m),

next largest (m−mg), and remaining smallest mg singular values as

svd(Yproj) = Uproj,1Sproj,1V
T

proj,1 + Uproj,2Sproj,2V
T

proj,2 + Uproj,3Sproj,3V
T

proj,3 (44)

The transpose of Uproj,2 is an estimate of the remaining (m−mg) constraints. The complete constraint matrix

can be constructed as

Â =

 UT
proj,2

Ag

 (45)

The reconciled estimates are obtained using the estimated constraint matrix in Eq. (5). The following example

demonstrates how partial knowledge of constraints can be combined with PCA to obtain improved estimates of

variables as well as error-covariance matrix.

Example 6

The flow system of Example 1 is considered here. It is assumed that the following constraints are known

Ag =

1 1 −1 0 0 0

0 0 1 −1 0 0

 . (46)

However, the error-covariances, and the number of constraints are unknown. IPCA is applied to the data matrix

to estimate the measurement error variances and remaining constraints. The six singular values obtained at

convergence are 258.17, 21.51, 1.01, 0.99, 0, and 0. The eigenvectors corresponding to the last two zero singular

values correspond to the given constraints. Two singular values are equal to one, and, hence two additional

constraints are correctly identified. The standard deviations of measurement errors estimated using IPCA and

the RMSE in reconciled estimates are shown in Table 7. Comparing with the results reported in Table 5, it can

be inferred that by utilizing knowledge of the two known process constraints, IPCA is able to obtain slightly

more accurate reconciled estimates. The subspace angle between the row spaces of estimated and true constraint

matrices is 0.0188 degree and α = 0.0032. Further, the estimated regression matrix computed by considering

the flow variables F3 to F6 as dependent variables is as follows:
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Table 7: Partially known constraint matrix: Standard deviations (SD) and root mean square errors in the
reconciled estimates of flow variables using IPCA (Example 6)

Variable Estimated SD RMSE using IPCA

F1 0.1007 2.3418
F2 0.0850 1.6689
F3 0.1513 2.5189
F4 0.2128 2.5189
F5 0.1872 2.3342
F6 0.0865 1.6692

R̂par =



1.0000 1.0000

1.0000 1.0000

0.9999 −0.0007

0.0002 1.0003


. (47)

The maximum absolute difference between the elements of R and R̂par is 7.4346 × 10−4. These values indi-

cate that the incorporation of the given constraints into IPCA (PCA) method improves the estimation of the

remaining constraints.

6.3 Selection of model order

If the assumptions made regarding the measurement errors hold in practice, and the data are obtained when

the process is strictly in a steady state, then the model order can be determined by examination of the singular

values as described in Sections 4 and 5. If these assumptions do not hold, then it is difficult to precisely identify

the model order from data when PCA or IPCA is applied. In such a scenario, the estimated model order me

may be either greater or less than the true model order m. If the estimated model order is greater than the

true model order, we refer to it as overfitting because the reconciled estimates are forced to satisfy additional

constraints that are not valid. Conversely, if the estimated number of constraints is less than the actual number,

then we refer to it as underfitting. In this section, we investigate the effect of underfitting and overfitting the

data, due to incorrect estimation of the number of constraints.

We write the SVD of the data matrix in partitioned form as given by Eq. (15), where U2 contain the eigenvectors

of Sy corresponding to the smallest m eigenvalues. In the case of underfitting, the eigenvectors corresponding

to the smallest me < m eigenvalues, denoted as U2s will be chosen. This implies that U2s is a subset of U2,

25



and the columns of U2s will therefore be an asymptotically unbiased estimate of a subset of linear combinations

of the rows of A. Therefore, in the limit as sample size goes to infinity, the estimated constraint matrix will be

orthogonal to the true values of the variables. That is,

UT

2sX = 0 (48)

The reconciled estimates corresponding to the identified constraint matrix is given by

X̂ = Y −U2sS2sV
T

2s (49)

= (I−U2sU
T

2s)Y. (50)

Taking expectation of the above equation and using Eq. (48) we can prove that

E
[
X̂
]

= X. (51)

Eq. (51) indicates that the reconciled estimates are unbiased even if the estimated number of constraints is less

than the actual number.

If the number of constraints estimated is greater than m, then the estimated constraint matrix is given by

Â =

 UT
2

UT
1s

 (52)

where U1s is a subset of U1. In the limit as the sample size goes to infinity, the eigenvectors U2 will be

orthogonal to the true values, but the eigenvectors U1s form a subspace of the true data space. This implies

that  UT
2

UT
1s

X =

 0

α

 (53)

Substituting the above estimate of the constraint matrix in Eq. (20), the reconciled estimates are obtained as

X̂ = Y − [U2 U1s]

 UT
2

UT
1s

Y (54)

= Y − (U2U
T

2 + U1sU
T

1s)Y (55)
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Taking the expectation of above equation and using Eq. (53) we get

E
[
X̂
]

= X−U1sα (56)

This shows that overfitting introduces a bias in the reconciled values. Based on the above analysis, we make

the recommendation that in practice it is better to be conservative in estimating the number of constraints, and

avoid overfitting when using heuristics to determine the model order. The following example demonstrates the

effect of underfitting and overfitting the data.

Example 7

In this example, we will demonstrate effect of selection of model order on the estimates of the constraints,

standard deviations, and the reconciled values. The settings of Example 4 are considered to demonstrate the

concept. IPCA is applied to the data matrix under the assumption of different choices of model order. The

singular values obtained at convergence of the method are reported for different model orders in Table 8.

Examination of the singular values show that if the model order assumed is 5 which is greater than the true

model order of 4, then the last five singular values are not all equal to unity. This clearly indicates that the

assumed model order is incorrect. However, if the assumed model order is equal to or less than the true model

order, then the number of unity singular values obtained is equal to the assumed model order. Based on these

observations, a systematic method can be devised for determining the true model order using IPCA. We start

with the least value of the model order that results in an identifiable problem, that is the assumed value of

m should be such that m(m + 1)/2 ≥ n (in this example it is 3 since we have to estimate 6 error variances).

If the number of unity singular values obtained at convergence is equal to m, then we cannot conclude that

the assumed model order is correct. Instead we increment the assumed model order by unity and apply IPCA

again. If the number of unity singular values obtained is not equal to the assumed model order, then this violates

the theoretical result expected from IPCA. The true model order is one less that the assumed model order at

which this violation is observed. Although, in theory the true model order can be estimated exactly using this

systematic procedure with IPCA, it may not work in practice if the noise in measurements do not satisfy the

assumptions made, or there is mild nonlinearity in the process constraints which we have not considered. In

practical applications when there is an ambiguity in selecting the model order it is better to choose a lower value.

This is clearly shown by the RMSE values of the reconciled estimates obtained for this example for different

model-order choices reported in Table 9. Comparing the RMSE values, it can be seen that overfitting leads

to poor reconciled estimates due to bias introduced in the estimates. In contrast underfitting only marginally

increases the inaccuracy in the reconciled estimates. The α values computed for various orders in Table 10 also

indicate that the overfitting leads to poor estimates of the constraint model.
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Table 8: Singular values for different model order selection

No. Singular values

me = 5 me = 4 me = 3
(overfitting) (perfect model order) (underfitting)

1 30194.45 258.47 57191.37
2 1.98 21.53 41.35
3 1.00 1.02 2.54
4 0.16 0.99 1.01
5 0.11 0.99 0.99
6 0.07 0.99 0.99

Table 9: RMSE values for different model order selection for each flow variable

Variable RMSE values

me = 5 me = 4 me = 3
(overfitting) (perfect model order) (underfitting)

F1 35.4270 2.3439 2.6043
F2 35.5942 1.6753 1.6943
F3 4.8291 2.5246 2.6577
F4 4.8345 2.5309 2.6314
F5 35.4262 2.3344 5.8500
F6 35.5942 1.6689 1.6766

Table 10: Quality of the model identified for different model orders by IPCA

model order α

me = 5 (overfitting) 0.9125
me = 4 (true model-order) 0.0509
me = 3 (underfitting) 0.0492
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7 Conclusions

PCA has been primarily regarded as a multivariate statistical technique which is useful for reducing dimension-

ality of data as well as for denoising it. The main message that we have attempted to convey in this paper is that

PCA is a method that can be used to derive the steady state constraints of a linear process entirely from data

along with reconciliation of the measurements. Iterative PCA which is a recent extension of PCA derives both

the error-covariance matrix of measurements and the process constraint model simultaneously from data. Thus,

the information necessary to reconcile data, and the reconciled estimates can be extracted from the data itself

without any a priori process knowledge using PCA (or IPCA). We have also shown that if partial knowledge

of process constraints is available, then they can be exploited to improve the estimates. Further, the effect of

model order on the reconciled values have been studied, and it is shown that it is better to be conservative in

fitting the number of constraints (i.e. estimate less constraints) in case of unknown model order.

The perspective provided in this paper can be used to seamlessly integrate PCA or IPCA with data reconciliation

(DR) and its companion technique of gross error detection (GED). This integration is depicted in Fig. 3. We

propose that IPCA should be used on historical (training) data to derive the process model and error-covariance

matrix, if they cannot be easily obtained using a priori process knowledge. The derived model and error-

covariance matrix can be used in the techniques of DR and GED for reconciling future measurements and to

detect gross errors in these measurements or the model as required.
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