
Efficiently decoding the 3D toric codes and welded codes on cubic lattices

Abhishek Kulkarni and Pradeep Kiran Sarvepalli
Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India

(Dated: August 9, 2018)

The recent years have seen a growing interest in quantum codes in three dimensions (3D). One of the earliest
proposed 3D quantum codes is the 3D toric code. It has been shown that 3D color codes can be mapped to
3D toric codes. The 3D toric code on cubic lattice is also a building block for the welded code which has
highest energy barrier to date. Although well known, the performance of the 3D toric code has not been studied
extensively. In this paper, we propose efficient decoding algorithms for the 3D toric code on a cubic lattice with
and without boundaries and report their performance for various quantum channels. We observe a threshold of
& 12% for the bit flip errors, ≈ 3% for phase flip errors and 24.8% for erasure channel. We also study the
performance of the welded 3D toric code on the quantum erasure channel. We did not observe a threshold for
the welded code over the erasure channel.

I. INTRODUCTION

Three-dimensional (3D) toric codes are an important class
of topological codes. Kubica et al. showed that 3D color
codes can be mapped to copies of 3D toric codes [1]. Alosh-
ious et al. showed 3D color codes can be projected onto 3D
toric codes [2]. These results highlight the importance of 3D
toric codes. For instance, 3D color codes can be decoded via
3D toric codes. The computational power of 3D color codes
becomes portable to 3D toric codes through code switching.
The 3D toric code on the square lattice (with boundaries) is
a building block for the welded code proposed by Michnicki
[3]. The welded code is particularly interesting because it has
the highest known energy barrier to date. Further, Siva et al.
showed that the memory time of welded code is doubly expo-
nential in inverse temperature [4].

In some realistic quantum channels, there is an asymmetry
in the bit flip and dephasing errors [5]. Considerable benefits
can be obtained by taking such asymmetry into account [6].
These results suggest that the asymmetric error correcting ca-
pability of the 3D toric code for bit flip and phase flip errors
could be exploited in quantum channels where the bit flip and
phase flip errors occur with different probabilities.

In this paper we are interested in studying the performance
of 3D toric codes over various quantum channels. Although
3D toric codes are among the earliest known quantum codes,
their performance has not been studied extensively.

Our work on the 3D toric code was also motivated in the
context of the welded code, which is a 3D quantum code
built from many copies of the 3D toric code on a cubic lat-
tice [3]. While the welded code was proposed as a candidate
for quantum memory, it is not self-correcting. This motivates
another problem we study in this paper: efficiently decoding
the welded code. As the welded code is composed of 3D toric
codes, it is natural to try to decode the welded code by decod-
ing the component 3D toric codes. This is another reason why
we seek to decode the 3D toric code efficiently.

Our contributions are as follows:
i) First we propose efficient decoders for the 3D toric code

over the bit flip channel and the phase flip channel. With
our decoding algorithms we obtain a threshold of about
12% for bit flip channel, and ≈ 3% for the phase flip
channel. These results build on the work of Dennis et al.

[7] and Wang et al. [8]. After the completion of this work
we came to know of a result by Duivenvoorden et al. [9]
who proposed a renormalization decoder which gives a
threshold of 17.2% for the bit flip channel.

ii) Secondly, we propose a decoding algorithm for the 3D
toric code over the quantum erasure channel (QEC). This
extends the work of Delfosse et al. [10] on 2D toric codes
to 3D. We obtained a threshold of 24.8% for the quantum
erasure channel. This is very close to the bond percola-
tion threshold of the cubic lattice [11] suggesting that the
proposed algorithm’s performance is almost optimal.

iii) Thirdly, we propose an efficient decoder for the welded
toric codes over QEC. For the welded code we did not
observe a threshold over the quantum erasure channel.
This is in agreement with the claim made in [12] that the
welded toric code does not have a phase transition.

The 3D toric code is a Calderbank-Shor-Steane (CSS) code
[13] in which X and Z errors can be corrected independently.
However, as mentioned earlier, it has asymmetric error cor-
recting capabilities for the bit flip and phase flip errors, hence,
decoding them independently entails the use of different de-
coders.

From [7] it is implicit that a combination of the matching
decoder used for 2D toric codes and a generalization of the
Toom’s rule can lead to a decoder for the 3D toric code on the
cubic lattice for independent Pauli errors. To elaborate, errors
on the 3D toric code share some aspects with the 2D toric
codes on the one hand and the 4D toric codes on the other.

The phase errors are string-like and we use a decoder based
on matching. In case of 3D toric code with boundaries, the
matching algorithm must be modified to account for them. We
adapt the algorithm proposed in [8] for 2D toric codes. This
decoder is applicable to all 3D toric codes for phase flip errors.

The bit flip errors are like surfaces. We use a local decoder
based on the Toom’s rule for classical 2D memories. Cellular
automata decoders based on this rule have been proposed for
the 4D toric code [7, 14] and studied in [15]. Our decoder is an
adaptation of Toom’s rule to 3D in the presence of boundaries.
While our decoder is inspired by Toom’s rule, as are the 4D
decoders, it is deterministic unlike [7] and uses multiple rules
unlike [14]. It is also capable of correcting errors which are
not corrected by a straightforward adaption of the Toom’s rule.

We also look at quantum erasure channel which models the

ar
X

iv
:1

80
8.

03
09

2v
1

 [
qu

an
t-

ph
]

 9
 A

ug
 2

01
8

2

situation where qubits are lost or leaked. There are also mul-
tiple other physical scenarios where errors can be modeled by
an erasure channel [16]. Classically, the erasure channel is
studied extensively, not only because it is analytically more
tractable, but, also because of the insights it provides.

In the recent years, many researchers have turned their at-
tention to the quantum erasure channel [17–20]. Delfosse et
al. proposed a maximum likelihood decoder for surface codes
over the erasure channel [10]. We provide a linear algebraic
perspective on this decoder which could be of independent in-
terest. We build upon this decoder and propose a decoding
algorithm for 3D toric codes over the QEC. The erasure de-
coding problem can also be reduced to decoding the bit flip
and phase flip errors separately. For the correction of phase
flip errors we use the approach proposed in [10]. However,
our implementation of the decoder takes a slightly different
perspective. In case of bit flip errors occurring under QEC,
we propose a different algorithm.

We propose a decoding algorithm for the welded code using
the 3D toric code decoder as a component. The 3D toric code
decoder cannot be used as it is because the 3D toric codes
constituting the welded code are not independent but share
some qubits. Our algorithm appropriately decouples them and
decodes the welded code. We did not observe a threshold for
the welded codes.

The rest of the paper is organized as follows. We review the
necessary background in Section II. In Section III, we present
the decoders for the 3D toric code for the bit flip and phase
flip errors. In Section IV we propose a decoder for the 3D
toric code over the quantum erasure channel. In Section V we
study the performance of the welded codes over QEC. Finally,
we conclude in Section VI with a brief discussion on scope for
future work.

II. BACKGROUND

In this section we give a self contained review of 3D toric
codes [22] and welded codes [3]. We assume the readers are
familiar with stabilizer codes [13, 21].

A. 3D toric codes

Consider a (cubic) lattice Λ in 3D. Qubits are placed on
edges of Λ and for each vertex v we define anX type operator
called the vertex operator

SXv =
∏
e∈δv

Xe, (1)

where δv is collection of edges incident on v. For each face f
we define a Z type operator called the plaquette operator

SZf =
∏
e∈∂f

Ze, (2)

where ∂f is collection of edges in the boundary of f . The 3D
toric code defined on Λ is the stabilizer code whose stabilizer

1(a)

X X X

X X X

X X X

` = 2
1

(b)

Z

Z

Z

1
(c)

1
(d)

X X X

X X X

X X X

Z

Z

Z

1
(e)

Figure 1: (a) 3D toric code with periodic boundary. (b) Solid
code i.e., 3D toric code with boundaries; also shown is X ,
the logical X operator. (c) A dependent horizontal face
operator; also shown is Z, the logical Z operator. (d)
Dependency among vertical face operators in a stack of
cubes. (e) Solid code in the dual lattice. Encoded operators
X (in red) and Z (in blue).

is generated by SXv andBZf where v and f run over all vertices
and faces of Λ respectively.

Consider a cubic lattice in 3D, as in Fig. 1a. Under peri-
odic boundary conditions all the vertex operators are of weight
six and all face operators are of weight four. The 3D toric
code with periodic boundary conditions encodes three logical
qubits [22].

We can introduce boundaries by allowing for half edges as
shown in Fig. 1b. Unlike the 3D toric code on cubic lattice
with periodic boundary conditions, here all the vertex oper-
ators are not of the same weight. Some vertex operators are
of either weight four or five instead of six, as can be seen in
Fig. 1c. Again in contrast to the periodic cubic lattice, all face
operators are of not same weight. Some face operators are of
weight 3 instead of 4, as can be seen in Fig. 1c. The collection
of half edges on the top form a rough boundary. Similarly,
the half edges on the bottom form another rough boundary.
This code has been termed solid code in [3] and encodes one

3

logical qubit. For completeness we include this computation.
The total number of qubits, n(`) in a solid code on a cubic

lattice of side ` as shown in Fig. 1a, is

n(`) = 3`3 + 5`2 + 3`+ 1 (3)

All the vertex operators are independent. They are `(`+1)2

in number. On the other hand, there are many dependencies
among the face operators. All the operators on faces with half
edges are independent. They are 4`(` + 1) in number. Next
observe that the operator associated to a horizontal face is de-
pendent, see Fig. 1c for an illustration. This leaves only the
vertical face operators. There are 2`(`+ 1)2 such operators.

Consider all the vertical faces in one stack of cubes as
shown in Fig. 1d. The product of all the respective face oper-
ators is identity which gives us one more dependency.

There are `2 number of stack of cubes in solid hence `2

number of such dependencies. Thus there are 2`(`+1)2−`2 =
2`3 + 3`2 + 2` independent face operators. Totally, there are
s(`) = 3`3 + 5`2 + 3` independent stabilizer generators, thus
the solid code encodes n(`)− s(`) logical qubits.

As mentioned earlier, the solid code is asymmetric in its er-
ror correcting capabilities. The Z distance of the code is `+1,
see Fig. 1b while the X distance is (`+ 1)2, see Fig. 1c. Thus
the solid code on a cubic lattice of size ` is and [[n(`), 1, `+1]]
quantum code.

In correction of X errors we use the dual lattice of solid
code. The dual lattice is obtained by one to one mapping of
vertices to lattice cubes, edges to faces, faces to edges and lat-
tice cubes to vertices. Two vertices are adjacent in the dual
lattice, denoted Λ∗, if their preimages share a face in the orig-
inal lattice. In the dual lattice qubits are associated to faces,X
stabilizers to cubes and Z stabilizers to edges. Dual lattice of
the 3D toric code in Fig. 1c is shown in Fig. 1e. The logical
X operator can be visualized as a surface in the dual lattice.

B. Welded codes

Motivated by the problem of quantum memory, Michnicki
proposed a new type of code construction for CSS codes
called welding. Using this method he welded 3D toric codes
to obtain the welded 3D toric code which has the largest
known energy barrier. (This code was termed welded solid
code in [3]. Throughout this paper we shall refer to this code
as the welded toric code or simply the welded code.)

We briefly review this construction and the 3D welded toric
codes. We explain welding through a simple example. Let
S1 and S2 stabilizers of two codes. (These are 2D toric codes
with boundaries.) Let Xi and Zi be the associated encoded
operators for the ith code.

S1 =

 X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

 ;S2 =

 X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

[
X1

Z1

]
=

[
I I I X X
Z I I Z I

]
;

[
X2

Z2

]
=

[
I I I X X
Z I I Z I

]

The first step of welding is to identify w qubits from each
code and consider them to be the same. Suppose that the
fourth and fifth qubit of S1 is identified as the first and sec-
ond qubit of S2 respectively. After identification combine S1

and S2 as shown below.

X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

Now we can see that all generators of S1 and S2 do not

form a commutative set and all of them cannot be included to
form another stabilizer.

Welding is a method to combine the generators so that we
obtain a commutative group. Two types of welding are possi-
ble.

i) Z-weld: Extend the stabilizer groups Si by including
Zi. This leads to new stabilizer codes with zero encoded
qubits. Then retain all theX type stabilizer generators af-
ter extending them to act on all the qubits. Denote this set
by SXw . Add all the Z type generators which commute
with the X type generators. Then we include all the Z
type stabilizers of Si which commute with SXw , after suit-
ably extending them. Noncommuting Z type operators
are modified to obtain a generator which commutes with
the all of SXw . Finally the operator obtained by modifying
the logical Z operators is promoted to a logical operator.

ii) X-weld: The converse of Z-weld, where Z type genera-
tors are retained and X type generators merged.

In the context of toric codes, X-weld and Z-weld are also
referred to as smooth and rough welds, respectively.

We illustrate the Z weld with our running example. Adding
the logical operators to Si and identifying the qubits gives the
following set of operators.

S′ =

X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

Z I I Z I
Z I I Z I

(4)

Then keep all the X type stabilizers and the Z type sta-
bilizers which commute with the X type stabilizers of S1

and S2. The (extended) Z type generators of S1 and
S2 which commute with the X type generators in S′ are
ZZZIIIII, IIIIIZZZ, IIZZZZII . The noncommuting
stabilizer operators IIZZZIII and IIIZZZII get welded
to form IIZZZZII .

The logical Z operators of the welded code are ob-
tained by modifying the component logical Z operators.

4

More precisely, the Z logical operators of the component
codes, ZIIZIIII and IIIZIIZI are combined to form,
ZIIZIIZI , the Z logical operator of the welded code.
Hence, the new code has the stabilizer Sw given as

Sw =

X I X X I I I I
I X X I X I I I
I I I X I X X I
I I I I X X I X
I I Z Z Z I I I
I I I Z Z Z I I
I I Z Z Z Z I I

(5)

EitherX1 orX2 (appropriately extended) can be viewed as
the logical X operator of the welded code.

Lw =

[
I I I X X I I I
Z I I Z I I Z I

]
(6)

As mentioned earlier, in Z-weld, X type stabilizers do not
change in weight. The Z type stabilizer generators which an-
ticommute with the X type generators get welded and their
weight increases, as does the weight of the logical Z opera-
tors.

Welding as we described is mostly specific to toric codes,
details about welding in general and additional technical con-
ditions can be found in [3, 12].

Welding can be performed with multiple stabilizer codes.
By repeatedly performing welding, the weight of the logi-
cal operators is increased for the welded code. By properly
choosing the number of times to weld the 3D toric codes, [3]
obtained codes with higher energy barrier. Higher energy bar-
rier ensures increase in memory time.

We show two examples of welding of 3D solid code. In first
example shown in Fig. 2 red lines represent welded qubits
and curved line connecting them represent the weld, which
means connected red qubits collectively represent the same
qubit. One welded qubit is shown in red color for illustration.
Rough weld is done here, which means Z-stabilizers at rough
boundary get welded. It is also shown in Fig. 2 that the logical
Z operators (shown in blue color) of the component 3D toric
code get welded whereasX remains the unchanged (shown in
green color) up to the stabilizer of the welded code.

X X X

X X X

X X X

Z

Z

Z

Z

Z

Z

Z

1

Figure 2: Welding of three solid codes. Welded qubits are
shown in red. Also shown are the logical operators: Z (in
blue) andX (in green). Welded code parameters are, [[3n(`)−
4(`+ 1)2, 1, O(3`)]], where n(`) is given in Eq. (3).

In Fig. 2 three solid codes are welded together. Welding
is done in two places, top and bottom rough boundary. The
number of boundary qubits in bottom and top rough boundary
each is (`+ 1)2. In bottom rough boundary we have 3(`+ 1)2

qubits before welding. After welding we have only (` + 1)2.
Similarly for top rough boundary. Therefore, total number of
qubits after welding is 3n(`)− 4(`+ 1)2.

In the next example we show how solid codes stacked are
above each other and welded. In Fig. 3 all the dotted and
curved lines represent the weld. Also, bottom and top rough
boundary are welded together.

Fig. 3 shows solid codes welded along two directions. To
get higher energy barrier welding solid codes stacked along
two directions as in Fig. 3 is not enough. We need to weld
solid codes along all three directions, x, y and z.

1Figure 3: Welded code showing welding of four solid codes.
Welded code parameters are, [[4n(`) − 5(` + 1)2, 1, O(4`)]],
and n(`) is given in Eq. (3).

Let R be the number of solid codes stacked in each direc-
tion and then welded together by Z-weld. And if each solid
code is ` qubits wide and ` = O(R2). Total number of solid
codes welded are R3 and number of qubits in each solid code
is n(`). Next we will calculate number of qubits in welded
code as done in example, Fig. 2. Welded code with R solid
codes in each direction and will have R+ 1 number of places
of weld. In bottom-most and top-most welds, R2 solid codes
are welded together and remaingR−1 welds, 2R2 solid codes
are welded together. Total number of qubits in welded code
is,

nw(`) = R3n(`)− (`+ 1)2(2R2 − 2)

−(R− 1)(2R2 − 1)(`+ 1)2

= R3n(`)− (`+ 1)2(2R3 −R− 1) (7)

In solid code the weight of X and Z stabilizers do not
change with code length. In case of welded code, weight of
welded Z stabilizers changes; compared to solid code it in-
creases by R2. This means the weight of welded Z stabilizers
increases with length. But weight of un-welded Z and all X
stabilizer does not change with length.

In solid code (minimum) weights of X and Z logical op-
erators are `2 and ` respectively. As rough weld does not
change the X logical operator it’s weight remains same in
welded code. The weight of Z logical operator changes to

5

O(R3`) = O(`5/2). The distance of the welded code is
min{`2, `5/2} = `2. In [12] it was shown that welding of
stabilizer codes with zero encoded qubits will lead to welded
code with zero encoded qubits. Before welding we converted
stabilizer codes to code with zero encoded qubits by including
Z in stabilizer set. This leads to a welded code with zero en-
coded qubits. Lastly, the welded Z operator is promoted back
to logical operator, giving one encoded qubit. Hence welded
code parameters will be, [[R3`3, 1, `2]] where R = O(

√
`)).

In passing we note that it was shown in [3] that the 3D welded
code has an energy barrierO(`). If n is the length of the code,
then the welded code has parameters [[n, 1, O(n4/9)]] and its
energy barrier is O(n2/9).

III. DECODING 3D TORIC CODE FOR PHASE AND BIT
FLIP ERRORS

As the 3D toric code is a CSS code, we can decode the
bit flip and phase flip errors separately. We focus on the 3D
toric code with boundaries. Towards the end of the section
we discuss how the decoder needs to be modified for the toric
code with periodic boundary conditions. We end this section
with simulation results of the toric code with boundaries.

A. Correction of Phase errors

In this section, we show how to correct the phase errors.
The structure of phase errors in the 3D toric codes is similar
to that of Z or X errors on the 2D toric codes. So decod-
ing schemes used for 2D toric codes can be adapted for the
3D toric codes. The easier case is when the toric code has
periodic boundary conditions. In this case every phase error
violates an even number of vertex type checks and the errors
can be identified with a collection of paths that terminate on
these vertices whose checks are violated. We can then use the
minimum weight perfect matching algorithm to find the most
likely error as in case of the 2D toric codes.

With the introduction of boundaries as in the present case,
we have an additional challenge. When there is a single phase
error on any qubit other than the qubits on rough boundaries,
exactly two checks are violated and two nonzero syndromes
created. When there is an error on a rough boundary qubit,
then only one nonzero syndrome is formed, see Fig. 4a. An
odd number of nonzero syndromes can be observed in the
presence of boundaries.

Note that the perfect matching algorithm requires an even
number of nonzero syndromes, so it cannot be used directly.
Even if there are even number of syndromes if the perfect
matching algorithm were used without any modifications, it
cannot correct the errors on the boundary qubits. We adapt
the algorithm proposed in [8] for 2D codes. We discuss this
algorithm next.

Errors on the 3D toric code can be identified with paths in
the lattice. We allow the paths to contain half edges i.e. qubits
on the boundary. Three cases arise. They are illustrated in
Fig. 4a.

1(a)

0
0

0

1

1

1 1

2

3

1(b)

Figure 4: (a) Shows some phase error patterns. Errors are
shown in color and corresponding nonzero syndromes by
filled circles. (b) Creating an auxiliary graph K (in bold) for
the error pattern in Fig. 4a. Vertices of K are the nonzero
syndrome nodes of (a) and boundary nodes for each nonzero
syndrome. Minimum weight perfect matching algorithm is
run on this graph.

i) A path that terminates on two non-boundary qubits. Such
a path flips exactly two checks. These checks are also the
end points of the path.

ii) A path that terminates on one boundary qubit and a non-
boundary qubit. Such a path flips exactly one check. The
violated check is an end point of the path.

iii) A path the terminates in two boundary qubits. In this case
the path does not flip any check. This corresponds to an
error with zero syndrome.

To apply the matching algorithm we construct an auxiliary
graph K whose vertex set is the set of vertices with nonzero
syndrome. Between any pair of nonzero syndrome nodes we
add an edge whose weight is the shortest distance between
the two nodes i.e. the number of edges in the shortest path
between the nodes. We add a boundary node for every ver-
tex in K with nonzero syndrome. The edge connecting the
vertex to the corresponding boundary node has the weight of
the shortest path connecting the node to the boundary. See
Fig. 4b for illustration. This allows the minimum weight per-
fect matching algorithm to find a path that involves the bound-
ary qubits. We also add edges of zero weight between the
boundary qubits. This will account for the case when the er-
ror does not involve the boundary qubits. The perfect match-
ing algorithm will find a matching among the boundary nodes.
These edges can be ignored when forming the associated error
estimate. The graph K will always contain a minimum weight
perfect matching. The complete procedure is given in Algo-
rithm 1. Note that the matching algorithm is a polynomial
time algorithm.

6

Algorithm 1 Decoding phase errors on solid code. [8]
Input: Syndrome for a phase error on the solid code.
Output: Error estimate.

1: Let sv be the syndrome on vertex v
2: Construct a graph K whose vertex set is the set of vertices with
sv 6= 0.

3: for v with sv 6= 0 do
4: for u 6= v and su 6= 0 do
5: Find Puv the shortest path from u to v.
6: Let duv be the number of edges in Puv
7: Add an edge (u, v) in K with weight duv
8: end for
9: Add a new vertex v′ to K.

10: Find the shortest path to the boundary from v.
11: Let dvv′ be the number of edges in the shortest path.
12: Add an edge connecting v and v′ in K with weight dvv′
13: end for
14: Form a complete graph on all the boundary nodes with each edge

weight zero.
15: Find the minimum weight perfect matching on K.
16: Return the error corresponding to the matching as the error esti-

mate. Ignore edges among boundary nodes.

B. Correction of bit flip errors

In this section we propose a local decoder for the bit flip
errors. It is helpful to view the 3D toric code in dual lattice,
see Fig. 1e. Now the qubits are on faces and the Z type checks
are on the edges. Errors correspond to faces and the syndrome
is nonzero on the edges which form the boundary of the error.
In standard 3D toric code with periodic boundary conditions,
nonzero syndromes will show up as cycles only. However, in
the presence of boundaries the nonzero syndromes can show
up as collection of cycles and paths. This is illustrated in
Fig. 5.

i) Errors only on the interior qubits i.e. those not on rough
boundary. In this case non-zero syndromes form a closed
boundary.

ii) If there is an error on the boundary qubits, then the syn-
drome is nonzero on an open string. Two such strings are
shown in Fig. 5.

x

y

z
1

Figure 5: Bit flip errors (in the dual lattice). Qubits in error are
shown shaded. Nonzero syndromes are shown in solid color
lines.

The decoder for 3D code is motivated by the Toom’s rule
for classical 2D memories. The classical memory consists of
a (periodic) square lattice with bits on every face. As per

Toom’s rule, a cell is flipped if the neighboring cells on the
north and east have a different value. Thus, the decoder takes
the majority value of the bits in these three cells. We show ap-
plication of Toom’s rule by an example in Fig. 6. The rule is
applied to each cell from right to left and top to bottom. Fig. 6
shows the configuration after the application of the rule on the
marked cell.

1

(a)

1

(b)

1

(c)

Figure 6: Illustration of Toom’s rule

This rule has been adapted for qubits in the context of the
4D toric code in [7, 14]. In the quantum version we look at
the syndrome on the north and east boundaries and flip the
qubit if they are both nonzero. Ref. [7] also made the rule
probabilistic.

We illustrate the quantum version of Toom’s rule to an error
pattern on xz plane in solid code by an example in Fig. 7. For
this error pattern we get non-zero syndromes on the boundary
of the error as shown in Fig. 7b. We apply the rule sequen-
tially to all the cells in the lattice. At each cell we apply the
the north-east rule. In Fig. 7c, we show change in non-zero
syndrome pattern after application of rule on one cell.

7

1

(a)
1

(b)
1

(c)

Figure 7: Illustration of quantum version of Toom’s rule. (a)
Initial error pattern (b) Non-zero syndromes (in bold) (c) Non-
zero syndromes pattern after applying rule to one cell.

Ref. [15] showed that there are certain error patterns in 4D
toric code which cannot be corrected using the algorithm in
[7]. These patterns are persistent inspite of repeated applica-
tion of the Toom’s rule. A few such patterns are illustrated in
Fig. 8.

1

(a)
1

(b)
1

(c)

Figure 8: Some error patterns where the quantum version of
Toom’s rule fails. (The rule looks at the north and east bound-
aries.)

Error patterns shown in Fig. 8 are invariant under Toom’s
rule. In order to correct these error patterns we introduce mul-
tiple rules instead of just one. If Toom’s rule were modified to
consider north and west boundaries, then we can see that error
pattern in Fig. 8a can be corrected. However, the error pattern
in Fig. 8b cannot be corrected by this modification. We need
to consider yet another rule which looks at the south and east
boundaries.

The failure of a single rule is overcome by considering al-
ternate pair of boundaries of the cell. We are therefore natu-
rally led to the idea of multiple local update rules. We propose
to apply these rules sequentially. More precisely, this means
we first iterate with a particular local rule and see if the er-
ror pattern is corrected. If it is corrected, then we stop the
decoder, otherwise we change the rule and run the decoder
again. We repeat this process until all the rules are exhausted.
Since a face in the 3D toric code can have at most four edges
in its boundary, we can choose six pairs of edges to base the
Toom’s rule.

Label the edges as n, e, s,w for the edges on the north,
east, south and west. Then for a pair of edges αβ ∈
{ne, es, sw,wn, ns, ew}, we apply Z error to the qubit if α and
β edges have a nonzero syndrome. For the boundary qubits
without four edges, we ignore the rules involving the missing
edges. We repeat this process for a fixed rule (i.e. fixed αβ)
for all the qubits according to some fixed sequence σ. For
instance, we can go over all the planes parallel to xy-plane

followed by planes parallel to yz and zx-planes, and in each
plane left to right and top to bottom. Fig. 9 illustrates how
multiple rules can be applied to correct an error.

1
(a)

1
(b)

1
(c)

1
(d)

Figure 9: Illustration of bit flip error decoder. Axes are
oriented as in Fig. 5. (a) Initial error pattern with non-zero
syndromes. (b) After updating qubits parallel to yz plane. (c)
After updating qubits parallel to xy plane. (d) After updating
qubits parallel to yz plane.

Unfortunately, there are error patterns which cannot be cor-
rected even with multiple rules. One such error pattern is
shown (in blue) in Fig. 5. Such errors need to be addressed
separately. These errors are characterized by nonzero syn-
drome which is not updated with the application of the rules.
This happens when of the two edges being considered by the
rule at most one edge has a nonzero syndrome. If a qubit has
just one nonzero syndrome in its boundary then Toom’s rule
does not update the error estimate. The nonzero syndrome in
its boundary must be cleared by the application of Toom’s rule
on its neighboring qubits. We can see that the error pattern in
Fig. 5 will not be corrected for this reason.

An error that cannot be corrected by all these local rules
has a nonzero syndrome that is collection of strings. Each of
these strings is parallel to either x or z axes or topologically
equivalent to them. Oner such error is shown in blue in Fig. 5.

Each such string partitions the xz-plane containing the
string into two sets. Flip all the qubits in the smaller set. (This
is not optimal, improvements are possible.) The complete list-
ing is given in Algorithm 2.

8

Algorithm 2 Decoding X errors on solid code
Input: Syndrome s, for an X error on the solid code, maximum

number of iterations Imax and Jmax.
Output: Error estimate, E.

1: Let E = I
2: while s 6= 0 or i < Imax do
3: for αβ ∈ {ne, es, sw,wn, ns, ew} do
4: while s 6= 0 or s < Jmax do
5: for each qubit q in a fixed sequence σ do
6: Flip the qubit if there is nonzero syndrome
7: on the edges specified by αβ.
8: Update error estimate E = EXq
9: Update syndrome on the edges of q.

10: end for
11: end while
12: end for
13: end while
14: if s 6= 0 then
15: for each string κ parallel to x or z axis do
16: Ω = {qubits in the xz plane containing κ}
17: Ωκ = {qubits in Ω to the left of κ}
18: Flip the qubits in smaller of the sets Ωκ,Ω \ Ωκ
19: Update the error estimate and syndrome.
20: end for
21: end if

We empirically observed that for the decoder to clear all
non-zero syndromes, value of Imax = `

2 and that of Jmax = `.
Decoder for the suggested values of Imax and Jmax we ob-
served that decoder clears all the syndromes. And increasing
the Imax and Jmax will not further improve the performance.
This is shown in Fig. 12 for ` = 16 linear length solid code.
Heuristically this argument leads to complexity of the decoder
to be O(`2n(`)) which is O(`5). Since n(`) is O(`3), the
complexity of the decoding algorithm is O(n5/3). The time
complexity of the algorithm can be reduced by parallelizing
in lines 5–10.

C. Simulation results

In this section we report the performance of the decoders
for 3D toric code with boundary. The matching decoder on
the phase flip channel gives a threshold & 2.9%, see Fig. 10.
Algorithm 2 gives a threshold & 12% on the bit flip channel,
see Fig. 11. The effect of Imax and Jmax are shown in Fig. 12.
Recall from Algorithm 2 that Jmax is the number of times a
given rule is applied while Imax is the number of times one
round of application of all the rules each Jmax times. After
the completion of this work we came to know of the result
by Duivenvoorden et al. [9] who proposed a renormalization
decoder which gives a threshold of 17.2% for the bit flip chan-
nel. Ohno et al. estimate the threshold for phase errors to be
3.3% [23]. Takeda et al. conjecture the thresholds of the 3D
toric code for the phase and bit flip errors to be 3.46% and
23.27% respectively [24].

As we increase the number of times we iterate the rules
performance increases until Jmax = `. It appears that the
number of times we need to cycle through all the rules is `/2.

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04
Phase error rate

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

L
o
g
ic

a
l
e
rr

o
r

ra
te

n = 1296 (ℓ = 7)
n = 11296 (ℓ = 15)
n = 22440 (ℓ = 19)
n = 39216 (ℓ = 24)

Figure 10: Performance of Algorithm 1 for phase errors on
the 3D toric code with boundaries.

0.1 0.105 0.11 0.115 0.12 0.125 0.13
Bit flip error rate

10
-4

10
-3

10
-2

10
-1

10
0

L
o
g
ic

a
l
e
rr

o
r

ra
te

n = 1296 (ℓ = 7)

n = 11296 (ℓ = 15)

n = 22440 (ℓ = 19)

n = 39216 (ℓ = 24)

Figure 11: Performance of Algorithm 2 for bit flip errors on
the 3D toric code with boundaries.

0.11 0.112 0.114 0.116 0.118 0.12 0.122 0.124 0.126 0.128 0.13
Bit flip error rate

10
-2

10
-1

10
0

L
o
g
ic

a
l
e
rr

o
r

ra
te

Imax= 5,Jmax=8

Imax = 8,Jmax=8

Imax = 8,Jmax = 10

Imax = 8,Jmax = 16

Imax = 16,Jmax = 16

Figure 12: Effect of Imax and Jmax for solid code of size
` = 16 for various values of Imax and Jmax. We observed
that decoder shows little or no improvement in performance
beyond Imax = `/2 and Jmax = `.

9

IV. DECODING 3D TORIC CODE OVER THE QUANTUM
ERASURE CHANNEL

In this section, we propose a decoder for the 3D toric code
over the quantum erasure channel. First we reformulate the
erasure decoding algorithm [10] in linear algebraic terms and
Tanner graphs. This will be useful for decoding erasures on
other classes of quantum codes. We then consider the case
the 3D toric code on the cubic lattice with periodic boundary
conditions. Then we discuss the modifications when there are
boundaries.

A. An iterative decoding algorithm for erasures on CSS codes

Recall that in the erasure channel a qubit is erased with
probability p and left as it is with probability 1− p. Letting ρ
be the state of the qubit, this channel can be modeled as

E(ρ) = (1− p)ρ+ p|κ〉〈κ|, (8)

where |κ〉 is a state orthogonal to the computational state
space.

We replace each erased qubit by a qubit in the state, I/2
and measure the stabilizer generators. This has the effect of
projecting a Pauli error on each erased qubit uniformly at ran-
dom. We call these Pauli errors erasure induced errors.

Let E be the set of erased qubits, E be the induced Pauli
error on the erased qubits. Denote by SE , the stabilizers with
support entirely in E . The (erasure) decoding problem is to
estimate an error consistent with the syndrome s and whose
support is entirely in E . More precisely, we need to estimate
the coset ESE which is most likely given the syndrome s.
Delfosse et al. showed the following result in [10].

Proposition 1 (Delfosse et al. [10]). Given an erasure pattern
E , and a measured syndrome σ, any coset of a Pauli error
E i) with support in E and ii) consistent with the measured
syndrome is a most likely coset.

We can also represent E as an element in F2n
2 . We decom-

pose the error as E = (a|b) where e is the X component and
f the Z component ofE. Let S ∈ F(n−k)×2n

2 be the stabilizer
matrix of the code; the code is assumed to be CSS.

S =

[
H 0
0 T

]
(9)

The syndrome of E = (a|b) ∈ F2n
2 is given by

H(b|a)t =

[
Hbt

Tat

]
=

[
σ
τ

]
. (10)

The syndrome for phase errors is given by σ = Hbt and the
syndrome for bit flip errors by τ = Tat. Denote the restriction
ofH to the qubits in E byHE . Since the unerased qubits suffer
no errors we have aĒ = bĒ = 0. This implies that HĒbtĒ = 0

and TĒatĒ = 0. Therefore, the decoding problem reduces to
solving the following system of equations:

HEb
t
E = σ (11)

TEa
t
E = τ (12)

These systems of linear equations can be efficiently solved.
We are more often interested in a decoder of linear time com-
plexity. For this purpose it helps to look at these linear systems
of equations closely. Since these system of equations arose in
the context of an actual error, they are consistent and have at
least one solution. The following cases can arise.

i) E does not support any stabilizer or logical operator. In
this case the error estimate is unique.

ii) E supports a stabilizer but does not support any logical
operator. In this case any error estimate consistent with
the syndrome is equivalent to the actual error up to a sta-
bilizer.

iii) E supports a logical operator. A stabilizer generator may
or may not be supported. In this case there is one or more
logical operators in the support of E .

By Proposition 1, all errors on the erased qubits are equally
likely, hence there is at least 50% chance of a decoding error in
the last case. One might as well ignore this case. We can do no
better than randomly choosing any one of the possible errors
consistent with the syndrome. In the first and second case
any estimate that is consistent with the observed syndrome is
correct estimate. In the first case the solution is unique while
in the second case, the system of linear equations has multiple
solutions.

So we shall focus on decoding correctly in the first two
cases. Delfosse et al. [10] solved this problem for the 2D
surface codes. Their algorithm is optimal and has linear time
complexity.

For the 3D toric codes, this algorithm can be used for cor-
recting the phase errors ie for solving the system of equations
corresponding to HEbtE = σ. but not for the X-errors ie the
system of equations corresponding to TEatE = τ .

Clearly, these equations can be efficiently solved using
Gaussian elimination. However, we seek a more efficient al-
gorithm. To this extent we shall exploit the structure of the
equations a little more. It will hopefully, give a slightly differ-
ent perspective on the results of [19].

First, notice that in a system Ax = y if any of the equa-
tions contain only one variable, those equations can be solved
very easily. The variables in those equations can then substi-
tuted in the remaining equations to obtain a reduced system
of equations. We can repeat this process until there are no
more equations with exactly one variable. At this point every
equation contains two or more variables. If the system has a
nonzero kernel, then we are able to set some subset of vari-
ables to arbitrary values and solve for the rest.

Assume that every variable occurs in two or more equa-
tions. Suppose that Az = 0, then x + z is also a solution to
Ax = y. Thus for all i in the support of z, there is a solution
with xi = 0 or xi = 1. Therefore, we can choose xi as a
free variable and set it zero in the system of equations. This
gives a smaller system of equations and if any single variable
equations are created we solve for those variables otherwise
we find another variable in the support of the kernel and set it
to zero and repeat this process.

The bottom line of this approach is that first we find a syn-
drome which is incident only on one erased qubit. In this case
the measured syndrome is completely explained by the erased

10

qubit incident on it. In linear algebraic terms, we need to solve
for an equation with exactly one variable. Once this variable
is found, it is be updated in other equations where it appears.
This process is called peeling and similar to the peeling de-
coding of classical low density parity check codes over the
binary erasure channel.

If we find that all check nodes are incident on two or more
erased qubits, then we set the error on one of the erased qubits
to identity. Such qubits must be in the support of a stabi-
lizer (or logical operator) for estimates consistent with the
syndrome. We call this process freezing. We say a qubit is
frozen if the error estimate on it is (arbitrarily) set to identity.
In linear algebraic terms stabilizers and logical operators in
with support in the erased qubits are elements of the kernel of
the system of equations under consideration.

We denote the parity check matrix restricted to the set of
qubits in E as HE . We also denote the syndromes on these
checks by syndrome(E).

Algorithm 3 Peeling decoder for erasures
Input: Set of erasures E , Tanner graph TE defined on HE , and

syndrome(E).
Output: Error estimate for qubits in E ′ ⊆ E , unresolved erasure set
F = E \ E ′ and (updated) syndrome(F).

1: E ′ = ∅ and T = TE .
2: while there is check c of degree one do
3: E ′ = E ′ ∪ {q} . q is the qubit connected to c
4: eq = sc . eq is the error on qubit q
5: Delete c from T .
6: Update syndrome for all check nodes v incident on q, ie set
sv = sv + xq .

7: Delete q and the edges incident on q in T
8: end while
9: Return eq for all q ∈ E ′, TF = T and syndrome(F).

Remark 2 (Limitations of peeling). In some cases it is possi-
ble that after peeling, the syndrome remains nonzero for some
checks and no check is connected to exactly one erased qubit.
In this case we can either solve the system of equations which
is likely to be much smaller than the original system of equa-
tions.

In case of toric code, it is possible to work on the original
lattice on which the code is defined instead of the associated
Tanner graph. The Tanner graph picture is useful when con-
sidering other classes of codes.

Algorithm 4 Decoder for phase flip errors induced by erasures
on CSS codes
Input: Stabilizer matrix HE , erasure set E , and syndromes σ.
Output: Estimate z consistent with measured syndrome σ ie

HEz
t = σ,

1: F = E
2: Construct Tanner graph TF based on HF
3: Find all independent stabilizers and logical operators in the sup-

port of F
4: For each operator oi, freeze a distinct qubit qi ie zqi = 0 and

update F = F \ {qi}
5: if nonzero syndromes exist then
6: Peel TF using Algorithm 3 . Peeling updates the erasure set
F and syndrome(F)

7: if syndrome(F) 6= 0 after peeling then
8: Solve for the system of equations HFz

t
F = syndrome(F)

9: end if
10: end if

Remark 3 (Variations). It is not necessary to perform peeling
and freezing in separate steps. One could perform in an al-
ternating fashion, freezing only when it is not possible to peel.
One variation is shown in Algorithm 5

Algorithm 5 Decoder for phase flip errors induced by erasures
on CSS codes
Input: Stabilizer matrix HE , erasure set E , and syndromes σ.
Output: Estimate z consistent with measured syndrome σ ie

HEz
t = σ,

1: Initialize F = E
2: Construct Tanner graph TF based on HE
3: while nonzero syndromes exist do
4: Peel TF using Algorithm 3
5: Find stab(F) a stabilizer or logical operator within the support

of current erased qubits F
6: if stab(F) 6= I then
7: In Tanner graph, TF , randomly freeze one qubit q from the

support of stab(F) obtained in line 4. ie set zq = 0
8: F = F \ {q}
9: else

10: Solve for the system of equations on HFz
t =

syndrome(F)
11: Set F = ∅
12: end if
13: end while

Remark 4 (DecodingX errors induced by erasures). For cor-
recting X errors, Algorithm 4 or 5 can be used but with the
input, TE instead ofHE , andX-syndromes τ instead of σ. The
algorithm returns estimate x such that TExt = τ .

B. Decoding erasures on the 3D toric code

The process of freezing and peeling has a simple graphical
interpretation in case of the toric codes. Furthermore, the pro-
cess of freezing can be performed first. In case of phase errors,
HE is exactly the vertex-edge incidence matrix of the erased
edges and the checks incident on erasures. Further, the ele-
ments of the kernel HE are precisely the cycles of the lattice

11

formed by erasures. One qubit per cycle is frozen. In [10], this
process amounts to finding a spanning forest of the erased lat-
tice on which the toric code is defined. The erased lattice is the
sublattice consisting of erased qubits and the checks affected
by the erased qubits. Finding the spanning forest amounts to
deciding which variables are frozen. The leaf nodes of the
forest correspond to the syndromes where peeling is to be
performed. Finding a spanning forest of the erased lattice is
equivalent to finding the spanning forest of the Tanner graph
and then removing all degree one qubit nodes. This amounts
to freezing these qubits.

The algorithm proposed in [10] can be used to correct (era-
sure induced) phase errors for the 3D toric code. We illustrate
this with the following example. Fig. 13 shows an erasure
patttern and the associated Tanner graph. Fig. 14 shows the
freezing by contructing a forest of the Tanner graph. Next step
in decoding is peeling. Peeling of Tanner graph after freezing
is shown in Fig. 15.

s6

e1

e2

e3

e4
e6

e5

s1 s2

s7

s6
s3 s4

s5

1
Figure 13: Erased qubits are shown in red. The associated
Tanner graph of the erased lattice is shown on the right where
the qubits are shown by circles and syndromes by squares.
Non-zero syndromes are shown by red squares.

e1

e2

e3

e4
e6

e5

s1 s2

s7

s6
s3 s4

s5

s1 e1s1 s2

e1

e2

s1 s2

s3

e1

e2 e4

s1 s2

s3 s4

e1

e2 e4

s1 s2

s3 s4
s5

e1

e2 e4

e5

s1 s2

s3 s4
s5

s6

e1

e2 e4
e6

e5

s1 s2

s3 s4
s5

s6

s7

s1 = 1e1
s2 = 1e2
s3 = 0e3
s4 = 0e4
s5 = 1e5
s6 = 0e6
s7 = 1

1

Figure 14: We show step by step construction of a spanning
forest for the sublattice consisting of erased qubits E . Equiva-
lently, we can construct a spanning forest on the Tanner graph
TE and set the errors on qubits with degree one to be zero.

s5 = 1 e5 =?

s6 = 0 e6 =?

s7 = 1

1 ?

1 1

0

0 1

0 1

0
1

Figure 15: Illustrating the (partial) peeling of Tanner graph TE
after freezing as per Fig. 13

Finding the qubits to be frozen using the spanning forest
approach does not work for correcting the bit flip errors in the
3D toric codes. The difficulty is deciding which variables to
freeze. While the 2D case allows us to simply find a cycle
in the support of erased qubits and freeze any one of them,
that approach fails because cycles no longer correspond to (X-
type) stabilizers in the 3D case. For instance, consider the
erasure pattern shown in Fig. 16. All six faces of a unit cube
are erased. In the Tanner graph associated to this pattern, there
is a cycle which does not correspond to a stabilizer. This cycle
is shown in Fig. 16. (Please note the entire Tanner graph is not
shown).

1
Figure 16: Erased qubits are shown in colored faces and they
form an X-stabilizer. However, a cycle in the associated Tan-
ner graph (shown partially) of this erasure pattern does not
correspond to an X-type stabilizer. Squares represent the
check node and circles represent qubit nodes of the Tanner
graph.

We propose an algorithm for efficiently finding the qubits to
be frozen. In case of X errors, the elements of the kernel (of
TE , see Eq. (12)) are best visualized in the dual lattice. They
are surfaces without boundaries in the dual lattice of the toric
code. Stabilizers correspond to surfaces of trivial homology ie
they are boundaries of closed volumes in the lattice. Logical
operators correspond to surfaces of nontrivial homology. To
find these stabilizers, we can take the following approach.

In the dual lattice Λ∗, delete all the qubits (faces) corre-
sponding to erasures. This creates a collection of connected
components in Λ∗ (and also in Λ). Suppose we let a particle
explore the lattice so that it can move from one cell to another
only if they share an unerased qubit. Let Ωc be the collec-
tion of cells visited by particle starting from cell c. If Ωc is
a closed volume then the boundary of the volume is precisely
the stabilizer in that support of the erased qubits. After finding
a stabilizer, we start exploring the lattice from a cell that is not
in Ωc and proceed to find other stabilizers until all the cells are
visited. We call this procedure the trapping algorithm.

The trapping algorithm can be be also performed on the
primal lattice, but the topological nature of errors is clearer in
the dual lattice. In the primal lattice it is equivalent to finding
a spanning forest in the unerased lattice i.e. the 3D lattice
obtained by deleting the erased qubits.

12

1

Figure 17: An X-stabilizer corresponds to closed volume and
boundary is the support of the stabilizer. We illustrate the al-
gorithm to find stabilizer support. Faces in light gray are the
erased qubits. A particle can move from one cell to another
by unerased faces. If the particles is trapped inside, then the
boundary of that volume is the support of the stabilizer. Illus-
trated is the evolution of this process for a simple volume.

To understand the behaviour of the decoder we need to con-
sider the following types of erasure patterns.
(a) If there is a stabilizer in the support of the erasure pattern,

as in Fig. 17, then the algorithm will recover the boundary
of the volume corresponding to the stabilizer. We can ob-
tain all the independent stabilizers. Then the decoder can
freeze a distinct qubit in the boundary of each stabilizer
and try to peel. Sometimes it may not be possible to peel
after freezing.

(b) If the erasure pattern contains the support of a logical X
operator as in Fig. 18, then the algorithm cannot recover
its support. This is because the logical X operators do not
form a closed volume. For instance, in Fig. 18 if we start
the start the algorithm from any unit cube, we will be able
to visit all the remaining unit cubes. Therefore, X logical
operator in support of erased qubits remain undetected.

1
Figure 18: The trapping algorithm when X logical operator is
in the support of erased qubits. It returns an empty boundary.
Any one of the erased qubits can be frozen in this case. There
is at least 50% probability of incorrect decoding.

When the algorithm returns an empty boundary, we can
freeze one of the erased qubits and try to peel. We re-
peat this process until we clear the syndrome. If we freeze
correctly, then the decoder succeeds, if not, we have a log-
ical error. Both the outcomes are equally likely, if there is
exactly one logical operator in support of erased qubits.
So there is at most fifty percent chance to correct the er-
ror. In cases where there are more than one logical opera-
tor in support of erased qubit, number of cosets increase,

thereby decreasing the probability of correcting the error,
as all cosets are equally likely. Considering the high prob-
ability of decoding incorrectly, the decoder might as well
choose to declare a decoding failure and abort. This does
not affect the performance substantially.

(c) Another pattern where the algorithm returns an empty set
is shown in Fig. 19. All faces except ones marked in green
are erased. We call this pattern a pseudo Klein bottle pat-
tern. This pattern does not contain the support of a sta-
bilizer or logical operator. Again, because every edge (ie
syndrome) participates in at least two qubits, peeling can-
not be carried out. We have to correct X errors in this
erasure pattern exactly, correction up to a stabilizer is not
possible.

+ =

1

Figure 19: Pseudo Klein bottle erasure pattern. All qubits
on the boundary of the cuboid and the tube-like structure are
erased except the ones in (green) color. An erasure pattern
like this returns an empty boundary from the trapping algo-
rithm. There is a unique error which explains the observed
syndrome. Freezing a qubit incorrectly leads to syndrome not
being cleared by peeling.

When the pseudo Klein bottle erasure pattern occurs, there
is a unique error but the peeling procedure does not work,
as every check is incident on at least two erased qubits.
There are at least three ways to proceed with the decoding
as explained below.

i) We could simply solve the system of linear equations
corresponding to the residual erasure pattern at this
juncture.

ii) We could randomly freeze a qubit and start peeling.
If the qubit was frozen correctly, then we decode cor-
rectly. If we had frozen it incorrectly, the syndrome
will not be cleared. At this point we could either
backtrack or repeat the peeling. Alternatively, we
could try to clear the syndrome by absorbing this er-
ror into a nonerased qubit.

iii) We could simply ignore such cases and declare a de-
coding failure. Our simulations shows that this does
not limit the performance, since the decoder’s perfor-
mance is limited by the performance of the Z-type
decoder.

In our implementation, whenever an erasure pattern con-
tains one or more pseudo Klein bottles and logical opera-
tors, we consider it as a decoder failure. It is a maximum
likelihood (ML) decoder in cases where decoder returns
an estimate consistent with the syndrome.

13

C. Erasure decoding of 3D toric code with boundaries

We now show how to decode 3D toric code in the presence
of boundaries, see Fig. 1b. The decoders for phase error and
bit flip error correction presented for 3D toric codes in previ-
ous section have to be modified to incorporate boundaries.

First we describe how to incorporate boundaries for phase
error correction. In the presence of boundaries, some stabi-
lizers no longer correspond to cycles in the lattice. One such
stabilizer is shown in Fig. 20. If we form the Tanner graph
associated to this erasure pattern, peeling cannot proceed.

1

Figure 20: Stabilizer generator (in red) and a logical operator
(in green) with boundary qubits. These patterns cannot be
peeled because there is no check node of degree one.

The spanning tree for the erasure pattern (in red) is itself.
This pattern cannot be peeled, because there is no check node
of degree one. There is a stabilizer in the support of the era-
sure pattern but it is not a cycle and the algorithm discussed in
the previous section will fail in this case. A similar problem
exists when the erased qubits corresponds to a logical opera-
tor. The peeling decoder gets stuck because there are no check
nodes of degree one.

1
(a)

1
(b)

Figure 21: (a) Solid code with dummy vertices (solid squares)
and dummy qubits (dashed edges). (b) Dummy vertices in the
primal lattice (a) become dummy volumes and dummy edges
become dummy faces (shown in green) in the dual lattice.

To resolve this problem in 2D toric codes Delfosse et al.
[10] add dummy vertices (checks) and edges (qubits) and to
ensure that peeling does not begin from a dummy check node
require that a tree is grown rooted at a dummy check node and

does not contain any more dummy check nodes. This solution
carries over to the 3D toric code for the phase errors.

Similarly, in 3D toric code with boundaries we introduce
dummy vertices and dummy edges, see Fig. 21a for an illus-
tration. Dummy vertices carry no X-stabilizers and dummy
edges carry no qubits on them.

Syndromes never occur at dummy vertices. Spanning for-
est of the Tanner graph is constructed rooted at dummy check
nodes and with an additional condition that any connected
component cannot have more than one dummy vertex, which
means it cannot have more than one rough boundary qubit.
This is because a string with two dummy nodes will either
form Z stabilizer or Z logical operator as illustrated in Fig.
22.

1

Figure 22: A string with two dummy nodes is either a Z stabi-
lizer (shown in red) or a Z logical operator (shown in green).

Next we describe how to incorporate boundaries for bit-flip
error correction. The idea behind the trapping algorithm is to
let a particle explore the lattice via unerased qubits and re-
turn the boundary of volume to which the particle is confined.
Since there are boundaries, even if there are no erasures, the
particle is confined between the boundaries. So running the
trapping algorithm on the (dual) lattice can cause the algo-
rithm to fail. Even if choose to ignore the unerased qubits
confining the particle, there are also other problems due to
boundaries which cause the trapping algorithm to fail. Fig. 23
illustrates some representative cases.

1
(a)

1
(b)

Figure 23: Some represenative erasure patterns which cause
trapping algorithm to fail. These are resolved by adding
dummy qubits and checks. (a) An erasure pattern where
non-stabilizer erasure pattern will be returned as a boundary
by trapping algorithm. (b) An erasure pattern where partial
boundary of the stabilizer plus a qubit not a part of stabilizer
is returned as boundary by trapping algorithm.

14

Fortunately, there is a simple solution. We only need
to add dummy qubits (which are never erased) and dummy
checks. The modified lattice and its dual with the dummy
qubits and checks are shown in Fig. 21a and Fig. 21b, respec-
tively. Dummy vertices now form dummy volumes in dual
and dummy edges form dummy faces. Then the trapping algo-
rithm, as discussed for the periodic lattice can be used without
any problems.

Aperiodicity in the solid code gives an added advantage,
compared to the toric code on the periodic lattice. We can de-
termine if the erasure pattern supports an X logical operator
using trapping algorithm. (This is unlike the periodic bound-
ary case.) We illustrate this with an example in Fig. 24. Also
shown is an X logical operator in support of erased qubits.
The gray planes separate the actual code from the dummy
volumes. Gray plane is the erasure pattern. In this case, we
can see that if we start the trapping algorithm from any unit
cube which is above the gray plane, we get trapped in vol-
umes above the gray plane. And vice-versa if we start from
above the plane. In case of the periodic lattice, the trapping
algorithm returns an empty boundary. However, with bound-
aries the trapping algorithm returns the support of the logical
X operator.

1
Figure 24: Erased qubits are shown in gray color. Dummy
qubits are shown in green. Since solid code has boundary
a particle gets trapped to either above or below the plane of
erased qubits.

D. Simulation results

In this section we present performance of 3D toric code
with and without boundaries. Fig. 25 shows the performance
of the 3D toric code with periodic boundary conditions. This
is essentially the same as the performance of the 3D toric code
with respect to the erasure induced Z errors. The overall era-
sure threshold is therefore about 24.8%. We note that this is
quite close to the bond percolation threshold for the cubic lat-
tice [11]. Similar observations have been made for the 2D
toric codes [7] and codes over hyperbolic tilings [20].

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
Erasure rate

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

L
o
g
ic

a
l
e
rr

o
r

ra
te

n = 1536 (ℓ = 8)

n = 5184 (ℓ = 12)

n = 12288 (ℓ = 16)

n = 24000 (ℓ = 20)

Figure 25: Performance of the 3D toric code with periodic
boundary over the quantum erasure channel.

The performance of the proposed algorithm for correcting
the erasure induced X errors is shown in Fig. 26. We can
see that the performance of the 3D toric code over the erasure
channel is limited by its ability to correct phase errors.

0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78
Erasure rate

10
-4

10
-3

10
-2

10
-1

10
0

L
o
g
ic

a
l
e
rr

o
r

ra
te

n = 1536 (ℓ = 8)

n = 3000 (ℓ = 10)

n = 5184 (ℓ = 12)

Figure 26: Performance of Algorithm 4 for erasure induced
X errors in 3D toric code with periodic boundary.

Fig. 27 shows the performance of solid code for for erasure
induced phase flip errors. Fig. 28 shows performance of solid
code for erasure induced bit flip errors.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
Error rate

10
-4

10
-3

10
-2

10
-1

10
0

L
o

g
ic

a
l
e

rr
o

r
ra

te

n = 136 (ℓ = 4)
n = 516 (ℓ = 6)
n = 1296 (ℓ = 8)

Figure 27: Performance of correcting Z errors under erasures
in solid code.

15

0.6 0.65 0.7 0.75 0.8 0.85
Error rate

10
-4

10
-3

10
-2

10
-1

10
0

L
o

g
ic

a
l
e

rr
o

r
ra

te

n = 516 (ℓ = 6)

n = 1296 (ℓ = 8)

n = 2620 (ℓ = 10)

Figure 28: Performance of correcting X errors under erasures
in solid code.

V. DECODING WELDED CODES OVER THE ERASURE
CHANNEL

In this section we propose a decoder for the welded code
over the quantum erasure channel. Since the welded code is
built from the 3D toric code, one might expect that the de-
coding of welded codes could be reduced to that of 3D toric
codes. This is not exactly the case because the various compo-
nent 3D toric codes are not entirely independent. The welded
code is asymmetric and as in the case of the 3D toric code, we
need two different decoders for bit flip and phase flip errors.

We restrict our attention to the quantum erasure channel. In
correction of both phase and bit flip errors we focus on un-
welded erased qubits first and take decisions on them. Next
we focus on the residual erased welded qubits and erased un-
welded qubits on which decision was not made. In Sec-
tion V A, we discuss decoder for correction of erasure induced
phase errors. And in section, V B we describe the decoding al-
gorithm for correction of erasure induced bit flip errors.

A. Decoder for Z errors under erasure channel

In this section we will decode phase errors (induced by the
erasures) on welded code based on the phase error decoder
for 3d toric code. Before that, let us see how phase errors
in welded code differ phase errors in the solid code. In the
3D toric code each qubit participates in exactly two X-type
checks. Therefore, a single phase error flips exactly two qubits
and one check if there are boundaries. In the welded code, a
single phase error on a welded qubit can flip O(R2) X-type
checks. Fig. 29 illustrates the effect of a phase error on a
welded qubit.

1Figure 29: Error on a single welded qubit causes multiple
nonzero syndromes unlike qubits in the 3D toric code which
cause only two nonzero syndromes.

From a graphical point of view, welded qubits are no longer
living on edges but hyperedges. A hyperedge is an edge that
is incident on more than two vertices. A phase error on a
non-welded qubit behaves similar to a phase error on the toric
code. It cause exactly two nonzero syndromes.

Now let us look at the Z stabilizers. Some of them are the
stabilizers of the constituent toric codes. These do not involve
welded qubits. They continue to be cycles in the lattice on
which the welded code is defined. The structure of stabiliz-
ers which involve welded qubits is slightly different. These
welded Z-stabilizers are no longer cycles but hypercycles. (A
hypercycle σ is a collection of edges such that every vertex
has even degree with respect to the edges in σ.)

At this point we can use Algorithm 4. The important differ-
ence with respect to the 3D toric code comes in the step which
requires the identification of qubits which can be frozen. From
the previous discussion it follows that we need to identify hy-
percycles in the welded lattice. Every hypercycle will give us
one qubit to be frozen. At the end we will be left with a lattice
without hypercycles. In other words, our goal is to find the
spanning forest of the welded lattice. Unfortunately, finding a
forest in the welded lattice seems to be a hard problem.

We propose the following approach. Suppose that there are
no erasures on the welded qubits. Then the decoding prob-
lem reduces to decoding a collection of independent 3D toric
codes. In this case we could simply decode the various com-
ponent toric codes and the combine the individual estimates.
We can use the Algorithm 4.

However, if there are erasures on the welded qubits, then we
cannot proceed in this fashion. We try to induce this situation
by unerasing the welded qubits.

We decode as many erasures as possible using peeling.
Once peeling cannot proceed further, we have to identify the
qubits which can be frozen. Recall that these come from the
support of the stabilizers in the erased qubits. Due to the fact
stabilizers no longer correspond to cycles in the lattice of the
welded code, we cannot simply find the spanning forest of the
lattice of erased qubits. So, we first remove the welded qubits
from the equation. Then we can identify the qubits which are
part of stabilizers which are cycles. From each independent
cycle we obtain a qubit which can be frozen. We freeze them
and reintroduce the welded qubits that were unerased and try
to peel the associated Tanner graph.

If the syndromes are cleared then we have been able to solve
the decoding problem. On the other hand, if the syndromes
cannot be cleared by peeling, we have to use alternate methods
to estimate the error on the residual erased qubits. Now at this

16

point if any syndromes are left, it is because of stabilizers in
support of erased qubits which are completely or partially on
welded qubits. To correct such patterns we solve system of
linear equations using Gaussian elimination. We summarize
this procedure in Algorithm 6.

Algorithm 6 Decoding Z errors on erased qubits of welded
code
Input: Erasure set E , X-syndromes σ, and check matrix H
Output: Error estimate consistent f with measured syndrome ie

HEf
t = σ

1: A = E . A keeps track of currently unresolved qubit erasures.
2: Construct Tanner graph, TA defined by HA
3: Peel TA using Algorithm 3. . This updates the set A.
4: if nonzero syndromes exist then
5: Let Ew ⊆ A be the set of erased welded qubits which have

not been resolved yet.
6: Let B = A \ Ew . Remove the erased welded qubits.
7: Find a spanning forest F in the erased lattice consisting of

qubits in B
8: Freeze qubits in B \ F . These are nonwelded qubits not in

the forest
9: Update A = F ∪ Ew . Reintroduce erased welded qubits.

10: Peel TA, syndrome(A) using Algorithm 3 . Peeling updates
the erasure set A and syndrome(A)

11: if syndrome(A) 6= 0 after peeling then
12: Solve the system of equations HAe

t = syndrome(A) (us-
ing Gaussian elimination)

13: end if
14: end if

Note that in this process we do not peel until the welded
qubits are reintroduced. The removal of the welded qubits is
just to find the stabilizers in the support of the interior qubits
ie the non-welded qubits.

B. Decoder for X errors on erased qubits

Let us now turn our attention to the X-errors. We observed
that the qubits live on the welded edges which can be viewed
as hyperedges. The lattice for the welded code is a hyper-
graph.

In case of 3D toric code, we noted that the dual lattice is
much more convenient to work with in the context of decoding
X errors. However, defining the dual lattice of the welded
lattice is somewhat complicated and technical. Instead, let
us view the welded code as being constructed from the 3D
toric codes which are represented in the dual lattice. Welding
then leads to identification of the faces. Welding causes the
identification of faces of different copies of the 3D toric code.
In effect this creates hyperfaces which can be incident on more
than two volumes.

Since the welded codes under consideration are obtained
by the rough weld, X-stabilizers remain the same. However,
because of the fact that faces can now be in the boundary of
more than two volumes, we lose the topological interpretation
of X-stabilizers being the boundary of a closed volume. This
is particularly true for an X-type stabilizer which has welded
qubits in its support.

This implies that the trapping algorithm used for the 3D
toric codes to find the stabilizers in the support of erased
qubits cannot be used. So we take an approach that is sim-
ilar to the decoding of Z errors.

First, we apply the peeling algorithm to clear as many era-
sures as possible. Once the peeling algorithm gets stuck,
we first identify an X-stabilizer which has no support on the
welded qubits. This can be achieved by means of the trapping
algorithm. We freeze one distinct qubit of the stabilizer and
then apply peeling again. We repeat this process until we no
longer find any more stabilizers in the set of erased qubits that
are not welded. If the syndrome has not been cleared, we solve
the system of linear equations using Gaussian elimination. In
our implementation the complete algorithm uses Algorithm 5
where we alternate between freezing and peeling.

Algorithm 7 Decoder for X errors on erased qubits of welded
code
Input: Erased qubits E , Z-syndromes τ , and check matrix T
Output: Error estimate e such that TEe

t = τ
1: Initialize A = E
2: Construct Tanner graph TA defined by restricted check matrix
TA

3: Peel TA using Algorithm 3. . This updates the set A and the
estimate e.

4: while syndrome(A) 6= 0 do
5: Let Ew ⊆ A be the set of erased welded qubits which have

not been resolved.
6: Let B = A \ Ew . Unerase the erased welded qubits.
7: Call trapping algorithm for each solid code separately and find

a stabilizer with support in B.
8: In TA randomly freeze one qubit in the support of the stabi-

lizer obtained in previous step.
9: Peel TA . Updates the error estimate e

10: end while
11: if nonzero syndromes remain then . Solve for unresolved

errors in e
12: Solve system of linear equations by Gaussian elimination.
13: end if
14: Return the estimate e.

C. Simulation results

Here we present the performance to welded code for erasure
decoder presented previously. As can be seen from Fig. 30,
no threshold is observed. To confirm that this is not an artifact
of the proposed decoder, we also studied the performance of
the welded codes using a decoder that is based on Gaussian
elimination. Here, we simply solve the system of equations
that arise in the context of quantum erasure channel. We sim-
ulated both the decoders under the same settings i.e. same
erasure patterns were given to both the decoders. Our results,
see Fig. 31, show that there is not much difference between
the proposed decoder and the decoder using Gaussian elimi-
nation.

17

Figure 30: Welded code performance for erasure channel, for
various values of ` and R.

Figure 31: Welded code performance comparison for the pro-
posed decoder (dashed lines) and one based on Gaussian elim-
ination. The same input is given to both the decoders. In the
legend, ‘G’ denotes the decoder that solves system of linear
equations using Gaussian elimination.

VI. CONCLUSION

In this paper we proposed decoders for the 3D toric code on
the cubic lattice with and without boundaries. We also studied
the performance of these decoders numerically. The proposed
decoder for the 3D toric codes over the bit flip channel can be
improved and generalized to 3D toric codes on arbitrary lat-
tices. We also reported the performance of the 3D toric code
on the quantum erasure channel. Considering the observed
threshold is very close to the bond percolation threshold of
the cubic lattice, we expect the proposed erasure decoder to
be almost optimal.

We also proposed an efficient decoder for the welded codes
over the erasure channel. The results on welded codes prompt
a closer look at the relation between the energy gap of the
code and the code threshold. The toric codes have a constant
energy barrier but a high threshold. The cubic code which has
logarithmic energy gap has a lower threshold of about 2%.
The welded codes have the highest known energy gap but
no threshold. One is tempted to conjecture that there might
be a tradeoff between the threshold and the energy gap. Un-
derstanding the relation between threshold and energy barrier
would be an interesting problem for future research. Another
interesting direction would be to come up with new construc-
tions of codes that have a high threshold and also a noncon-
stant energy gap.

[1] A. Kubica, B. Yoshida, and F. Pastawski, New Journal of
Physics 17, 083026 (2015).

[2] A. B. Aloshious and P. K. Sarvepalli, “Projecting 3D color
codes onto 3D toric codes,” (2016), arXiv:1606.00960.

[3] K. P. Michnicki, Phys. Rev. Lett. 113, 130501 (2014).
[4] K. Siva and B. Yoshida, Phys. Rev. A 95, 032324 (2017).
[5] L. Ioffe and M. Mézard, Phys. Rev. A 75, 032345 (2007).
[6] P. Brooks and J. Preskill, Phys. Rev. A 87, 032310 (2013).
[7] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys.

43, 4452-4505 (2002).
[8] D. S. Wang, A. G. Fowler, A. M. Stephens, and L. C. L. Hol-

lenberg, Quant. Inf. Comput. 10, 456 (2010).
[9] K. Duivenvoorden, N. P. Breuckmann, and B. M. Terhal,

“Renormalization group decoder for a four-dimensional toric
code,” (2017), arXiv:1708.09286.

[10] N. Delfosse and G. Zémor, “Linear-time maximum likelihood
decoding of surface codes over the quantum erasure channel,”
(2017), arXiv:1703.01517.

[11] S. Wilke, Physics Letters A 96, 344 (1983).
[12] K. P. Michnicki, “3D topological quantum memory with a

power-law energy barrier,” (2012), arXiv:1208.3496.
[13] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane,

IEEE Trans. on Inform. Theory 44, 1369 (1998).
[14] F. Pastawski, L. Clemente, and J. I. Cirac, Phys. Rev. A 83,

012304 (2011).
[15] N. Breuckmann, K. Duivenvoorden, D. Michels, and B. Terhal,

Quantum Information & Computation 17, 181 (2017).
[16] M. Grassl, T. Beth, and T. Pellizzari, Phys. Rev. A 56, 33

(1997).
[17] S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. Şaşoğlu,

and R. Urbanke, in Proceedings of the Forty-eighth Annual
ACM Symposium on Theory of Computing, STOC ’16 (2016)
pp. 658–669.

[18] S. Lloyd, P. Shor, and K. Thompson, “polylog-LDPC capac-
ity achieving codes for the noisy quantum erasure channel,”
(2017), arXiv:1703.00382.

[19] N. Delfosse, P. Iyer, and D. Poulin, “A linear-time
benchmarking tool for generalized surface codes,” (2016),
arXiv:1611.04256.

[20] N. Delfosse and G. Zémor, Quantum Information & Computa-
tion 13, 793 (2013).

[21] D. Gottesman, “Stabilizer codes and quantum error correction,”
(1997), Caltech Ph. D. Thesis, arXiv: quant-ph/9705052.

[22] C. Castelnovo and C. Chamon, Phys. Rev. B 78, 155120 (2008).

http://stacks.iop.org/1367-2630/17/i=8/a=083026
http://stacks.iop.org/1367-2630/17/i=8/a=083026
https://arxiv.org/abs/1606.00960
https://arxiv.org/abs/1606.00960
http://dx.doi.org/10.1103/PhysRevLett.113.130501
http://dx.doi.org/10.1103/PhysRevA.95.032324
http://dx.doi.org/10.1103/PhysRevA.75.032345
http://dx.doi.org/10.1103/PhysRevA.87.032310
https://arxiv.org/abs/1708.09286
https://arxiv.org/abs/1708.09286
http://arxiv.org/abs/1703.01517
http://arxiv.org/abs/1703.01517
https://doi.org/10.1016/0375-9601(83)90005-1
https://arxiv.org/abs/1208.3496
https://arxiv.org/abs/1208.3496
http://dx.doi.org/10.1109/18.681315
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevA.56.33
http://dx.doi.org/10.1103/PhysRevA.56.33
http://doi.acm.org/10.1145/2897518.2897584
http://doi.acm.org/10.1145/2897518.2897584
http://arxiv.org/abs/1703.00382
http://arxiv.org/abs/1703.00382
http://arxiv.org/abs/1611.04256
http://arxiv.org/abs/1611.04256
http://dl.acm.org/citation.cfm?id=2535680.2535684
http://dl.acm.org/citation.cfm?id=2535680.2535684
https://arxiv.org/abs/quant-ph/9705052
https://arxiv.org/abs/quant-ph/9705052
http://dx.doi.org/10.1103/PhysRevB.78.155120

18

[23] T. Ohno, A. G., I. Ikuo Ichinose, and T. Matsui, Nuclear
Physics B 697, 462 (2004).

[24] K. Takeda and H. Nishimori, Journal of the Physical Society of
Japan 74, 115 (2005).

https://doi.org/10.1016/j.nuclphysb.2004.07.003
https://doi.org/10.1016/j.nuclphysb.2004.07.003
https://doi.org/10.1143/JPSJS.74S.115
https://doi.org/10.1143/JPSJS.74S.115

	Efficiently decoding the 3D toric codes and welded codes on cubic lattices
	Abstract
	I Introduction
	II Background
	A 3D toric codes
	B Welded codes

	III Decoding 3D toric code for phase and bit flip errors
	A Correction of Phase errors
	B Correction of bit flip errors
	C Simulation results

	IV Decoding 3D toric code over the quantum erasure channel
	A An iterative decoding algorithm for erasures on CSS codes
	B Decoding erasures on the 3D toric code
	C Erasure decoding of 3D toric code with boundaries
	D Simulation results

	V Decoding Welded Codes over the Erasure Channel
	A Decoder for Z errors under erasure channel
	B Decoder for X errors on erased qubits
	C Simulation results

	VI Conclusion
	 References

