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Construction of Near-Capacity Protograph LDPC
Code Sequences with Block-Error Thresholds

Asit Kumar Pradhan, Andrew Thangaraj and Arunkumar Subréama

Abstract—Density evolution for protograph Low-Density  threshold for protograph LDPC code ensemblesLIn [9], con-
Parity-Check (LDPC) codes is considered, and it is shown tha ditions on protograph for typical linear growth of minimum
the message-error rate falls double-exponentially with grations distance are derived. There have been numerous other work in

whenever the degree-2 subgraph of the protograph is cycle- . S
free and noise level is below threshold. Conditions for stality the construction of protographs for several applicatidréj+

of protograph density evolution are established and relae [14]. Density evolution for protograph LDPC codes over the
to the structure of the protograph. Using large-girth graphs, Binary Erasure Channel (BEC) was derivedin/[15], and EXIT
sequences of protograph LDPC codes with block-error thresbld  charts for protograph design were studied[in [16].

equal to bit-error threshold and block-error rate falling n ear- While bit-error threshold is a popular design criterion,

exponentially with blocklength are constructed determinstically. . .
Small-sized protographs are optimized to obtain threshold near block-error thresholds are important both from a theoagtic

capacity for binary erasure and binary-input Gaussian chamels. and practical point of view[[17]. In spite of the impor-
tance, block-error thresholds do not exist for many capacit

approaching degree distributions that have degree-2 bigsi0
Another area of concern is random sampling in the construc-
tion of LDPC and other modern codes. While concentration

Low-density parity-check (LDPC) codes, which are lineafesults are useful, deterministic constructions that have
codes with sparse parity-check matrices, are used todaypiovable block-error performance are the ultimate goabolec
several digital communication system standards. Intreducdesign. Finally, the analytical properties of protograghsity
by Gallager [[1] in the 60s, the sparse parity-check matricegolution and optimization of protographs using it are ¢spi
of modern LDPC codes are specified using the bit and chegkat have not received much attention so far in the litegatur
node degree distributions of their Tanner graphs [2]. ThHe Sehis work addresses the above shortfalls.
of all Tanner graphs with a given degree distribution defines The main contribution of this paper is the design and deter-
an ensemble of LDPC codes. ministic construction of a sequence of large-girth, proapd

When decoded using the message-passing algorithm ovBPC codes with provable block-error thresholds at rates
binary-input symmetric-output channels, the expecte@bitr approaching capacity. The idea of large-girth constrmstjo
rate over the ensemble of LDPC codes showth@shold pioneered in Gallager’s thesis [1], was studied in the odrie
phenomenon as blocklength tends to infinity. There is a kRreslock-error thresholds in [17] for the standard socket erisde
old channel parameter, below which, the expected bit-errgith minimum bit degree 3. In this work, the crucial property
rate tends to fall rapidly for large blocklength. The biter of double-exponential fall of message-error rate withaitiems
threshold, which is a function of the degree distributio®, iis extended to protograph LDPC ensembles that are allowed to
computed using a procedure known as density evolution. Tééntain degree-2 bit nodes under the condition that thesgegr
bit-error rate of a code in the ensemble concentrates aroungubgraph of the protograph is cycle-free. The use of degree
the expected value; so, the threshold is an important des@mit nodes enables, through a carefully-designed diftekn
parameter in practice. The practical design of LDPC codegolution algorithm, the design of optimized protograplihw
involves determining the degree distribution that max@siz block thresholds approaching capacity even at small sizes.
the threshold for a fixed rate. Given a degree distribution, 7@ the best of our knowledge, the construction in this work
parity-check matrix is sampled from the ensemble with s&veiis perhaps the first deterministic LDPC code sequence with
heuristic criteria to simplify the complexity of implemexion  guaranteed block-error rate behavior at rates close tocitgpa
and for acceptable performance [3]. As a specific example, we provide a deterministic rate-1/2

The study of protograph LDPC codes, which are a speciglotograph LDPC code sequence with a block-error threshold
case of Multi-Edge Type LDPC codesl [4], was initiated if 0.4953 over the BEC.
[5], and protograph LDPC codes are the most popular codesThe rest of this article is organized as follows. Secfidn Il
today in theory (spatially-coupled codes [6]| [7]) and picE introduces protograph LDPC codes and their notation. The
(included in WiFi and DVB-S2 standards). In [8], protographcrucial property of double-exponential decay for protgdra
are optimized for thresholds nearing capacity, and ensembdensity evolution and its stability are described in Sectio
averaged weight distribution is used to establish blockfer[[[[] The construction of large-girth protograph LDPC codes
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I[l. PROTOGRAPHLDPC CoODES G. Protograph LDPC codes are a special class of multi edge

Following the notation in[[5], a protograli = (V UC, E) type (MET)-_LDPC codes 4] with e_ach edge in the protograph
is a bipartite graph with the bipartitiol’ and C' called the Deing of a different type. The (designed) rate of the praipgr
set of variable or bit and check nodes, respectively, #hd LDPC code is given byl — |C'|/[V|. The degree distribution
being the set of undirected edges that connect a variaBfecheck and variable nodes in the lifted graph is the same as
node inV to a check node irC. Multiple parallel edges that of the protograph, but the protograph LDPC codes havg a
are allowed between a variable node and a check node. Fis&er structure than the standard ensemble when we canside
nodes and edges in the protograph are ordered, and-th&omputation graphs [2].
th variable node, check node and edge in the protograph are
denoted, respectivelyy;, ¢; and e;. The variable and check
nodes connected by an edgeare denotedi(e;) andc(e;), B. Tree computation graphs
respectively.

A protograph can be represented by a base mdtrinf
dimension|C| x |V, whose(i, j)-th elementB(s, j) is the
number of edges betwees andv;. For example, consider a
base matrix

Consider an edge of type in the lifted graphG’. The
[-iteration computation graph for the edge is defined as the
subgraph ofG’ obtained by traversing down to deptt
along all adjacent edges at the variable node end [2]. An
important observation is that the vertex degrees and eggesty
B = F 11 2] . (1) in the computation graph are completely determined by the

protographG. Further, let us suppose that the girth Gf
The protograph corresponding to the above base matrixissgreater thar2l, which makes the-iteration computation
shown in Fig.[Jl. The 9 different edges in this example agfaph a tree with no repeated nodes. It is clear that/the
iteration tree computation graph for an edge of a particular
type in the protograph ensemble deterministicand unique
in the sequence of vertex degrees and edge types encountered
The protographG completely determines the sequence of
degrees and edge types. So, in comparison with the standard
socket ensemble_[[2], no assumption on the distribution of
tree computation graphs is needed, and this makes density
evolution analysis for large-girth protograph codes @eci

IIl. DENSITY EVOLUTION AND DOUBLE-EXPONENTIAL
FALL PROPERTY

A crucial fact that enables precise block-error rate guar-

Fig. 1: The protograph for the base matrix [ (1). antees from density evolution is the property of double-

exponential fall of message-error rate with iterations][17

For the standard socket ensemble, double-exponentiaisfall

possible only when the minimum degree is at least 3. In this

, section, we describe protograph density evolution and show

A. Lifted graphs that double-exponential fall is possible even when de@ree-
A copy and permute operation is applied to a protograph tmdes are included in the protograph. We begin with the case

obtain expanded or lifted graphs of different siZes [5]. #egi  of the binary erasure channel (BEC).

protograph is copied, sayl" times, with thet-th copy having

variable nodes denotdd, t), check nodes denotdd, ¢), and

edges denote(ie., tywithv e V,ceC an(je € E. Then,_ A. Binary erasure channel

for each edge: in the protograph, we assign a permutation

7. of the set{1,2,...,T}. In the permute operation, an edge Let us consider the standard message-passing decdder [2]

(e, t) connecting(v,t) and(c, t) is permuted so as to connecover a binary erasure channel with erasure probabiity

variable nodg(v, t) to check noddc, 7. (t)). An edge(e;,t) denoted BEC), run on a lifted graphG’ derived from a

in the lifted graph is said to be of typg or, simply, typei. protographG = (V U C, E). Since the lifted graphs form
We will denote a lifted graph a&/(7,1I) = (V(T) U an MET ensemble withE| edge types, density evolution

C(T),E(T,II)), wherell = {rx. : e € E}, or simply proceeds withE| erasure probabilities, one for each edge in

G' = (V'uC’, E') when the exacT” andIl are either clear or the protograph [4]. Let;(¢) be the probability that an erasure

not critical. A lifted graph of a protograph can be thought dk sent from variable node to check node along edge #yjre

as a Tanner graph of an LDPC code, which is referred to ashe ¢-th iteration. Similarly, lety;(j) be the probability that an

protograph LDPC code. The collection of these lifted graptesasure is sent from check node to variable node along edge

is called the protograph ensemble of LDPC codes defined type e; in the ¢-th iteration. The protograph density evolution

numbered as shown in the figure.



recursion [[15] is given by m(0,7) = 1. We will show thatm(|ve| 4+ 1,7) = 2 for all i,
which provesl[(b).

zo(i) =€, @) We will use the following inequality. For any € [0, 1] and
v (i) =1— J[ @ —z()), (3) a positive integerl,
1€ Be(e) d-1)z>1-(1—z)¢ L 8)
(@) =e ][ wen), (4 First consider the RHS of(3) for a fixe Let
i€E, (e:)
’ n(l,7) = min m(l,1). 9)
fort > 0andl < i,5 < |E|, whereE.(e) = {i : c¢(e) = i€E(e;)

c(e;),e # e;} and Ey(e) = {i : v(e) = v(e;),e # e;} are - . _n(l,9)
trge )sets of c];ther edgge )typei incit(je)nt to 'Ehe) same c}heck nc%gcezt < 1, we havez,(i) < Cia, N So,
and variable node, respectively, as the edgerhe density 1—20(i) > 1 - @, i€ Euey),
evolution threshold, denotedy,, for the protograph-based . T -1
LDPC code ensemble is defined as the supremum of the set of H (I —aen(i) 2 (1 - Gz (ld)) ’
¢ for which erasure probability on each edge of the protograph ~ *€F<(¢s)
tends to zero, as — oo, i.e. e = sup{e : max; z4(i) — 0}. wherer(j) is the degree of(e;). Sincez, — 0, for large
All protographs in this work have minimum bit-node degreenought, we haveCla‘:?(l’j) < 1. So, using[(B) and{8), we
2 ensuring thakg is the threshold for variable node erasurget, for large enough,
probability as well. ) . _n(l,j

1) Double-exponential fall:Consider a protograp& with yerin () < (0G) = DG, (10)
density evolution recursion as defined[ih (2} (4). Becabse tNow consider[(#) for a fixed. We get
recursion steps far;; (i) andy.+1(j) involve the neighbors

of the edges:; ande;, it is useful to visualize[(2) -[{4) as (@) =€ ][ wan()

iterative message passing @n with bit-to-check messages JEBu(e) _ L
x4(i) and check-to-bit messageg(;j) in iteration t. So, it < e((rmax — DC)'O7 ] " 1)
is easy to see that all variable nodes in walks of length JEE (es)
2t + 1 starting withe; are visited in the computation af; (). < e((rmax — 1)Cy)HO—1gm LD, (12)
Every time a variable node of degree at least 3 is traversed, < O (L)

< Gy ; (13)

multiplication of two or more terms occurs in the recursien a
per [4) resulting in a squaring or higher power effect. Mlaléa wherel (i) is the degree of(¢;), 7max iS the maximum check-
nodes of degree 2 result in a linear term with no squaringode degreer{,., > 2), Ci11 = e max;((rmax — 1)C;)! @1
It turns out that ensuring at least a squaring effect at sggubnd we set
intervals in every walk is sufficient for double-exponehtfad,

1, if ) an(l,j) =1,
and this is made precise in the following theorem. m(l +1,i) = { 2ien.(en "1 7)

2,0 3 icpy (e Pl 5) = 2.
I'I'heore_m 1. _Let a protographG be _such that (1) there are no Note thats™ _,. .\ n(l, j) = 1 only whenu(e;) is a degree-2
oops involving only degree-2 variable nodes, and (2) every . JeEu(e;) T\ .
degree-2 variable node is connected to a variable node 6 riable node and(l, j) = 1 for the single edge; € £, (c;).
degree at least 3. Then, far< ep, We now claim thapn(|v2| +1,4) = 2. The prqof for the
claim is by contradiction. Suppose thaf(|ve| + 1,7) = 1 for
z4(i) = O(exp(—52°)) (5) somee;. Then, for the single edgg € E,(e;), n(|v2|,j) = 1,
o N which in turn impliesm(|vs|,i’) = 1 for somee; € E.(e;).
for sufficiently larget, wherea, 5 are positive constants.  proceeding in this manner, there exists a wallGif length
Proof: Let z, = max; z,(i) and let|vy| be the number lva] + 1_ cpntaining only degree-2 variable nodes. This is a
of degree-two variable nodes 1. We will show that there contradiction becaus& has exactly|vs| degree-2 variable

(14)

exists a positive integeR such that, fort > R, nodes, and by the assumptions of the theor@rhas no loops
involving degree-2 variable nodes, and every degree-2bki
Tt oy 41 < A(zy)?, (6) node inG is connected to at least one variable node of degree
at least 3. ]

where A is a constant independent 6f and Azr < 1. By

repeatedly applyind 16), we can readily show that Now, if there is a cycle involving degree-2 nodes in the

protograph, we can show, using a method similar to the proof
(7) above (after setting (i) = 0 whenw(e;) has degree at least

Trai(loslsn) < A N (AZR)?,
Ferilleal+) (42r) 3), thatz;(¢) for an edgee; in the degree-2 cycle falls at most

for a positive integei, which implies [[5). .,  exponentially witht. Therefore, the degree-2 subgraph being
Suppose we have the upper bounds; (i) < C@l”( A, cycle-free is a necessary and sufficient condition for deubl
wherel € {0,1,...,|v2|}, m(l,i) € {1,2} and C; is a exponential fall of message error probability in protodrap

positive constant independent of We will propagate the density evolution. We remark that the condition of degree-

bounds through one round of](3) El(4) to obtain boundssubgraph being loopfree has been used before in the context
ZTiti41 (1) < Cl+1f§”(l+“). Forl = 0, we haveCy = 1 and of typical linear growth of minimum distancel[S] [18].



2) large-girth lifted graph sequences and block-errofollowing [20]. For this purpose, we introduce some notatio
threshold: Consider a protograpty’ = (V U C, E) satisfying and definitions.
the conditions of Theorefd 1 and a lifted graph= G(7',1I). A directed graphD(A) is associated with a nonnegative
Let n = T|V| denote the blocklength of the LDPC coden x n matrix A. The vertex set ofD(A) is {1,2,...,n}
defined byG’, and consider message-passing decoding owgith a directed edge froni to j if and only if the (4, j)-th
BEC(¢e). When G’ has girthg, the probability of erasure on element ofA, is nonzero. A directed grapP is said to be
an edge of type from bit node to check node in iteratian strongly connected there is a directed path between any two
is exactly equal tar (i) if t < g/2—1. So, fort <g/2—1, vertices of D. A nonnegative square matrix is said to be
the probability of erasure from bit to check on any edge igeducibleif D(A) is strongly connected. For a non-negative
upper bounded byt;, and by the union bound, the prob-square matrixA, there exists a permutation mat® such
ability of block error, denotedPs(n), is upper bounded asthat
Pp(n) = O(nz;). In Section[1V, for a given protograp&,

we provide constructions of lifted graphs with large girth o A A A oo Agg
girth growing as©(logn). So, for large-girth lifted graphs, 0 Ax; A v Ay
the girth can be increased arbitrarily by increasingnd we PAPT = | 0 0 Asz -+ Ag| (20)
have : : :
Pp(n) = O(na;) = O(nexp(—$2")) (15) 0 0 - 0 A,

for € < e and sufficiently largen using Theoreni]l. Now,

. . where A;; is either a square irreducible matrix orlax 1
settingt = clogn, ¢ > 0, in (I3), we get “ q

zero matrix. The block upper-triangular form 6f120) is edll
Pg(n) = O(nexp(—pn®)), (16) the Frobenius normal formof A. Note that D(PAPT) is
isomorphic toD(A) with vertices permuted by, and the

i o eigenvalues oPAP” are the same as that &. So, for the
we can say that the block-error probabiliys (n) falls faster purposes of stability, we will assume that the gradient ixatr

" I
th?|"r[]11e/er0IZrf?)rﬂgfltle\iei:f?tgegriﬁ; raph LDPC code sequ ncevf is in Frobenius normal form with the diagonal blocks
’ ge-girth p grap que dsenoted avv;i, 1 <i < sy, wheres; denotes the number of

if the protograph satisfies the conditions of Theofém 1, kloc . !
error threshold is equal to the bit error thresheld diagonal blocks. The subgraphXV ;) are called the strongly
connected components &f(V ).

3) Stability of protograph density evolutionLet x, =
(1) 2:(2) --- x,(|E])] denote the vector of bit-to-check The next two lemmas connect edges and cycleB (i ;)
erasure probabilities in iteratiagras per the protograph density[O the structure of the protogragi
evolution of [2) - {#) for a protograpt¥. The density evolution | emma 1. The directed graptD(V ;) has an edge fromto '
recursion can be representedxas = f(x¢, ), where thei- if and only if /(i) = 2 andi’ € E.(e;), wheree; is the single
th coordinate of the vector functiofiis edge inE,(e;). This implies the following: (1) Vertexis in

a strongly-connected component B{V) only if I(i) = 2;

fi(xe,€) =€ H 1— H (1—z())|. @7) _(2) for edge(s,d’) in_D(Vf), there exists a patffe;, e;, e;)

JE€Bu(es) veBo(e;) in the protograph withi (i) = I(j) = 2.

for € < en. By noting thatlim,, ., n*nexp(—Bn®) — 0,

The monotonicity off; with z;(i") ande is easy to establish Proof: The lemma is a restating ¢f (19). Claim (1) follows
[4]. We concern ourselves with the stability of the recunsio because an edge needs to originate out of a vertex in a
Approximating f using Taylor series around origin, we get strongly-connected component. Claim (2) follows frdml(19)

m
Xe1 = Vi X +ef(Xy), (18)

Lemma 2. There is a length-cycle inD(Vy) if and only if

whereV; is the|E| x | E| gradient matrix off with (¢,4')-th ; ;
element, denotefV ];;/, defined as the partial derivative of.there is a lengttt cycle in the subgraph of the protograph

fi(x¢, €) with respect toz,(i') evaluated at the origix; = induced by degree-2 bit nodes.

0, andey(x;) is a lengthtE| vector satisfying||ef(x:)||> = Proof: Let (e;,, €4y, --,¢€i,€i,) be a cycle inD(Vy).
O(|x¢]1*) (I - || denotes Euclidean norm). Lettirig/) denote This implies directed edgeg,., e, ,), 1 < m < [ — 1,
the degree of bit node(e;), we readily see froni(17) that and (e;,,e;,) in D(V;). By Lemmall, there are edges

] . . €j1y€jny -y €4 such that(eil,ejl,eh,eh,...,eil,ejl,eil) is
Vil = M _ 10 _'f l@ 7 2’_/ a cycle in the protograph and(i,,) = [(j,) = 2 for
x4t (1) |y, —o €, if 1(i) =2,i" € Ec(e;), 1<m<l -

(19)
where, for the casé(i) = 2, e; and e; are the two edges
connected to the degree-2 nodg;).

For sufficiently smallx,;, the convergence ok;; = Theorem 2. Consider a protograpliz = (VUC, F) with gra-
f(x¢,€) to 0 depends on the eigenvalues ©f; being less dient matrixV ¢, whose Frobenius normal form has diagonal
than one[[19]. To study the eigenvalues\of, we use Perron- blocksV;; (1 < i < sy). Let Go denote the subgraph
Frobenius theory on eigenvalues of non-negative matriciesluced by degree-two bit nodes. Ligf denote set of edges

Structural stability conditions orG following from the
above two lemmas are collected in the next theorem.



of G incident on degree-two bit nodes. Protograph densityecoder uses the log-likelihood ratio (LLR) = 1og%

: ; . . . . -1
evolution over BE() is stable in each of the following casesas input, and the message passed from a bit node to a check

1) for all ¢, if G5 is cycle-free. node in iteratiorr is an LLR; for the corresponding bit. The
2) for e < 1, if no two cycles of3, overlap in an edge. bit node operation is simply addition, while the check node
3) for € < 1/rmax, Wherer ., = max.cp, |E.(e) N Fsyl. operation uses the standatghh rule. Assuming that the all-

+1s codeword is transmitted and that the computation graph is

Proof: 1) If the subgraph ofG induced by degree-2 j tree, the LLRI, is of the formlog %, wherep, (Y| X)
bit nodes is cycle-free, we get, by Lemiia 2, that there gthe transition probability of a symmeric channel. Déensi
no cycles inD(Vy). So, there are no strongly-connectedyolution computes the transition probabiliy(Y|X = +1)
subgraphs inD(Vy), which implies thatV;; = 0 for all 7 in usingp,—1 (Y] X = +1) andp(Y | X).
the Frobenius normal form o7 ;. Therefore, the eigenvalues  For many symmetric channels of practical interest such as
of V; are all 0, implying stability for alk. the Binary-Input Additive White Gaussian Noise (BIAWGN)
2) If no two cycles ofG; overlap in an edge, the cycles ofchannel, the transition probabilip(Y|X) is nonzero over the
D(Vy) do not overlap in a vertex or an edge by Lemima 2g4) jine, which makes density evolution analysis cumbeeso
So, the strongly-connected components iV ;) are cycles. However, probability of message error in each iterationtwan
SinceD(V ;) is a cycle, the eigenvalues &;; have absolute pner hounded by using the Bhattacharyya parameter follow-

value equal to: [21], implying stability fore < 1. ing [17]. The method in[[17] readily extends to protograph
3) The result follows because the maximum eigenvalu® 8f gensity evolution for a binary-input symmetric channel as
is upper bounded by its maximum row sum|[19], andi.x  gescribed next.

is an upper bound on the maximum row sum of the matricesthe ghattacharyya parameter for the channel corresponding

Vi, 1 <i < s5. ® {0 the bit-to-check message in th¢h iteration is defined as
From Theoremg]l anfl 2, the degree-2 subgraph of thfouws:

protograph being cycle-free emerges as an important design -
condition. Next, we provide an example to illustrate the B, :/ Vol + Dpe(y| — 1)dy. (21)
stability conditions for protographs. —o0

Example 1. Consider a protograph whose subgraph inducedihe probability of message error in theth iteration is

by degree-two bit nodes, denotés, is as shown in FiglJ2. bounded above by the Bhattacharya paramsier

For such a protograph, the gradient graph has one non-ttivia Consider the standard message-passing decoder over a
binary-input symmetric channe(Y|X) run on a lifted graph

G’ derived from a protograpty = (V U C, E). Protograph

' density evolution for this situation involvegE| densities

pf)(Y|X = +1), 1 < i < |E|, with corresponding Bhat-
tacharya parameter®;(i). The evolution of Bhattacharya

parameters satisfies a set of inequalities given in the next
. . lemma.
e @ Lemma 3. The Bhattacharyya parameter3;(:) satisfy

@ Bi+1(i) < By H Z By (i) (22)

JEE,(ei) VEE(ej)

D(V) for 1 <i <|E|, whereBy = [~ _/p(y[ + D)p(y| — 1)dy is

the Bhattacharya parameter of the chanp¢t | X), and E,,

Fig. 2: lllustration of stability for protograph densityaution. E, are as defined earlier.

Proof: The proof follows the proof of Lemma 1 in [117]
strongly-connected compone?(V,1) as shown. Clearly, | . ;
. closely, and we skip the details. ]
cases (1) and (2) of Theorefd 2 do not apply. A qwci : : . .
calculation shows: _ 9 which results in stability for Let ch(o) be a family of binary-input symmetric output
ulatl NOWSF max = 2, WHI uits | N channels, where denotes the channel parameter witi{«ch
e < 0.5. In this case, an exact eigenvalue calculation matches . : ,
with the bound based eing a degraded version of (@) wheneverc > ¢'. Let
OMax- o be the threshold below which the maximum probability
_ ) _ of error in protograph density evolution for a protogra@h
B. Binary-input symmetric channel tends to zero ag — oc. Since probability of error tending
The extension to binary-input symmetric channels uses tttezero implies that Bhattacharya parameter tends to zezo, w
method of Bhattacharya parameters, and we will be brief m obave that, foro < ow,, the maximum Bhattacharya parameter
description referring td [2] and [17] for details. A binanpiut max; B:(i) — 0 ast — cc.
channelX — Y with X € {—1,+1} is said to be symmetric  Now, using ideas similar to those used for the binary erasure
if the transition probabilityp(Y'|X) satisfiesp(Y = y|X = channel, we can show that the Bhattacharya parameter, and,

+1) = p(Y = —y|X = —1). The standard message-passingence, the probability of message error, exhibits a double



exponential fall with iterations if the degree-2 subgraptGo into |V| vertices and denoted, say, ag vz, ..., vy € V'
is cycle-free. This result is stated as a theorem for referen Every vertexc € C; is split into |C| vertices denoted

/ .
Theorem 3. Let a protographs be such that (1) there are no <% €2 -~ €Ic| € C”. Now, we connect the edge;(v)

: : ) griginally incident onv € V; to the new vertexy;, € V.
loops involving only degree-2 variable nodes, and (2) evefy ~. L
: : : milarly, we connect the edge;(c) incident onc € C; to
degree-2 variable node is connected to a variable nodet -

fle new vertex, ;) € C'
(5) :
degree at least 3. Then, far < o, The node splitting step is illustrated in F[g. 3.
By (i) = O(exp(—52*")) (23)

for sufficiently larget, wherea, g are positive constants. 2 3
3
Proof: The proof is similar to the proof of Theorelm 1. 4 7
[ ] 8
The statements about large-girth constructions in Section 2
[M-AZ]for binary erasure channels carry over for the binary 87 4
9

input symmetric channel case as well. In particular, a secgie 9

of large-girth protograph LDPC codes over binary-input sym

metric channels will have bit-error threshold equal to kloc %
error threshold, and block-error rate falling near-expuiadly 1
with blocklength for noise levels below threshold, whemeve 2 1
the degree-2 subgraph of the protograph is cycle-free. 3 3

IV. LARGE-GIRTH PROTOGRAPHLDPC CoDES

We have seen that a sequencer(rof length« protograph
LDPC codes with girth increasing asogn, ¢ > 0, results in
block-error rate falling a® (n exp(—pn°*)) (wherea, 8 > 0)

oy |
below the message or bit-error threshold of the protograph. %78

C

H

The construction of large-girth regular graphs is a classic
problem in graph theory [22]. For a recent construction and
survey of latest results, seke [23]. For applications of darg
girth graphs in the construction of LDPC codes, se€ [2 ) . -~ . :
[25], [26]. In this section, we show how sequences of Iarg%g' 3: lllustration of node splitting with the protographkig.
girth protograph LDPC codes can be constructed starting
from sequences of regular large-girth graphs. We also d$scu
explicit deterministic constructions. Parts of this constion
were presented earlier in [27].

3) Properties: Two main properties are quite easy to prove.
The first is that the graplt’ obtained by node splitting is a
lifted version of the protograp&y, and can be generated by a
, . copy-permute operation o. In the copy-permute operation,
A. Construction of large-girth protograph LDPC codes the protograplds is copiedn; times, and the permutation of the

Let G = (VUC, E) be a protograph. The starting point foredge typej in G is determined precisely by the matchiff) =
the construction is a sequence|df|-regular bipartite graphs {e;(v) : v € V;} in B,,. Numbering the left/right vertices of
B,, = (V,UCi, E;),i=1,2,..., with |V;| = |C;| = n;. The B, from 1 ton;, let M map the left vertex to the right
existence of such sequences is well-known in graph theoygrtex M (t) in B,,,. In thet-th copy of the protograpty, the
and we provide explicit examples later on in this sectior. Fedge (e, t) connecting(v,t) to (c,t) is permuted to connect
now, we assume that such a sequence is available. (v,t) to (c, M(t)) in the lifted graph.

1) Edge coloring: According to Konig's theoreni [28], the  The second property is that the girth 6f is at least as
graphB,,, = (V;UC;, E;) can be edge-colored witl’| colors  |arge as the girth of3,,,. This is easy to see because a cycle
numbered from 1 tg£|. We fix such a coloring. For a vertexin G’ readily maps to a cycle of the same lengthAp. .

veV,lete;(v), j =1,2,...,|E|, denote the edge of color |n summary, we see that, given a sequencéAjfregular
j incident onv. Similarly, lete;(c) denote the edge of color pipartite graphsB,,, with n; nodes in each bipartition and
J incident onc € C;. girth at leastclogn;, we can construct a sequence of liftings

2) Node splitting:Let us number the left vertices of the proof a protograph witH £| edges such that the girth of the lifted
tographG as1,2,...,|V], the right vertices as,2,...,|C|, graphs grows at least adog n;.
and the edges a5 2,...,|E|. Let i(j) andr(j) denote the
left and right vertex indices off connected by the edge o )

From the graphB,,,, we will construct a bipartite graph B- Deterministic constructions
G' = (V'UC' E'), where|V'| = n;|V], |C'] = n;|C]| and The construction method described above can use any
|E'| = |E;| = n;|E|, by operations that we call node splittingsequence of regular large-girth graphs. For completenass a
followed by edge reconnecting. Every vertexc V; is split to give deterministic constructions, we describe the patars



of two large-girth graph sequences called LPS graphs [28] aconstructions in[[23] work directly for an arbitrary degread

D(m, q) graphs[[30], which we have used in simulations.

1) LPS GraphsX??: Letp andq be distinct, odd primes

with ¢ > 2,/p. The LPS graph, denote&™? [29], is
a connected(p + 1)-regular graph and has the following
properties:

o If p is a quadratic residue mod ¢, then X?? is a
non-bipartite graph withy(¢> — 1)/2 vertices and girth
g(XP9) > 2log, q.

o If p is a quadratic non-residuemod ¢, then XP:4
is a bipartite graph withy(¢®> — 1) vertices and girth
g(XP1) > 4log, q — log,, 4.

could be used as well.

V. OPTIMIZATION OF PROTOGRAPHS

In this section, we describe the search procedure used for
generating optimized protographs. The erasure channgbwver
was partly presented in [27].

A. Differential evolution

We have optimized protographs using differential evolutio
[32] [33], where we use the threshold given by density evolu-

When X?¢ is non-bipartite, we can convert it to a bipartitgion as the cost function. The salient steps of the difféaént

graph using the following algorithni [22] [26]:

« Given a graphG with verticesV(G) and edgesE(G),
construct a copy=’ with a new vertex set/(G’) and a
new edge seE(G’). Let f : V(G) — V(G’) be the 1-1
mapping from a vertex 7 to its copy inG’.

« Create a bipartite grapH with vertex setl’ (G)UV (G’)
and edge seb'(H) = {(z, f(y)) : (z,y) € E(G)}.

Following [22], it was shown in[[26] thay(H) > ¢(G). For
constructing a sequence @fregular large-girth graphs for an

arbitrary d using the LPS graphs, we use the following trick

from [26]. There exists an infinite number of primgssuch
thatd divides(p+1), i.e.,d|(p+1). For each such primgand
a suitableg, we constructX?:¢ and split eachHp + 1)-degree
node into(p+1)/d nodes of degreé. As shown in[[26], node
splitting does not reduce girth and we have a large-girtplgra
of the required degreé.

2) D(m,q) graph: The D(m, q) graphs satisfy the follow-

evolution algorithm are described briefly in the following:
. Initialization: For generatiot¥ = 0, we randomly choose

Np base matriced3;, ¢, with 0 < k¥ < Np — 1, of size
|C| x |V, whereNp = 10|C||V|. Each entry ofBy ¢ is
binary, chosen independently and uniformly.

. Mutation: Protographs of a particular generation are in-

terpolated as follows.
My,c = [Br,c +0.5(Brc — Bryg)l,  (25)

wherery, r9, r3 are randomly-chosen distinct values in
the rangd0, Np — 1], and[z] denotes the absolute value
of z rounded to the nearest integer.

. Crossover: A candidate protograf}, ., is chosen as

follows. The(s, j)-th entry of B,  is set as théi, j)-th
entry of M}, ¢ with probabilityp,, or as the(i, j)-th entry
of By, with probability 1 — p.. We usep. = 0.88 in
our optimization runs. IrB,’“G, if any cycle of degree-2

nodes emerges, edges are reassigned.

4. Selection: For generatidd + 1, protographs are selected
as follows. If the threshold oBy, ¢ is greater than that
of B,’“G, setBy g+1 = Br.g; €lse, seBg g1 = B,’“G.

5. Termination: Steps 2—4 are run for several generations
(we run up toG = 6000) and the protograph that gives
the best threshold is chosen as the optimized protograph.

(b) Forg > 5 and2 < m < 5, D(m,q) is a connected | the crossover step, we ensure that the subgraph induced by
bipartite graph witr2g™ vertices. the degree-2 nodes of the protograph is a tree. This ensures
(c) Form > 6, the graphD(m, q) is disconnected. Becauseihat the block-error threshold equals the bit-error thotgshif
of edge transitivity all connected components are iSgnjs condition is not enforced, better thresholds mightiltes
morphic. There arg'~" components ofD(m, q), where  from the optimization, but with no guarantee of a block-erro
t = |22 |. Each component oD(m,q) has2¢™ "™ ihreshold.
vertices and has girth equal §¢D(m, q)) defined inl2#).  The value ofy, is the crossover step has been taken as 0.88
Thus, form > 6, any connected component 6f(m,q) hased on trial and error. The optimization can be run with
can be used for constructing LDPC codes. other values ofp., but we have obtained acceptable results
3) Comparison betweeX?? and D(m,q): In the LPS with this value.
constructionX??, to guarantee a minimum girtl, a cglgreful
Zaf;l)l%“on shows that we must have blocklength p= or B. Optimized protographs for BEC
Form > 6, to guarantee girth in the D(m, ) construction, A féw optimized protographs obtained from the above
the blocklength grows as ~ q¥’ which is smaller than OPtimization process are as follows. An qpt|m|z}ezd 12, rate—.
that of X™4. Hence, we can generate graphs of smaller blogé4 Protograph with threshold 0.238 is given by the follogvin
length by using theD(m, q) graph with the node-splitting Pase matrix:

ing properties ([[30] and_[31]):
(a) For a prime poweg and an integern > 2, the girth of
D(m, q) satisfies

m+ 5, m odd

(24)
m +4, m even.

g(D(m,q) > {

algorithm. But unlikeX?9, in D(m, q), the vertex degree is 1100 7 4110000
always a power of a prime, which implies that the number of 123 071003100 (26)
edge types in the protograph needs to be a prime power. The 155 34012013 3



An optimized4 x 12, rate-2/3 protograph with threshold 0.32he capacity-achieving SNR (denoted Sj{Rand other pro-
is given by the following base matrix: tographs such as AR4JA [34, Figure 7], and those from the
DVB-S2 and WIMAX standards in Tablel Il.

1115310231171 ¢ )
0106 00020111 2001 70100011
00 2 6 00110100 (27) 0O o1 1 7 0012001 (31)
201201240411 411150100013
- _ 511613111301
An optimized4 x 8, rate-1/2 protograph with threshold 0.479 ) i}
is given by the following base matrix: 007021010230
23 72231323253 (32)
éfgg‘;éé? 108 102 1 1140 0
1 00 0 3 041 (28)
1 01 06 1 0 O Code type Rate Size SNRy, (dB) | Gap (dB)
DVB-S2 0.444 | 25 x 45 0.474 1.042
We observe that high thresholds are obtained even with small WIMAX 05 [ 12x24 0.812 0.625
i o AR4IA 05 I8 0.496 0.309
s:zed tprotogra!ftJhsb. Asdthe size increases, the thresholds g Srotograph B 0516 %32 3 5113
close fo capacily bounds. ) _ WIMAX 067 | 8x 24 2.799 0.491
An optimized 8 x 16 protograph with threshold 0.486 is DVB-S? 067 | 15 <x 45 5749 0.441
given by the following base matrix: AR4JA 067 | 2x6 1.338 0.279
_ _ protograph in[(3L)| 0.67 | 4 x 12 2.429 0.121
1200100400000°0°0O0°1 DVB-S2 0.73 | 12x45 3.62 0.498
0100010022 10O0O0T171 WIMAX 075 | 6x24 3.83 0.443
03 1 2100040032 20 3 protograph in[(3p)| 0.75 3 x 12 3.551 0.164
05000011001 00100¢0 TABLE II: Comparison of protograph thresholds for BIAWGN
131 112 0010O0O0O0O0O0O0 channel.
1500031 0O0O01O0O0O0O00O0
8 é 8 8 8 8 8 (1) (1) (1) 8 8 (1) 8 (1) (1) Note that the optimized protographs presented in this@ecti
L (29) satisfy the conditions of Theorem 1 and have block-error

A 16 x 32 protograph with threshold 0.4952 is given ir}hreshold same as the bit-error threshold. Also, the bkrckr

(30). The above protographs from our optimization runs afate falls inverse-polynomially (or better) in blocklehgtnder

compared against other protographs in Tdble I. We see t&ﬁ large-girth construction as described in Secfionédfland
Moreover, even for small sizes of protographs such:a8,

the optimized protographs give better thresholds thagules Al Sles X
standard ensemble codes with minimum degreé 3 [26] afd‘ 16 Or 16 x 32, the optimization results in thresholds that
other construction such as AR4JA[34, Figure 7], and statslaf'® N€ar capacity.

such as WIMAX [35] and DVB-S2[[36].
VI. SIMULATION RESULTS

CV(\’/?& A“)’(pe Fi)a;e IQS'XZE; - Thgejzgld (?352 We now present simulation results that confirm the predicted
DVB-S2 0.444 o5 % 45 0516 0.040 threshold behavior for both the BEC and the BIAWGN chan-
Standard I(,,;;, = 3) 0.5 | Not applicable 0.461 0.039 nel.
AR4JIA 05 1x8 0.468 0.032
protograph in[(2B) | 0.5 4x8 0.479 0.021
protograph in[(2B) | 0.5 8 X 16 0.486 0.014 A. BEC
rotograph in 0.5 16 x 32 0.4953 0.0047 . . .

B gARZJA ) o 56 5701 5035 Protographs if_V-B can be lifted using(m,q) graphs
WIMAX 0.67 X 24 0092 0.038 (m: positive integerg: prime power) from Sectioh IV since
DVB-S2 0.67 15 x 45 0.305 0.028 they have a prime number of edges. The parameters of the

protograph in[(2l7) | 0.67 4 x 12 0.32 001 | constructed LDPC codes are as given in Table Il
WIMAX 0.75 6 X 24 0.212 0.038
DVB-S2 0.73 12 x 45 0.232 0.018

. Code type Rate | m,q | Blocklength

protograph in[(26) [ 0.75 3x12 0238 | 0012 16 % 32 protograph n[(30)| 05 | 2, 173 | 957728

. ; 4 x 12 protograph in[(2l7) | 0.66 | 2, 61 44652
TABLE |: Comparison of protograph thresholds for BEC. 3> T2 protograph TI(Z6) | 0.75 | 261 1165

TABLE lll: Parameters of protograph LDPC codes used for
simulation over BEC.
C. Optimized protographs for BIAWGN channel
For BIAWGN channel, the threshold of protograph density The standard message passing decoder is simulated over the
evolution is computed using the EXIT chart method describ&EC, and the bit and block-error rate curves are shown in Fig.
in [16]. A few optimized protographs are given below, and. Error rates of AR4JA, DVB-S2 and WIMAX codes of the
their SNR thresholds (denoted SNRare compared againstsame rate are shown for comparison. These codes were lifted
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to blocklengths comparable to those in Tablé Il of the san#VB-S2 and WIMAX standard in Fid]5. As seen from the
rate. The rate-1/2 code was lifted to a length of 90000, whifggure, the optimized protographs perform better than other
the rate-2/3 and rate-3/4 codes were lifted to a length afrado comparable codes. Further, we note that the waterfall negio
45000. As seen from the figure, the optimized protograpfa both block-error and bit-error rate curves are the saone f
perform better than other comparable codes. both the BEC and BIAWGN channels.

B. BIAWGN channel

The protographs in in Tablelll are lifted using(m, q) . ) . )
graphs to obtained protograph LDPC codes with parameterdn this work, we studied protograph density evolution

given in TablgV. The standard message-passing decodefid derived conditions under which the bit and block-error
thresholds coincide. Using large-girth graphs, we preskat

VII. CONCLUSION

Code type Rate | m,q | Blocklength deterministic construction for a sequence of LDPC codek wit
16 x 32 protograph in[(38)] 0.5 | 2, 173 957728 block-error rate falling faster than any inverse polyndniia
4 x 12 protograph in[(3) | 0.66 | 2, 67 53868 ; i
3> 12 protograph 32y | 075 | 271 55793 blocklength. We described methods to optimize protographs

and presented small-sized protographs with thresholdseclo

TABLE IV: Parameters of protograph LDPC codes used fap capacity.

simulation over BIAWGN channel. As part of future work, characterizing the gap to capacity of
finite-length protographs theoretically appears to be aerin

simulated over the BIAWGN channel The bit and block-erragsting problem for study, particularly because the thrkeisho

rates are compared with codes such as AR4JA and those froem be close to capacity.
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